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RAPIDLY COMPUTING SPARSE LEGENDRE EXPANSIONS VIA SPARSE

FOURIER TRANSFORMS

XIANFENG HU, MARK IWEN, AND HYEJIN KIM

Abstract. In this paper we propose a general strategy for rapidly computing sparse Legendre
expansions. The resulting methods yield a new class of fast algorithms capable of approximating a
given function f : [−1, 1] → R with a near-optimal linear combination of s Legendre polynomials

of degree ≤ N in just (s logN)O(1)-time. When s ≪ N these algorithms exhibit sublinear runtime
complexities in N , as opposed to traditional Ω(N logN)-time methods for computing all of the first
N Legendre coefficients of f . Theoretical as well as numerical results demonstrate the effectiveness
of the proposed methods.

1. Introduction

In this paper we consider Legendre-compressible functions which can be well approximated by a
linear combination of a small number of unknown, and potentially high-degree, Legendre polynomi-
als. Given such a function our objective is to quickly learn the best basis of Legendre polynomials
with which to approximate it, and then to compute their coefficients. Let f : [−1, 1] → R be a
degree N polynomial, and Ln(x) denote the Legendre polynomial of degree n. We aim to rapidly

and accurrately compute f ’s Legendre coefficients, f̃(n) ∈ R for n ∈ {0, . . . , N} with

(1) f(x) =

N∑

n=0

f̃(n)Ln(x),

whenever f̃(n) ≈ 0 for all but s ≪ N initially unknown values of n. We will call any numerical
method with this objective a sparse Legendre expansion algorithm.

Note that solving this problem is straightforward if one is willing to sample f at N +1 points in
[−1, 1], and then compute all N + 1 of its Legendre coefficients. However, any such approach will
necessarily require Ω(N)-operations, which can become overwhelming when the maximal degree,
N , of f is large. Our objective here is to select the best basis of s ≪ N Legendre polynomials of
degree ≤ N for f , and then estimate their coefficients, in (s logN)O(1)-time. When s is significantly
smaller than N , these methods will be faster than any traditional approach which computes all N
Legendre coefficients of f . Fast sparse Legendre expansion algorithms of this kind are a natural first
step toward the development of computationally tractable algorithms for approximating functions of
many variables with respect to tensorized Legendre polynomial bases. In such multivariate problems
the maximal degree, N , grows exponentially in the number of variables, rapidly rendering even
O(N)-time methods impractical. Our longterm goal is to extend (s logN)O(1)-time sparse expansion
methods for functions one variable, once they are properly understood, to the multi-variate setting.
If possible, the resulting methods would be of value in many computational applications including,
e.g., uncertainty quantification [32] and the computation of polynomial chaos expansions [13, 14].

Xianfeng (Janice) Hu: Institute for Mathematics and its Applications, University of Minnesota (xhu@umn.edu).
M.A. Iwen: Department of Mathematics and Department of ECE, Michigan State University

(markiwen@math.msu.edu). M.A. Iwen was supported in part by NSF DMS-1416752.
Hyejin Kim: Department of Mathematics and Statistics, University of Michigan – Dearborn (khyejin@umich.edu).

http://arxiv.org/abs/1508.04758v2


The majority of previously proposed sparse Legendre expansion methods are based on Prony-
like approaches. Examples include results by Peter et. al. [36] who develop a method based on
a more general approach from [35] which needs only O(s) samples from (various derivatives of)
f in order to recover its s-sparse Legendre expansion. More recently, Potts and Tasche [38] used
approximation techniques to adapt previous Prony-like methods for the recovery of Chebyshev-
sparse functions [39] to the Legendre-sparse setting. However, no theoretical results are proven in
[38] that demonstrate the methods therein can extend to functions with compressible (as opposed
to exactly s-sparse) Legendre expansions, nor is it proven that they can tolerate even modest
levels of noise in general. In contrast, herein we provide a theoretical support recovery guarantee
which proves that our techniques can indeed locate the principle support of a relatively large class of
Legendre-compressible functions (see, e.g., Theorem 5). When combined with coefficient estimation
methods based on techniques from compressive sensing (see, e.g., Lemma 4) these support recovery
guarantees allow one to prove a variety of general sublinear-time recovery guarantees for functions
with compressible Legendre expansions.

