Skip to main content
Log in

A new augmented immersed finite element method without using SVD interpolations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Augmented immersed interface methods have been developed recently for interface problems and problems on irregular domains including CFD applications with free boundaries and moving interfaces. In an augmented method, one or several augmented variables are introduced along the interface or boundary so that one can get efficient discretizations. The augmented variables should be chosen such that the interface or boundary conditions are satisfied. The key to the success of the augmented methods often relies on the interpolation scheme to couple the augmented variables with the governing differential equations through the interface or boundary conditions. This has been done using a least squares interpolation (under-determined) for which the singular value decomposition (SVD) is used to solve for the interpolation coefficients. In this paper, based on properties of the finite element method, a new augmented immersed finite element method (IFEM) that does not need the interpolations is proposed for elliptic interface problems that have a piecewise constant coefficient. Thus the new augmented method is more efficient and simple than the old one that uses interpolations. The method then is extended to Poisson equations on irregular domains with a Dirichlet boundary condition. Numerical experiments with arbitrary interfaces/irregular domains and large jump ratios are provided to demonstrate the accuracy and the efficiency of the new augmented methods. Numerical results also show that the number of GMRES iterations is independent of the mesh size and nearly independent of the jump in the coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Braess, D.: Finite elements: Theory, fast solvers, and applications in solid mechanics. Cambridge University Press (2001)

  2. Bramble, J., King, J.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6, 109–138 (1996)

    Article  MathSciNet  Google Scholar 

  3. Chang, K., Kwak, D.: Discontinuous bubble scheme for elliptic problems with jumps in the solution. Comput. Methods Appl. Mech. Engrg. 200, 494–508 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, G., Li, Z., Lin, P.: A fast finite difference method for biharmonic equations on irregular domains. Adv. Comput. Math. 29, 113–133 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. He, X., Lin, T., Lin, Y.: Approximation capability of a bilinear immersed finite element space. Numer. Methods Partial Differential Equations 24, 1265–1300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. He, X., Lin, T., Lin, Y.: A bilinear immersed finite volume element method for the diffusion equation with discontinuous coefficient. Commun. Comput. Phys. 6, 185 (2009)

    Article  MathSciNet  Google Scholar 

  7. He, X., Lin, T., Lin, Y.: Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions. Int. J. Numer. Anal. Model. 8, 284–301 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Hou, S., Liu, X.: A numerical method for solving variable coefficient elliptic equation with interfaces. J. Comput. Phys. 202, 411–445 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hou, T., Wu, X., Cai, Z.: Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comp. 68, 913–943 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hou, T., Wu, X., Zhang, Y.: Removing the cell resonance error in the multiscale finite element method via a Petrov-Galerkin formulation. Commun. Math. Sci. 2, 185–205 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ito, K., Li, Z., Lai, M.: An augmented method for the Navier-Stokes equations on irregular domains. J. Comput. Phys. 228, 2616–2628 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Swarztrauber, P., Adams, J., Sweet, R.: Fishpack: Efficient Fortran subprograms for the solution of separable elliptic partial differential equations. Available In: http://www.netlib.org/fishpack/

  13. Ji, H., Chen, J., Li, Z.: A symmetric and consistent immersed finite element method for interface problems. J. Sci. Comput. doi:10.1007/s10915-014-9837-x

  14. Li, Z.: A fast iterative algorithm for elliptic interface problems. SIAM J. Numer. Anal. 35, 230–254 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, Z., Ito, K.: The immersed interface method: numerical solutions of PDEs involving interfaces and irregular domains. Frontiers in Applied Mathematics, vol. 33. SIAM, Philadelphia (2006)

    Book  Google Scholar 

  16. Li, Z., Ito, K., Lai, M.: An augmented approach for Stokes equations with a discontinuous viscosity and singular forces. Comput. Fluids 36, 622–635 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, Z., Lin, T., Wu, X.: New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96, 61–98 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, Z., Wang, W., Chern, I., Lai, M.: New formulations for interface problems in polar coordinates. SIAM J. Sci. Comput. 25, 224–245 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, Z., Zhao, H., Gao, H.: A numerical study of electro-migration voiding by evolving level set functions on a fixed Cartesian grid. J. Comput. Phys. 152, 281–304 (1999)

    Article  MATH  Google Scholar 

  20. Mayo, A.: The rapid evaluation of volume integrals of potential theory on general regions. J. Comput. Phys. 100, 236–245 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mayo, A., Greenbaum, A.: Fast parallel iterative solution of Poisson’s and the biharmonic equations on irregular regions. SIAM J. Sci. Statist. Comput. 13, 101–118 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nielsen, B.F.: Finite element discretizations of elliptic problems in the presence of arbitrarily small ellipticity: An error analysis. SIAM J. Numer. Anal. 36, 368–392 (1999)

    Article  MathSciNet  Google Scholar 

  23. Oevermann, M., Klein, R.: A Cartesian grid finite volume method for elliptic equations with variable coefficients and embedded interfaces. J. Comput. Phys. 219, 749–769 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Saad, Y., Schultz, M.: Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ying, W., Henriquez, C.: A kernel-free boundary integral method for elliptic boundary value problems. J. Comput. Phys. 227, 1046–1074 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinru Chen or Zhilin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, H., Chen, J. & Li, Z. A new augmented immersed finite element method without using SVD interpolations. Numer Algor 71, 395–416 (2016). https://doi.org/10.1007/s11075-015-9999-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-9999-0

Keywords

Mathematics Subject Classification (2010)

Navigation