Skip to main content
Log in

A Legendre-Galerkin method for solving general Volterra functional integral equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We propose in this paper a fully discrete Legendre-Galerkin method for solving general Volterra functional integral equations. The focus of this paper is the stability analysis of this method. Based on this stability result, we prove that the approximation equation has a unique solution, and then show that the Legendre-Galerkin method gives the optimal convergence order \(\mathcal {O}(n^{-m})\), where m denotes the degree of the regularity of the exact solution and n+1 denotes the dimensional number of the approximation space. Moreover, we establish that the spectral condition constant of the coefficient matrix relative to the corresponding linear system is uniformly bounded for sufficiently large n. Finally, we use numerical examples to confirm the theoretical prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson, K.E.: The Numerical Solution of Integral Equations of Second Kind. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  2. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations Methods. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  3. Brunner, H.: Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays. Front. Math. China 4, 3–22 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brunner, H., Xie, H., Zhang, R.: Analysis of collocation solutions for a class of functional equations with proportional delays. IMA J. Numer. Anal. 31, 698–718 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, H.: A Jacobi-collocation method for solving second kind Fredholm integral equations with weakly singular kernels. Sci. China Math. 57, 2163–2178 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y., Tang, T.: Spectral methods for weakly singular Volterra integral equations with smooth solutions. J. Comput. Appl. Math. 233, 938–950 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Y., Tang, T.: Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel. Math. Comput. 269, 147–167 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Delves, L.M.: Computational Methods for Integral Equations. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  9. Elliott, D.: Projection methods for singular integral equations. J. Integral Equ. Appl. 1, 95–106 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hsiao, G., Wendland, W.: Boundary Integral Equations. Springer, New York (2008)

    Book  MATH  Google Scholar 

  11. Iserles, A.: On the generalized pantograph functional differential equation. Eur. J. Appl. Math. 4, 1–38 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kress, R.: Linear Integral Equations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  13. Krenk, S.: On quadrature formulas for singular integral equations of the first and the second kind. Q. Appl. Math. 33, 225–232 (1975)

    MathSciNet  MATH  Google Scholar 

  14. Milovanovic, G.V., Cvetkovic, A.S., Stanic, M.P.: Orthogonal polynomials for modified Gegenbauer weight and corresponding quadratures. Appl. Math. Lett. 22, 1189–1194 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mastroianni, G., Milovanovic, G.V.: Some numerical methods for second-kind Fredholm integral equations on the real semiaxis. IMA J. Numer. Anal. 29, 1046–1066 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mastroianni, G., Monegato, G.: Error estimates in the numerical evaluation of some BEM singular integrals. Math. Comput. 233, 251–267 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Mastroianni, G., Milovanovic, G.V., Occorsio, D.: A Nystrom method for two variables Fredholm integral equations on triangles. Appl. Math. Comput. 219, 7653–7662 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Mikhlin, G., Prossdorf, S.: Singular Integral Operators. Springer, New York (1986)

    Book  MATH  Google Scholar 

  19. Monegato, G., Scuderi, L.: High order methods for weakly singular integral equations with nonsmooth input functions. Math. Comput. 224, 1493–1515 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. Springer Series in Computational Mathematics. Springer, New York (2011)

    Book  Google Scholar 

  21. Sloan, I.H.: Four variants of the Galerkin method for integral equations of the second kind. IMA J. Numer. Anal. 4, 9–17 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sloan, I.H., Spence, A.: Galerkin method for integral equations of the first kind with logarithmic kernel: theory. IMA. J. Numer. Anal. 8, 105–122 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tang, T., Xu, X., Cheng, J.: On spectral methods for Volterra type integral equations and the convergence analysis. J. Comput. Math. 26, 825–837 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Wei, Y., Chen, Y.: Legendre spectral collocation methods for pantograph Volterra delay-integro-differential equations. J. Sci. Comput. 53, 672–688 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xie, H., Zhang, R., Brunner, H.: Colloction methods for general Volterra functional integral equations with vanishing delays. SIAM J. Sci. Comput. 33, 3303–3332 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xie, Z., Li, X., Tang, T.: Convergence analysis of spectral Galerkin methods for Volterra type integral equations. J. Sci. Comput. 53, 414–434 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haotao Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Qi, J. A Legendre-Galerkin method for solving general Volterra functional integral equations. Numer Algor 73, 1159–1180 (2016). https://doi.org/10.1007/s11075-016-0134-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0134-7

Keywords

Mathematics Subject Classification (2010)

Navigation