Skip to main content
Log in

A new high-order energy-preserving scheme for the modified Korteweg-de Vries equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, a new high-order energy-preserving scheme is proposed for the modified Korteweg-de Vries equation. The proposed scheme is constructed by using the Hamiltonian boundary value methods in time, and Fourier pseudospectral method in space. Exploiting this method, we get second-order and fourth-order energy-preserving integrators. The proposed schemes not only have high accuracy, but also exactly conserve the total mass and energy in the discrete level. Finally, single solitary wave and the interaction of two solitary waves are presented to illustrate the effectiveness of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15(6), 240–243 (1965)

    Article  MATH  Google Scholar 

  2. Drazin, P.G., Johnson, R.S.: Solitons: an introduction. Cambridge University Press (1996)

  3. Miura, R.M.: The Korteweg-de Vries equation: a survey of results. SIAM Rev. 19(4), 412–459 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ito, M.: An extension of nonlinear evolution equations of the K-dV (mK-dV) type to higher orders. J. Physical Soc. Japan 49(2), 771–778 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wadati, M.: The exact solution of the modified Korteweg-de Vries equation. J. Physical Soc. Japan 32, 1681–1687 (1972)

    Article  Google Scholar 

  6. Miura, R.M., Gardner, C.S., Kruskal, M.D.: Korteweg-de Vries equation and generalization. II. Existence of conservation laws and constants of motion. J. Math. Phys. 9(8), 1204–1209 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bridges, T.J.: Multi-symplectic structures and wave propagation. Math. Proc. Camb. Philos. Soc. 121(1), 147–190 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6(5), 449–467 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. 357(1754), 1021–1045 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hulme, B.L.: One-step piecewise polynomial Galerkin methods for initial value problems. Math. Comput. 26(118), 415–426 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, Q.X., Zhang, Z.Y., Zhang, X.H., Zhu, Q.Y.: Energy-preserving finite volume element method for the improved Boussinesq equation. J. Comput. Phys. 270, 58–69 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Iavernaro, F., Pace, B.: S-stage trapezoidal methods for the conservation of Hamiltonian functions of polynomial type. AIP Conf. Proc. 936(1), 603–606 (2007)

    Article  MATH  Google Scholar 

  13. Iavernaro, F., Pace, B.: Conservative block-boundary value methods for the solution of polynomial Hamiltonian systems. AIP Conf. Proc. 1048(1), 888–891 (2008)

    Article  MATH  Google Scholar 

  14. Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A. Math. Theor. 41(4), 045206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Iavernaro, F., Trigiante, D.: High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems. J. Numer. Anal. Ind. Appl. Math. 4(1–2), 87–101 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Brugnano, L., Iavernaro, F., Trigiante, D.: Numerical solution of ODEs and the columbus’s egg: three simple ideas for three difficult problems. Math. Eng. Sci. Aerosp. 1(4), 407–426 (2010)

    MATH  Google Scholar 

  17. Brugnano, L., Iavernaro, F., Trigiante, D.: A note on the efficient implementation of Hamiltonian BVMs. J. Comput. Appl. Math. 236(3), 375–383 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Brugnano, L., Iavernaro, F., Trigiante, D.: A simple framework for the derivation and analysis of effective one-step methods for ODEs. Appl. Math. Comput. 218(17), 8475–8485 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Brugnano, L., Iavernaro, F., Trigiante, D.: Analysis of Hamiltonian boundary value methods (HBVMs): a class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems. Commun. Nonlinear Sci. Numer. Simul. 20(3), 650–667 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Brugnano, L., Iavernaro, F., Trigiante, D.: Hamiltonian boundary value methods (Energy preserving discrete line integral methods). J. Numer. Anal. Ind. Appl. Math. 5(1–2), 17–37 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Energy conservation issues in the numerical solution of the semilinear wave equation. Appl. Math. Comput. 270, 842–870 (2015)

    MathSciNet  Google Scholar 

  22. Li, S., Vu-Quoc, L.: Finite difference calculas invarient structure of a class of algorithms for the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 32(6), 1839–1875 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gardner, L.R.T., Gardner, G.A., Geyikli, T.: Solitary wave solutions of the MKdv equation. Comput. Methods Appl. Mech. Eng. 124(4), 321–333 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zheng, C.X.: Numerical simulation of a modified KdV equation on the whole real axis. Numer. Math. 105(2), 315–335 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gorria, C., Alejo, M.A., Vega, L.: Discrete conservation laws and the convergence of long time simulations of the mkdv equation. J. Comput. Phys. 235, 274–285 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Raslan, K.R., Baghdady, H.A.: New algorithm for solving the modified Korteweg-de Vries (mKdV) equation. J. Res. Rev. Appl. Sci. 18(1), 59–64 (2014)

    Google Scholar 

  27. Bona, J.L., Dougalis, V.A., Karakashian, O.A., McKinney, W.R.: Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation. Philos. Trans. R. Soc. 351(1695), 107–164 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cui, Y.F., Mao, D.K.: Numerical method satisfying the first two conservation laws for the Korteweg-de Vries equation. J. Comput. Phys. 227(1), 376–399 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bona, J.L., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous-Galerkin methods for the generalized Korteweg-de Vries equation. Math. Comput. 82(283), 1401–1432 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yi, N.Y., Huang, Y.Q., Liu, H.L.: A direct discontinuous Galerkin method for the generalized Korteweg-de Vries equation Energy conservation and boundary effect. J. Comput. Phys. 242, 351–366 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Brugnano, L., Iavernaro, F.: Line integral methods for conservative problems. series: monographs and research notes in mathematics. Chapman and Hall/CRC, Boca Raton (2016). ISBN 9781482263848

    MATH  Google Scholar 

  32. Chen, J.B., Qin, M.Z.: Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation. Electron. Trans. Numer. Anal. 12, 193–204 (2001)

    MathSciNet  MATH  Google Scholar 

  33. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.: Spectral methods in fluid dynamics. Springer, New York (1988)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Yue Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, JL., Zhang, Q., Zhang, ZY. et al. A new high-order energy-preserving scheme for the modified Korteweg-de Vries equation. Numer Algor 74, 659–674 (2017). https://doi.org/10.1007/s11075-016-0166-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0166-z

Keywords

Mathematics Subject Classification (2010)

Navigation