Other sparse Legendre expansion methods include those based on compressive sensing approaches
[17]. In particular, Rauhut and Ward [40] demonstrate that O(s · log4N) samples from f suffice in
order to accurately and stably approximate f with a near-optimal sparse Legendre expansion. The
associate reconstruction algorithms are Ω(N)-time, however. As opposed to these previous sparse
Legendre expansion methods, we propose a new approach motivated by a recently proposed FFT-
based algorithm for computing all N +1 Legendre coefficients of a given function f in O(N logN)-
time. In the process, we demonstrate a general approach which allows one to utilize any Sparse
Fourier Transform algorithm (see, e.g., [21, 25, 31, 43]) one desires in order to recover functions
which are sparse/compressible in other polynomial bases (herein, Chebyschev and Legendre).

Computing all N+1 Legendre coefficients of f in o(N2)-time is itself a challenging problem which
has attracted a good deal of attention over the past two decades. Proposed methods include, e.g.,
fast multipole-like approaches [3], and algorithms based on integral transform techniques [15], to
mention just a few. These methods are O(N logcN)-time for various c ∈ R+. Most pertinent to the
sparse Legendre expansion algorithms proposed herein, however, are recent FFT-based algorithms
for computing all N Legendre coefficients in O(N logN)-time [26]. These methods work by (i)
implicitly mapping the Legendre coefficients of f to the Fourier coefficients of a related function,
fr, which remains easily to sample, followed by (ii) computing the Fourier coefficients of fr with an
FFT, and then (iii) using the computed Fourier coefficients of fr in order to recover the Legendre
coefficients of the original function f (i.e., by inverting the map from (i)). The sparse Legendre
expansion methods proposed herein are based on this same type of approach. In particular, the
algorithms proposed herein result from combining ideas from Iserles’ FFT-based Legendre algorithm
[26] (summarized below in §2.2) with sparse Fourier transform techniques (briefly discussed in the
next section).

1.1. Sparse Fourier Transforms. Sparse Fourier Transforms (SFTs) are algorithms for quickly
computing near-optimal sparse approximations to the Fourier series of a given periodic function
f : [−π, π]D → C. Suppose that f is a trigonometric polynomial of degree N in every variable so

that the Fourier series of f is effectively f̂ ∈ C
ND

. An optimal s-term trigonometric approximation
to f is given by

(2) fopts (x) :=

s∑

j=1

f̂ (ωj) e
iωj ·x
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where ω1, . . . ,ωND ∈ (−N/2, N/2]D∩ZD are ordered by the magnitudes of their Fourier coefficients,

f̂ (ωj) ∈ C, so that

(3)
∣∣f̂(ω1)

∣∣ ≥
∣∣f̂(ω2)

∣∣ ≥ · · · ≥
∣∣f̂(ωND)

∣∣.
The optimal s-term approximation error is then ‖f − fopts ‖2 = ‖f̂ − f̂opts ‖2. In this setting, any
discrete Fourier method will take function evaluations of f as input, and then output an approximate
fopts for some value of s ∈ {0, . . . , ND}. A standard FFT always uses s = ND, and so recovers
trigonometric polynomials exactly. Sparse FFTs allow s to be chosen independently of ND, and
exactly recover all trigonometric polynomials consisting of at most s nonzero terms.

The primary objective of SFTs is to compute an accurate approximation to f̂ , and therefore
to f itself, as quickly as absolutely possible. This has lead to the development of a wide range
of algorithms for approximating degree N trigonometric polynomials which use (s · logN)O(1)

floating point operations, where s is the user specified sparsity parameter. In order to achieve these
operation counts, all such SFTs can utilize at most (s·logN)O(1) function evaluations from f during
their execution. It is interesting to note, for the purposes of comparison, that SFTs are therefore
closely related to Fourier-based compressed sensing techniques [10, 16, 12, 11, 42, 17] whose primary
objective is to approximate f using as few function evaluations, or samples, as absolutely possible
(see, e.g., [4]). However, although the relationship between SFTs and compressed sensing is very
close, SFTs generally utilize more samples than the best compressed sensing methods in practice.
Similarly, even the fastest Fourier-based compressed sensing methods are too slow to serve as SFTs
since SFTs purposefully exceed the strictest sampling requirements of compressed sensing methods
in order to reduce their runtime complexities as much as possible.

