Skip to main content
Log in

A new quasi-minimal residual method based on a biconjugate A-orthonormalization procedure and coupled two-term recurrences

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Recently, some novel variants of Lanczos-type methods were explored that are based on the biconjugate A-orthonormalization process. Numerical experiments coming from some physical problems indicate that these new methods are competitive with or superior to other popular Krylov subspace methods. Among them, the biconjugate A-orthogonal residual (BiCOR) method is the archetype method. However, like the biconjugate gradient (BiCG) method, the BiCOR method often shows irregular convergence behavior which can lead to numerical instability. To overcome this drawback, motivated by the effectiveness and robustness of the quasi-minimal residual (QMR) method, we derive a new QMR-like approach based on the coupled two-term biconjugate A-orthonormalization process and simple recurrences instead of the QR decomposition. Some convergence properties are given, and the special case for solving complex symmetric linear system is considered. Finally, numerical experiments are reported to illustrate the performances of our methods and their preconditioners on linear systems discretizing the Helmholtz equation or taken from Florida Sparse Matrix Collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, Z.: Error analysis of the Lanczos algorithm for the nonsymmetric eigenvalue problem. Math. Comp. 62, 209–226 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bank, R.E., Chan, T.F.: An analysis of the composite step biconjugate gradient method. Numer. Math. 66, 295–319 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bank, R.E., Chan, T.F.: A composite step biconjugate gradient algorithm for nonsymmetric linear systems. Numer. Algorithms 7, 1–16 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrett, R., Berry, M.W., Chan, T.F., Demmel, J., Donato, J.M., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.A. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1996)

    Google Scholar 

  5. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer 14, 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezinski, C., Redivo Zaglia, M., Sadok, H.: A breakdown-free Lanczos type algorithm for solving linear systems. Numer. Math. 63, 29–38 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezinski, C., Redivo Zaglia, M., Sadok, H.: New look-ahead Lanczos-type algorithms for linear systems. Numer. Math. 83, 53–85 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bücker, H.M., Sauren, M. A parallel version of the unsymmetric Lanczos algorithm and its application to QMR. Internal Report KFA-ZAM-IB-9605. Research Centre Jülich, Germany (1996)

    Google Scholar 

  9. Carpentieri, B., Jing, Y.-F., Huang, T.-Z.: The BiCOR and CORS iterative algorithms for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 33, 3020–3036 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carpentieri, B., Jing, Y.-F., Huang, T.-Z., Pi, W.C., Sheng, X.Q.: Combining the CORS and BiCORSTAB iterative methods with MLFMA and SAI preconditioning for solving large linear systems in electromagnetics. Appl. Comput. Electromagn. Soc. (ACES) J. 27, 102–111 (2012)

    Google Scholar 

  11. Chan, T.F., Szeto, T.: Composite step product methods for nonsymmetric linear systems. SIAM J. Sci. Comput. 17, 1491–1508 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38, 25 (2011). Article 1

    MathSciNet  Google Scholar 

  13. Erlangga, Y.A., Vuik, C., Oosterlee, C.W.: On a class of preconditioners for the Helmholtz equation. Appl. Numer. Math. 50, 409–425 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Erlangga, Y.A., Vuik, C., Oosterlee, C.W.: Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation. Appl. Numer. Math. 56, 648–666 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fletcher R. Conjugate gradient methods for indefinite systems. In: Watson, G.A. (ed.) . Numerical Analysis, Dundee, 1975. Springer, Berlin (1976). Lecture notes in mathematics, 506, pp. 73–89

  16. Freund, R.W., Gutknecht, M.H., Nachtigal, N.M.: An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM J. Sci. Stat. Comput. 14, 137–158 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Freund, R.W., Nachtigal, N.M.: QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numer. Math. 60, 315–339 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Freund, R.W., Nachtigal, N.M.: An implementation of the QMR method based on coupled two-term recurrences. SIAM J. Sci. Comput. 15(2), 313–337 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gaul, A., Gutknecht, M.H., Liesen, J., Nabben, R.: A framework for deflated and augmented Krylov subspace methods. SIAM J. Matrix Anal. Appl. 34(2), 495–518 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gutknecht, M.H.: The unsymmetric Lanczos algorithms and their relations to Pade approximation, continued fractions, and the qd algorithm. Preliminary Proceedings of the Copper Mountain Conference on Iterative Methods. April 1990. http://www.sam.math.ethz.ch/mhg/pub/CopperMtn90.ps.gz and CopperMtn90-7.ps.gz

  21. Gutknecht, M.H.: Variants of BiCGSTAB for matrices with complex spectrum. SIAM J. Sci. Comput. 14, 1020–1033 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gutknecht, M.H.: Lanczos-type solvers for nonsymmetric linear systems of equations. Acta Numer 6, 271–397 (1997)

