Skip to main content
Log in

Numerical solution to generalized Lyapunov/Stein and rational Riccati equations in stochastic control

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider the numerical solution of the generalized Lyapunov and Stein equations in \(\mathbb {R}^{n}\), arising respectively from stochastic optimal control in continuous- and discrete-time. Generalizing the Smith method, our algorithms converge quadratically and have an O(n 3) computational complexity per iteration and an O(n 2) memory requirement. For large-scale problems, when the relevant matrix operators are “sparse”, our algorithm for generalized Stein (or Lyapunov) equations may achieve the complexity and memory requirement of O(n) (or similar to that of the solution of the linear systems associated with the sparse matrix operators). These efficient algorithms can be applied to Newton’s method for the solution of the rational Riccati equations. This contrasts favourably with the naive Newton algorithms of O(n 6) complexity or the slower modified Newton’s methods of O(n 3) complexity. The convergence and error analysis will be considered and numerical examples provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abou-kandil, H., Freiling, G., Ionescu, V., Jank, G.: Matrix Riccati Equations in Control and Systems Theory. Basel, Birkhäuser Verlag (2003)

    Book  MATH  Google Scholar 

  2. Bai, Z., Skoogh, D.: A projection method for model reduction of bilinear dynamical systems. Lin. Alg. Applic. 415, 406–425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benner, P., Breiten, T.: Low rank methods for a class of generalized Lyapunov equations and related issues. Numer. Math. 124, 441–470 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benner, P., Damm, T.: Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems. SIAM J. Contr. Optim. 49, 686–711 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benner, P., Fassbender, H.: On the numerical solution of large-scale sparse discrete-time Riccati equations. Adv. Comput. Maths. 35, 119–147 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benner, P., Laub, A., Mehrmann, V.: Benchmarks for the numerical solution of algebraic Riccati equations. IEEE Contr. Syst. Magazine 17, 18–28 (1995)

    Article  Google Scholar 

  7. Benner, P., Saak, J.: A semi-discretized heat transfer model for optimal cooling of steel profiles, in Dimension Reduction of Large-Scale Systems, ed. P. Benner, V. Mehrmann and D.C. Sorensen, Lecture Notes in Computational Science and Engineering, Springer-Verlag, Berlin/Heidelberg, Germany, 45 353356. (2005)

  8. Benner, P., Saak, J.: A Newton-Galerkin-ADI Method for Large-Scale Algebraic Riccati Equations , Applied Linear Algebra, GAMM Workshop Applied and Numerical Linear Algebra, Novi Sad May 27 2010 (2010). http://ala2010.pmf.uns.ac.rs/presentations/4g1220pb.pdf

  9. Benner, P., Saak, J.: A Galerkin-Newton-ADI method for solving large-scale algebraic Riccati equations, DFG Priority Programme 1253 Optimization with Partial Differential Equations, Preprint SPP1253-090, January (2010)

  10. Benner, P., Saak, J.: Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey. GAMM Mitteilungen 36, 32–52 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bini, D.A., Iannazzo, b., meini, b.: Numerical Solution of Algebraic Riccati Equations , SIAM Philadelphia (2012)

  12. Brandts, J.: The Riccati algorithm for eigenvalues and invariant subspaces of matrices with inexpensive actions. Lin. Alg. Appl. 358, 335–365 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chu, E.K.W., Fan, H.Y., Lin, W.W.: A structure-preserving doubling algorithm for continuous-time algebraic R iccati equations. Linear Algebra Appl. 396, 55–80 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chu, E.K.W., Fan, H.Y., Lin, W.W., Wang, C.S.: A structure-preserving doubling algorithm for periodic discrete-time algebraic Riccati equations. Int. J. Control 77, 767–788 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chu, E.K.W., Li, T., Lin, W.W., Weng, P.C.Y.: A modified Newton’s method for rational Riccati equations arising in stochastic control, 2011 International Conference on Communications, Computing and Control Applications (CCCA’11) Tunisia, 3–5 March (2011)

  16. Chu, E.K.W., Weng, P.C.Y.: Large-scale discrete-time algebraic Riccati equations — doubling algorithm and error analysis. J. Comp. Appl. Maths. 277, 115–126 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Damm, T.: Rational Matrix Equations in Stochastic Control, vol. 297. Springer Verlag, Berlin (2004)

    Google Scholar 

  18. Damm, T.: Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equations. Numer. Lin. Alg. Applic. 15, 853–871 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Damm, T., Hinrichsen, D.: Newton’s method for a rational matrix equation occurring in stochastic control. Lin. Algebra Applic. 332-334, 81–109 (2001)

    Article  MathSciNet  Google Scholar 

  20. Dragan, V., Morozan, T., Stoica, A. M.: Mathematical Methods in Robust Control of Discrete-Time Linear Stochastic Systems. Springer, New York (2010)

    Book  MATH  Google Scholar 

  21. Fan, H.Y., Weng, P.C.Y., Chu, E.K.W.: Numerical solution to generalized Lyapunov, Stein and rational Riccati equations in stochastic control, Technical Report , NCTS, National Tsing Hua University, Hsinchu, Taiwan. (http://www.mat.cts.nthu.edu.tw/publish/publish.php?class=102) (2013)