The first sparse Fourier methods were essentially approximate Hadamard transforms that were
developed by researchers in the machine learning community for quickly learning boolean functions
of many variables (see, e.g., [30, 6, 33] and [23, 22]). These techniques were later adapted to produce
randomized SFTs for approximating trigonometric polynomials as rapidly as possible [34, 19, 2, 21].
These subsequent SFTs all take random samples of a given periodic function f as input, and then
output a trigonometric polynomial, y, of degree N which satisfies ‖f − y‖2 ≈ ‖f − fopts ‖2 with high

probability. The fastest of these SFTs [21] uses only s · logO(1)N operations. As a result, it is faster
than the FFT for accurately approximating periodic functions which are dominated by s ≪ N of
their largest magnitude Fourier coefficients [29].

Over the last several years SFTs have been improved significantly in both theory and practice.
Recent work includes better implementations [25, 31, 43], improvements in runtime complexity
bounds (both upper and lower) [24, 31, 28], adaptation of the methods to the recovery of su-
perpositions of sinusoids with non-integer frequencies [8], and improvements in theoretical error
guarantees [1, 27, 43, 28]. In particular, entirely deterministic SFTs exist [27, 28] that are guaran-
teed to always return a near-optimal sparse trigonometric polynomial, ys : [−π, π]D → C, having

‖f − ys‖2 ≈ ‖f − fopts ‖2. More specifically, the following theorem was proven in [28].

Theorem 1. Suppose f : [−π, π]D → C has f̂(ω1, . . . , ωD) = 0 if (ω1, . . . , ωD) /∈
(
[−N

2 ,
N
2 ] ∩ Z

)D
.

Let s, ǫ−1 ∈ N \ {1} with (s/ǫ)2 ≥ 4. Then, there exists a simple deterministic algorithm that is
guaranteed to output a trigonometric polynomial, ys : [−π, π]D → C, satisfying

(4) ‖f − ys‖2 ≤
∥∥∥f̂ − f̂ opt

s

∥∥∥
2
+

22ǫ ·
∥∥∥f̂ − f̂ opt

(s/ǫ)

∥∥∥
1√

s
.

The algorithm’s operation count is

(5) O
(
s2 ·D4 · log4(ND)

log
(
s
ǫ

)
· ǫ2

)
.
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If succeeding with probability (1−δ) ∈ [2/3, 1) is sufficient, and (s/ǫ) ≥ 2, a Monte Carlo variant
of the deterministic algorithm may be used. This Monte Carlo variant will output a trigonometric
polynomial, ys : [−π, π]D → C, that satisfies Equation 4 with probability at least 1−δ. Its operation
count will be

(6) O
(
s ·D4

ǫ
· log3(ND) · log

(
ND

δ

))
.

The Fourier algorithms referred to by Theorem 1 are able to accurately approximate the discrete
Fourier transform of a given function much more quickly than standard Fast Fourier Transform
(FFT) methods [9] whenever the sorted magnitudes of the Fourier coefficients (3) go to zero quickly
enough [43]. More specifically, the developed Fourier approximation algorithms have operation
counts that scale polynomially in D and logN , as opposed to standard FFT methods whose oper-
ation counts scale exponentially in D and logN . We direct the reader to [20] for a recent survey of
SFT techniques, as well as for an easy introduction to their design and implementation.

1.2. Our Proposed Sparse Legendre Expansion Method. The thought behind our proposed
sparse Legendre expansion approach is naively simple at first glance. One thinks: “FFT-based
algorithms for computing all N Legendre coefficients like [26] appear to work well. Maybe SFTs can
replace the FFTs in these methods in order to allow us to rapidly approximate Legendre-compressible
functions!” Of course, a multitude of technical difficulties present themselves almost immediately.
Mainly, mapping the sparse Legendre coefficients of f to a set of Fourier coefficients of a related
function, fr, is only helpful for computing sparse Legendre expansions if the map preserves sparsity.
The speed and accuracy of SFT methods depend on the sparsity of the function to which they are
applied. If the sparse Legendre coefficients of f don’t map to a set of Fourier coefficients of fr that
are also fairly sparse, then SFT methods will not be able to approximate fr quickly enough to be
interesting. Furthermore, and perhaps more obviously, the map from the Legendre coefficients of f
to the Fourier coefficients of fr must be fairly well-conditioned in the ℓ∞-sense. If the map sends a
few of the large-magnitude Legendre coefficients of f to Fourier coefficients of comparatively tiny
magnitude, then we will have difficultly recovering them with an SFT. Finally, the inverse map from
the computed Fourier coefficients of fr back to the Legendre coefficients of f must be fast (e.g.,
well approximated by a sparse matrix multiply). If not, we will not be able to use our computed
Fourier coefficients of fr in order to compute the Legendre coefficients of the original function f
quickly enough to be of interest.