    Article  MathSciNet  Google Scholar 

  23. Gutknecht, M.H., Strakoš, Z.: Accuracy of two three-term and three two-term recurrences for Krylov space solvers. SIAM J. Matrix Anal. Appl. 22, 213–229 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gutknecht, M.H.: Deflated and augmented Krylov subspace methods: a framework for deflated BiCG and related solvers. SIAM J. Matrix Anal. Appl. 35, 1444–1466 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jing, Y.-F., Huang, T.-Z., Zhang, Y., Li, L., Cheng G.-H., Ren, Z.-G., Duan, Y., Sogabe, T., Carpentieri, B.: Lanczos-type variants of the COCR method for complex nonsymmetric linear systems. J. Comput. Phys. 228, 6376–6394 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jing, Y.-F., Huang, T.-Z., Carpentieri, B.: Experiments with Lanczos biconjugate A-orthonormalization methods for MoM discretizations of Maxwells equations. Prog. Electromagn. Res., PIER. 99, 427–451 (2009)

    Article  Google Scholar 

  27. Jing, Y.-F., Huang, T.-Z., Duan, Y., Carpentieri, B.: A comparative study of iterative solutions to linear systems arising in quantum mechanics. J. Comput. Phys. 229, 8511–8520 (2010)

    Article  MATH  Google Scholar 

  28. Jing, Y.-F., Huang, T.-Z., Carpentieri, B., Duan, Y.: Investigating the composite step biconjugate A-Orthogonal residual method for non-Hermitian dense linear systems in electromagnetics. Appl. Comput. Electromagn. Soc. (ACES) J. 27, 112–122 (2012)

    Google Scholar 

  29. Joly, P., Meurant, G.: Complex conjugate gradient methods. Numer. Algorithms 4, 379–406 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Joubert, W.D.: Generalized conjugate gradient and Lanczos methods for the solution of nonsymmetric systems of linear equations. Ph. D. Dissertation, Center for Numerical Analysis. University of Texas (1990)

  31. Kim, S.K., Chronopoulos, A.T.: An Efficient nonsymmetric Lanczos method on parallel vector computers. J. Comput. Appl. Math. 42, 357–374 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lanczos, C.: An Iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand. 45, 255–282 (1950)

    Article  MathSciNet  Google Scholar 

  33. Lanczos, C.: Solution of linear equations by minimized iterations. J. Res. Natl. Bur. Stand. 49, 33–53 (1952)

    Article  MathSciNet  Google Scholar 

  34. Langtangen, H.P., Tveito, A.: A numerical comparison of conjugate gradient-like methods. Comm. Appl. Numer. Methods 4, 793–798 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  35. Meijerink, J.A., van der Vorst, H.A.: An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comp. 31, 148–162 (1977)

    MathSciNet  MATH  Google Scholar 

  36. Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617–629 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  37. Parlett, B.N., Taylor, D.R., Liu, Z.A.: A look-ahead Lanczos algorithm for unsymmetric matrices. Math. Comp. 44, 105–124 (1985)

    MathSciNet  MATH  Google Scholar 

  38. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  39. Saad, Y.: ILUT: A dual threshold incomplete ILU factorization. Numer. Linear Algebra Appl. 1, 387–402 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Saad, Y. Iterative Methods for Sparse Linear Systems, second. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  41. Sauren, M., Bücker, H.M.: On deriving the quasi-minimal residual method. SIAM Rev. 40, 922–926 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Simoncini, V., Szyld, D.B.: Recent computational developments in Krylov subspace methods for linear systems. Numer. Linear Algebra Appl. 14, 1–59 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sogabe, T.: Extensions of the conjugate residual method. Ph. D, Dissertation, University of Tokyo (2006)

  44. Sogabe, T., Zhang, S.-L.: A COCR method for solving complex symmetric linear systems. J. Comput. Appl. Math. 199, 297–303 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sogabe, T., Sugihara, M., Zhang, S.-L.: An extension of the conjugate residual method to nonsymmetric linear systems. J. Comput. Appl. Math. 226, 103–113 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sun, D.-L., Jing, Y.-F., Huang, T.-Z., Carpentieri, B.: A quasi-minimal residual variant of the BiCORSTAB method for nonsymmetric linear systems. Comput. Math. Appl. 67, 1743–1755 (2014)

    Article  MathSciNet  Google Scholar 

  47. van der Vorst, H.A., Melissen, J.B.M.: A Petrov-Galerkin type method for solving Ax = b, where A is symmetric complex. IEEE Trans. Mag. 26, 706–708 (1990)

    Article  Google Scholar 

  48. Zhang, S.-L.: GPBi-CG: Generalized product-type methods based on Bi-CG for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 18, 537–551 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhao, L., Huang, T.-Z.: A hybrid variant of the BiCOR method for a nonsymmetric linear system with a complex spectrum. Appl. Math. Lett. 26, 457–462 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhao, L., Huang, T.-Z., Jing, Y.-F., Deng, L.-J.: A generalized product-type BiCOR method and its application in signal deconvolution. Comput. Math. Appl. 66(8), 1372–1388 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Dai, H. A new quasi-minimal residual method based on a biconjugate A-orthonormalization procedure and coupled two-term recurrences. Numer Algor 70, 875–896 (2015). https://doi.org/10.1007/s11075-015-9978-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-9978-5

Keywords

Navigation