Skip to main content
Log in

Optimal global approximation of stochastic differential equations with additive Poisson noise

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider strong global approximation of SDEs driven by a homogeneous Poisson process with intensity λ > 0. We establish the exact convergence rate of minimal errors that can be achieved by arbitrary algorithms based on a finite number of observations of the Poisson process. We consider two classes of methods using equidistant or nonequidistant sampling of the Poisson process, respectively. We provide a construction of optimal schemes, based on the classical Euler scheme, which asymptotically attain the established minimal errors. It turns out that methods based on nonequidistant mesh are more efficient than those based on the equidistant mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum, D.: Lévy processes and stochastic calculus, 2nd ed. Cambridge University Press (2011)

  2. Bonet, E., Nualart, D.: Interpolation and forecasting in Poisson’s processes. Stochastica 2, 1–5 (1977)

    MathSciNet  MATH  Google Scholar 

  3. Bruti-Liberati, N., Platen, E.: Strong approximations of stochastic differential equations with jumps. J. Comput. Appl. Math. 205, 982–1001 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gardoń, A: The order of approximations for solutions of Itô-type stochastic differential equations with jumps. Stoch. Anal. Appl. 22, 679–699 (2004)

    Article  MATH  Google Scholar 

  5. Higham, D.J., Kloeden, P.E.: Numerical methods for nonlinear stochastic differential equations with jumps. Numer. Math. 101, 101–119 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Higham, D.J., Kloeden, P.E.: Convergence and stability of implicit methods for jump-diffusion systems. Int. J. Numer. Anal. Model. 3, 125–140 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Higham, D.J., Kloeden, P.E.: Strong convergence rates for backward Euler on a class of nonlinear jump-diffusion problems. J. Comput. Appl. Math. 205, 949–956 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hofmann, N., Müller–Gronbach, T., Ritter, K.: Optimal approximation of stochastic differential equations by adaptive step-size control. Math. Comp. 69, 1017–1034 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hofmann, N., Müller–Gronbach, T., Ritter, K: The optimal discretization of stochastic differential equations. J. Complexity 17, 117–153 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kacewicz, B.: Minimal asymptotic error of algorithms for solving ODE. J. Complexity 4, 373–389 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus, 2nd edn. Springer, New York (1991)

    MATH  Google Scholar 

  12. Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  13. Kopp, P.E.: Martingales and stochastic integrals. Cambridge University Press (1984)

  14. Kuo, H.-H.: Introduction to stochastic integration. Springer Science (2006)

  15. Liptser, R.S., Shiryayev, A.N.: Statistics of random processes I. General theory. Springer Science + Business Media New York (1977)

  16. Milstein, G.N., Tretyakov, M.V.: Stochastic numerics for mathematical physics. Scientific computation. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  17. Müller–Gronbach, T.: Optimal pointwise approximation of SDEs based on Brownian motion at discrete points. Annals Appl. Prob. 14, 1605–1642 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Müller–Gronbach, T.: Strong approximation of systems of stochastic differential equations. Habilitationsschrift, TU Darmstadt (2002)

  19. Neuenkirch, A.: Optimal approximation of SDE’s with additive fractional noise. J. Complexity 22, 459–474 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Neuenkirch, A.: Optimal approximation of stochastic differential equations with additive fractional noise. Ph.D. Thesis, TU Darmstadt, Shaker Verlag, Aachen (2006)

    MATH  Google Scholar 

  21. Platen, E., Bruti-Liberati, N.: Numerical solution of stochastic differential equations with jumps in finance. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  22. Przybyłowicz, P.: Optimal sampling design for approximation of stochastic Itô integrals with application to the nonlinear Lebesgue integration. J. Comp. Appl. Math. 245, 10–29 (2013)

    Article  MATH  Google Scholar 

  23. Przybyłowicz, P.: Optimality of Euler–type algorithms for approximation of stochastic differential equations with discontinuous coefficients. Internat. J. Comp. Math. 91, 1461–1479 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Przybyłowicz, P., Morkisz, P.: Strong approximation of solutions of stochastic differential equations with time–irregular coefficients via randomized Euler algorithm. Appl. Numer. Math. 78, 80–94 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Przybyłowicz, P.: Minimal asymptotic error for one-point approximation of SDEs with time–irregular coefficients. J. Comp. Appl. Math. 282, 98–110 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Przybyłowicz, P.: Optimal global approximation of SDEs with time-irregular coefficients in asymptotic setting. Appl. Math. Comp. 270, 441–457 (2015)

    Article  MathSciNet  Google Scholar 

  27. Ritter, K.: Average case analysis of numerical problems. Lecture notes in Math, vol. 1733. Springer, Berlin (2000)

    Google Scholar 

  28. Sacks, J., Ylvisaker, D.: Design for regression problems with correlated errors III. Ann. Math. Stat. 41, 2057–2074 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  29. Situ, R.: Theory of stochastic differential equations with jumps and applications. Springer Science (2005)

  30. Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information–based complexity. Academic, New York (1988)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Przybyłowicz.

Additional information

This research was partly supported by the Polish NCN grant - decision No. DEC-2013/09/B/ST1/04275 and by AGH local grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Przybyłowicz, P. Optimal global approximation of stochastic differential equations with additive Poisson noise. Numer Algor 73, 323–348 (2016). https://doi.org/10.1007/s11075-016-0097-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0097-8

Keywords

Mathematics Subject Classification (2010)

Navigation