Unfortunately, achieving all of these properties at once appears to be quite difficult. Herein
we take advantage of the fact that Iserles’ map from Legendre coefficients to Fourier coefficients
is fairly well-behaved with respect to sparsity (see §2.2 and §4). In particular, we show that
Legendre-sparse functions are mapped to Fourier-compressible functions (i.e., the map preserves
sparsity fairly well). Unfortunately, it appears to be impossible to force the map to also be both
well-conditioned in the ℓ∞-sense, and quickly invertible. To compensate for this defect we modify
our initial idea and employ a two-stage approach instead: We first use a “pretty well-conditioned”
version of Iserles’ map in combination with SFT methods in order to rapidly identify the large-
magnitude Legendre coefficients in f , and then use results form compressive sensing in order to
accurately approximate the identified Legendre coefficients. Doing so allows us to develop workable
sparse Legendre expansion algorithms which run in sublinear-time for sufficiently small sparsities.
We refer the reader to §3 for additional details, and to the next section for a related example.
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1.3. A Simple Example: Recovering Sparse Chebyshev Expansions via SFTs. In this
section we briefly consider Chebyshev-sparse functions of the form

g(x) =
∑

n∈S
anTn(x), S ⊂ {0, . . . , N}, |S| = s≪ N,

where Tn(x) denotes the degree n Chebyshev polynomial of the first kind. In this setting it is
beneficial to consider the standard transformation h = g(cos x). It is well known that this transfor-
mation implicitly maps the nth Chebyshev coefficient of g to the nth Fourier cosine series coefficient
of h (see, e.g., [9]). In particular, we have that

h(x) =
∑

n∈S
anTn(cos x) =

∑

n∈S
an cos(nx) =

∑

n∈S

an
2

(
e

inx + e−inx
)
.

It is now straightforward to see that creating h by resampling g according to the cosine function
implicitly produces a sparsity-preserving linear map from the Chebyshev coefficients of g to the
positive Fourier coefficients of h,

(7)




ĥ(0)
...

ĥ(N)


 =




1
2 0 . . . 0 0
0 1

2 0 . . . 0

0 0
. . . 0 0

0 . . . 0 1
2 0

0 0 . . . 0 1
2







a0
...
aN


 .

Note that the map above (7) has all of the desirable properties mentioned in section 1.2. It is
exactly sparsity preserving, well conditioned, and trivially invertible. As a consequence, one can
easily compute the sparse Chebyshev expansion of g using SFTs. One simply applies the SFT of
their choice to h and then reconstructs the Chebyshev coefficients of g from the result using their
knowledge of (7). One goal of the research initiated here is to find a good sparsity-preserving map
similar to (7) for use with Legendre polynomials, if possible. In this paper we make a first attempt
toward this goal by analyzing the maps proposed by Iserles in [26].

2. Notation and Background

We will denote the Legendre polynomial of degree n by Ln. The nth Legendre coefficient of
f : [−1, 1] → R is then

(8) f̃(n) :=

(
n+

1

2

)∫ 1

−1
f(x)Ln(x) dx

for each n ∈ N. The Fourier series coefficients of a function f : [−π, π] → C will be denoted by

(9) f̂(ω) :=
1

2π

∫ π

−π
f(x)e−iωx dx

for all ω ∈ Z. The sequence of Legendre or Fourier coefficients of an appropriate function f will be
called f̃ or f̂ , respectively.

For any matrix X ∈ C
N×n we will denote the jth column of X by Xj ∈ C

N . The adjoint

of a matrix, X ∈ C
N×n, will be denoted by X∗ ∈ C

n×N , and the singular values of any matrix
X ∈ C

N×n will always be ordered as σ1(X) ≥ σ2(X) ≥ · · · ≥ σmin(N,n)(X) ≥ 0. Also, the condition
number of the matrix X will denoted by κ(X) := σ1(X)/σmin(N,n)(X). We will use the notation

[N ] := {0, . . . , N} ⊂ N for any N ∈ N. For any matrix X ∈ C
N×(n+1) and set S ⊂ [n] the matrix

5



XS ∈ C
N×|S| will be the submatrix of X formed by selecting the columns of X indexed by S.