  22. Freiling, G.: A survey of nonsymmetric Riccati equations. Lin. Algebra Applic 351–352, 243–270 (2002)

    Article  MathSciNet  Google Scholar 

  23. Freiling, G., Hochhaus, A.: Basic properties of a class of rational matrix differential equations, Proc, European Control Conf. Porto (2001)

  24. Freiling, G., Hochhaus, A.: Properties of the solutions of rational matrix difference equations. Comput. Math. Applic. 45, 1137–1154 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Freiling, G., Hochhaus, A.: On a class of rational matrix differential equations arising in stochastic control. Lin. Algebra Applic. 379, 43–68 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th. Johns Hopkins University Press. Baltimore, MD (2013)

  27. Guo, C.H.: Iterative solution of a matrix Riccati equation arising in stochastic control. Oper. Theory. Adv. Appl. 130, 209–221 (2001)

    Google Scholar 

  28. Guo, C.H.: Iterative methods inearly perturbed algebraic matrix Riccati equation arising in stochastic control. Numer. Funct. Anal. Optim. 34, 516–529 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Heyouni, M., Jbilou, K.: An extended block Arnoldi algorithm for large-scale solutions of the continuous-time algebraic Riccati equations. Elect. Trans. Numer. Anal. 33, 53–62 (2009)

    MathSciNet  Google Scholar 

  30. Ivanov, I.G.: Iterations for solving a rational Riccati equations arising in stochastic control. Comput. Math. Applic. 53, 977–988 (2007)

    Article  MATH  Google Scholar 

  31. Ivanov, I.G.: Properties of Stein (Lyapunov) iterations for solving a general Riccati equation. Nonlinear Anal. 67, 1155–1166 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jaimoukha, I.M., kasenally, E.M.: Krylov subspace methods for solving large Lyapunov equations. SIAM J. Numer. Anal. 31, 227–251 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jbilou, K.: Block Krylov subspace methods for large continuous-time algebraic Riccati equations. Numer Algorithms 34, 339–353 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jbilou, K.: An Arnoldi based algorithm for large algebraic Riccati equations. Appl. Math. Lett. 19, 437–444 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jbilou, K.: Low rank approximate solutions to large Sylvester matrix equations. Appl. Math. Comput. 177, 365–376 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kressner, D., Sirković, P.: Greedy low-rank methods for solving general linear matrix equations, Technical Report École Polytechnique Fédérale de Lausanne, February (2014). http://sma.epfl.ch/anchpcommon/publications/KS_GLRM.pdf

  37. Lancaster, P., Rodman, L.: Algebraic Riccati Equations. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  38. Li, T., Chu, E.K.W., Lin, W.W., Weng, C.Y.: Solving large-scale continuous-time algebraic Riccati equations by doubling. J. Compur. Appl. Math. 237, 373–383 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, T., Weng, P.C.Y., Chu, E.K.W., Lin, W.W.: Large-scale Stein and Lyapunov equations, Smith method, and applications . Numer. Alg. 63, 727–752 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lin, W.W., Xu, S.F.: Convergence analysis of structure-preserving doubling algorithms for Riccati-type matrix equations. SIAM J. Matrix Anal. Appl. 28, 26–39 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mathworks, MATLAB User’s Guide (2012)

  42. Mehrmann, V.L.: The Autonomous Linear Quadratic Control Problem, vol. 163. Springer Verlag, Berlin (1991)

    Book  Google Scholar 

  43. Saak, J.: Efficient Numerical Solution of Large Scale Algebraic Matrix Equations in PDE Control and Model Order Reduction , Dr. rer. nat. Dissertation, Chemnitz University of Technology, Germany (2009)

  44. Saak, J., Mena, H., Benner, P.: Matrix Equation Sparse Solvers (MESS): A MATLAB Toolbox for the Solution of Sparse Large-Scale Matrix Equations. Chemnitz University of Technology, Germany (2010)

    Google Scholar 

  45. Schneider, H., Positive operators and an inertia theorem. Numer. Math 7, 11–17 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  46. Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29, 1268–1288 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Simoncini, V.: Computational methods for linear matrix equations, Technical Report, January , available from (2014). http://www.dm.unibo.it/~simoncin/public_matrixeq_rev.pdf

  48. Weng, P.C.Y., Fan, H.Y., Chu, E.K.W.: Low-rank approximation to the solution of a nonsymmetric algebraic Riccati equation from transport theory. Appl. Math. Comput. 219, 729–740 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wonham, W.M.: On a matrix Riccati equation of stochastic control. SIAM J. Control 6, 681–797 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wonham, W.M.: Erratum: On a matrix Riccati equation of stochastic control. SIAM J. Control 7, 365 (1969)

    Article  MathSciNet  Google Scholar 

  51. Zhou, B., Lam, J., Duan, G.R.: On Smith-type iterative algorithms for the Stein matrix equation. Appl. Maths. Letts. 22, 1038–1044 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Chang-Yi Weng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, HY., Weng, P.CY. & Chu, E.KW. Numerical solution to generalized Lyapunov/Stein and rational Riccati equations in stochastic control. Numer Algor 71, 245–272 (2016). https://doi.org/10.1007/s11075-015-9991-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-9991-8

Keywords

Mathematical Subject Classifications (2010)

Navigation