Similarly, for any vector x ∈ CN and set S ⊂ [n] the vector xS ∈ CN will have entries

(xS)j =

{
0, if j /∈ S
xj, if j ∈ S .

Finally, given any x ∈ C
N , the vector x

opt
s ∈ C

N will always denote an optimal s-sparse ap-
proximation to x. That is, x opt

s will always (i) have at most s ∈ [N ] nonzero entries, and (ii)
satisfy

(10) ‖x− x opt
s ‖p = inf

z∈Cd,‖z‖0≤s
‖x− z‖p

for all p ≥ 1.

2.1. Bounded Orthonormal Systems. Let D ⊂ Rn be endowed with a probability measure µ.
Further, let Ψ = {ψ0, . . . , ψN} be an orthonormal set of real-valued functions on D so that

∫

D
ψi ( x )ψj ( x )dµ (x) = δi,j.

We will refer to any such Ψ as an orthonormal system. More specifically, we will utilize a particular
type of orthonormal system.

Definition 1. We call Ψ = {ψ0, . . . , ψN} a bounded orthonormal system with constant K ∈ R+ if

‖ψk‖∞ := sup
x ∈ D

|ψ ( x )| ≤ K for all k ∈ [N ].

For any orthonormal system, Ψ, on D ⊂ R

n with probability measure µ, we may create an
associated random sampling matrix, R ∈ R

(m+1)×(N+1), as follows: First, select m + 1 points
x0, . . . ,xm ∈ D independently at random according to µ.1 Then, form the matrix R by setting
Ri,j := ψj ( xi ) for each i ∈ [m] and j ∈ [N ]. The following theorem concerning random sampling
matrices created from bounded orthonormal systems in this fashion is proven in [17].2

Theorem 2. Let R ∈ R

(m+1)×(N+1) be a random sampling matrix created from a bounded or-

thonormal system with constant K ≥ 1. Let ǫ ∈ (0, 1), s ∈ [N ] \ {0}, and set R̃ = 1√
m+1

R. If

m ≥ CK2ǫ−2s ln4(N), then with probability at least 1−N− ln3(N)

(11)
√
1− ǫ ≤ σ|S|

(
R̃S
)

≤ σ1

(
R̃S
)

≤
√
1 + ǫ

will hold simultaneously for all nonempty subsets S ⊂ [N ] having |S| ≤ s . Here the constant C > 0
is fixed and universal.

As pointed out in [40], the reweighed Legendre polynomials

(12) Qm(x) :=
(π
2

)1/2
(1− x2)1/4Lm(x)

form a bounded orthonormal system with constant K ≤
√
3 with respect to the Chebyshev prob-

ability measure dµ(x) = π−1(1 − x2)−1/2dx on D = [−1, 1]. As a result, one easily obtains the
following corollary of Theorem 2.

1So that P [xj ∈ S ] = µ (S) for all measurable S ⊆ D and j ∈ [m].
2See Theorem 12.31 in [17].

6



Corollary 1. Let R ∈ R(m+1)×(N+1) be a random sampling matrix created from {Q0, . . . , QN} in
(12) via m+1 points x0, . . . , xm ∈ [−1, 1] drawn independently according to the Chebyshev measure.

Let ǫ ∈ (0, 1), s ∈ [N ] \ {0}, and set R̃ = 1√
m+1

R. If m ≥ 3Cǫ−2s ln4(N), then with probability at

least 1−N− ln3(N)

κ
(
R̃∗

SR̃S
)

≤ 1 + ǫ

1− ǫ
will hold simultaneously for all nonempty subsets S ⊂ [N ] having |S| ≤ s . The constant C > 0 is
as in Theorem 2.

Corollary 1 guarantees that we can select a set of m+1 points from [−1, 1] once for each value of

N which will lead to a random sampling matrix for (12), R ∈ R(m+1)×(N+1), all of whose associated

submatrices R̃S are nearly isometric maps from R

|S| into Rm. Furthermore, R can be formed in
O(mN)-time by using the standard recurrence relation for Legendre polynomials [47]

(m+ 1)Lm+1(x) = (2m+ 1)xLm(x)−mLm−1(x)

in order to generate each row. This is a one-time computational cost for each choice of m,N ∈ N.
Alternatively, in a low memory setting, one may use fast methods based asymptotic expansions in

order to quickly generate any desired submatrix of R̃ from Corollary 1, R̃S ∈ R(m+1)×s, on the fly.

This can be accomplished in O(m · s)-time for any particular such submatrix of R̃ as needed [7].

2.2. Iserles’ Map from Fourier to Legendre Coefficients. For a given analytic function f
and r ∈ (0, 1], define fr : C → C by

(13) fr(x) :=
(
1− r2e2ix

)
f

(
1

2

(
r−1
e

−ix + reix
))

.

Here, when r < 1, f is evaluated on a Bernstein ellipse in the complex plane; when r = 1, f is
composed with cos(x) as per Chebyshev interpolation. Note that fr will be both analytic (since f
is), as well as 2π-periodic on R. Hence, both the Legendre coefficients of f : [−1, 1] → R and the
Fourier series coefficients of fr : [−π, π] → C will decay exponentially (see, e.g., [45, 46]). In any

such setting the following map may be constructed from f̂r to f̃ (see [26] for details).
Let (a)j be defined recursively for all a ∈ R and j ∈ N by

(14) (a)j := (a)j−1 (a+ j − 1) ,

where (a)0 := 1, and set

(15) g̃i,j :=
22i(i!)2(i+ 1)j(

1
2)j

(2i)!j!(i + 3
2)j

· ri+2j,

for all i, j ∈ N. Then, we have

(16) f̃(i) =

∞∑

j=0

g̃i,j f̂r (−i− 2j)

for all i ∈ N. Given the rapid decay of both g̃i,j and f̂r when r ∈ (0, 1), one may truncate the sum
in order to approximate the first N Legendre coefficients using

(17) f̃(i) ≈
M∑

j=0

g̃i,j f̂r (−i− 2j) ,

for a modestM ∼ log1/r(N), after approximating the Fourier coefficients f̂r (0) , . . . , f̂r (−N − 2M)

using an FFT. For r = 1 (or close to 1) a modest M can still be chosen based solely on the decay
7



of f̂r. The resulting numerical method requires O(N logN) floating point operations in order to

approximate f̃(i) for all i ∈ [N ].
Herein we are primarily concerned with the setting where f(x) is a polynomial of degree at most

N (recall (1)). In this case it is easy to verify that f̂r(ω) = 0 for all ω < −N and r ∈ (0, 1]. Thus,
the map (16) reduces to the finite linear system

(18) f̃ :=




f̃(0)
...

f̃(N)


 = G̃r




f̂r (0)
...

f̂r (−N)




where G̃r ∈ R
(N+1)×(N+1) is the upper triangular matrix with entires

(19) (G̃r)i,j :=

{
g̃i,(j−i)/2 if i ≤ j, and i ≡ j mod 2
0 else

.

We are now prepared to describe our method for rapidly and accurately computing sparse Legendre
coefficient expansions.

3. A Simple SFT-based approach for Reconstructing Sparse Legendre Expansions

We propose a two stage method for approximating functions, f : [−1, 1] → R, with sparse/
compressible Legendre coefficient expansions as per (1). During the first stage, we use Iserles’
map from §2.2 in order to help us identify Legendre polynomials whose coefficients are large in
magnitude in f . We accomplish this by sampling f according to its modified form, fr from (13),

in order to take advantage of the fact that f̂r (−j) ≈ r−j f̃(j)/
√
πj holds for all j ∈ [N ] (see, e.g.,

Lemma 2 together with Theorem 4 in §4). This fact guarantees that the Fourier coefficients of

fr will be compressible whenever the Legendre coefficients of f , f̃ from (18), are sparse (see, e.g.,
Lemma 3 in §4 for details). Hence, we may utilize SFT techniques from §1.1 in order to rapidly
identify the largest magnitude Fourier coefficients of fr which, in turn, immediately reveal the
largest magnitude Legendre coefficients of f via (18).

We are happy: using Iserles’ map with an SFT is good enough to guarantee that one can rapidly
identify large magnitude Fourier coefficients of fr which generally correspond to large magnitude
Legendre coefficients of f ! Unfortunately, this SFT-based technique does not appear to allow us
to quickly compute the Legendre coefficients with much accuracy. SFTs can get us fast estimates
that are “in the right ball park” – accurate enough to tell us that a coefficient is large – but getting
more than a few digits of accuracy this way appears elusive. Of course, one can always force a
good SFT method to supply Iserles’ method (17) with enough Fourier coefficients of fr to make it
produce accurate estimates. However, this appears to be far too slow an approach to be terribly
interesting for the values of r that produce decently conditioned maps G̃r (i.e., for r ≈ 1).

Thankfully, bounded orthonormal system results for reweighted Legendre polynomials (recall
§2.1) can easily solve the Legendre coefficient estimation problem for us once we know which coef-
ficients to compute. Given access to a well-conditioned random sampling matrix R (recall Corol-

lary 1), along with small vector y ∈ RO(s log4 N) of additional reweighted samples from f taken at
the points xj ∈ [−1, 1] used to build R,

(20) yj =
(
R̃f̃
)
j
=

√
π(1− x2j)

1/4

√
2(m+ 1)

f(xj),

one can accurately estimate any given set of Legendre coefficients of f , S ⊂ [N ] with |S| ≤ s, by
quickly solving a small least-squares problem. In particular, this means that we can simply (i)
identify a set of important Legendre coefficients of f with an SFT, and then (ii) use a random
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sampling matrix to accurately estimate the identified Legendre coefficients. See Algorithm 1 for
pseudocode, and Lemma 4 in §4 for more details regarding coefficient estimation.

Algorithm 1 Fast Sparse Legendre Coefficient Expansion Algorithm

Input: (i) Sparsity s ∈ [N ], (ii) r ∈ (0, 1], (iii) Pointer to a Random Sampling Matrix, R ∈
R

(m+1)×(N+1), as per Corollary 1, (iv) Renormalized samples from f , y ∈ Rm+1, as per (20),
(v) Pointer to f from (1), and (vi) Pointer to a Sparse Fourier Transform code, SFT

Output: A Sparse Approximation of the Legendre Coefficients of f from (1), f̃ ′S
1: Find the degrees of important Legendre polynomials present in f , S ⊂ [N ] with |S| ≤ s, by

running an SFT on fr from (13) and recording the ≤ s most energetic frequencies it returns.

2: Approximately Solve a Least Squares Problem: f̃ ′S ≈ zmin := argmin
z∈R|S|

∥∥∥R̃Sz− y

∥∥∥
2
.

The runtime complexity of Algorithm 1 will generally be largely determined by the type of SFT
chosen in line 1. Both randomized and deterministic algorithms exist. The randomized approaches
are generally faster, but have a small (usually tunable) probability of failing to return a good answer.
The deterministic approaches are slower, but are guaranteed to approximate a given function as
well as is possible with a sparse representation of the chosen size. Recall Theorem 1 in §1.1 for
example results.

Considering the runtime complexity of line 2, we note that we may efficiently solve the least
squares problem there using a Conjugate Gradient (CG) algorithm. Suppose that the normalized

random sampling matrix, R̃ ∈ R(m+1)×(N+1), passed to Algorithm 1 satisfies (11) of Theorem 2
with ǫ = 3/5. In this case, a CG method will allow one to use just

C log√
κ(R̃∗

S
R̃S)+1

√
κ(R̃∗

S
R̃S)−1

(‖y‖2
δ

)
≤ C log√ 1+ǫ

1−ǫ
+1√

1+ǫ
1−ǫ

−1

(‖y‖2
δ

)
= C log3

(‖y‖2
δ

)

CG iterations in order to get

(21)
∥∥∥R̃S

(
zmin − f̃ ′S

)∥∥∥
2
≤ δ.

for any desired δ ∈ R+ (see, e.g., Chapter 7 of [5]). Here, Corollary 1 (i.e., (11)) has been used to

bound κ
(
R̃∗

SR̃S
)
under the assumption that m = C ′s ln4(N) for appropriate fixed universal con-

stants C,C ′ ∈ R+. Each CG iteration then takes O
(
s2 ln4(N)

)
-time. Noting that ‖y‖2 ≤ C ′′

∥∥∥f̃
∥∥∥
1

will also hold, for a universal constant C ′′ ∈ R+, whenever R̃ satisfies (11) (see, e.g., Exercise 6.6 in

[17]), we have that we can compute an f̃ ′S ∈ R|S| satisfying (21) in O
(
s2 ln4(N) · ln

(
‖f̃‖

1
δ

))
-time.

4. Error Analysis and Recovery Guarantees

In this section we analyze Algorithm 1. The main results establish both that (i) the largest mag-
nitude Legendre coefficients present in f can be rapidly identified via SFT methods (see Theorem 5),
and that (ii) once identified, the largest magnitude Legendre coefficients can be both rapidly and ac-
curately approximated (see Lemma 4). By combining these results one can establish deterministic3

sublinear-time recovery guarantees for many different classes of Legendre-compressible functions.

3Note that we are implicitly using randomized techniques to construct the random sampling matrices, R ∈

R

(m+1)×(N+1), used in line 2 of Algorithm 1. However, the related probabilistic guarantees establish results for
all sufficiently sparse signals with high probability, and so can be viewed as establishing the existence of entirely
deterministic methods.
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For example, one can easily prove sublinear-time recovery guarantees for exactly s-sparse Legendre
polynomials of the form

(22) f(x) =
∑

n∈S⊂[N ]

f̃(n)Ln(x)

where |S| = s, minS = Ω(N/s), and all s nonzero f̃(n) ∈ R have (roughly) the same magnitude.
Doing so we may obtain, e.g., Theorem 3.

Theorem 3. There exists a deterministic O
(
s6 log5(N)

)
-time algorithm that is guaranteed to ex-

actly recover (up to machine precision) the Legendre coefficients of any function of type (22).

Proof: Apply Corollary 3 followed by Lemma 4. �

Note that the runtime of the deterministic algorithm referred to by Theorem 3 is indeed sub-
linear in N for sparsities s ≪ N . However, it is also almost certainly suboptimal – algorithmic
modifications can probably be made that reduce the runtime complexity further without negatively
impacting the recovery guarantee.

It is also important to point out that the current assumptions concerning f in (22) can be loosened
considerably, without loosing deterministic recovery guarantees, by applying the subsequent results
differently than done to get Theorem 3. However, the theoretical results thus derived suffer both
aesthetically and, in other ways, technically. For this reason we will leave the proof of alternative
guarantees via Theorem 5 and Lemma 4 to the interested reader.

We will now begin to prove our main theoretical results, starting with those concerning the rapid
identification of the Legendre polynomials whose coefficients are largest in magnitude in f .

4.1. Support Identification. For the purposes of analyzing line 1 of Algorithm 1 it is crucial to
understand how sparse

f̂ ′r :=




f̂r (0)
...

f̂r (−N)




will be given that f̃ is sparse (recall (18)). We will begin to move toward this goal by considering the

matrix G̃−1
r . Once it is properly understood, we will then be able to consider the compressibility

characteristics of f̂ ′r = G̃−1
r f̃ for sparse vectors f̃ . The following lemma gives the entries of G̃−1

r .

Lemma 1. The even rows of the inverse matrix G̃−1
r from (18) are given by

(23)
(
G̃−1

r

)
2i,2j

=





0 j < i

(−1)j

4j

∑j
k=i

(−1)k

4k
r−2i(2j+2k)!

(j−k)!(j+k)!(2k)!

(
2k
k+i

)
1+2i
k+i+1 i ≤ j ≤

⌊
N
2

⌋

and
(
G̃−1

r

)
2i,2j+1

= 0 for i, j = 0, . . . ,
⌊
N
2

⌋
. Similarly, the odd rows of the inverse matrix G̃−1

r from

(18) are given by

(24)
(
G̃−1

r

)
2i+1,2j+1

=





0 j < i

(−1)j

2·4j
∑j

k=i
(−1)k

2·4k
r−2i−1(2j+2k+2)!

(j−k)!(j+k+1)!(2k+1)!

(
2k+1
k−i

)
2+2i
k+i+2

i ≤ j <
⌊
N
2

⌋

and
(
G̃−1

r

)
2i+1,2j

= 0 for i, j = 0, . . . ,
⌊
N
2

⌋
.
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Proof: See Appendix A. �

The following corollary of Lemma 1 establishes simpler and more useful formulas for each entry
of G̃−1

r .

Corollary 2. The even rows of the inverse matrix G̃−1
r from (23) may also be written more com-

pactly as

(25)
(
G̃−1

r

)
2i,2j

=





0 j < i

(
−1

4

)i+j (2i+2j)!
(i+j)! (i+j)!

r−2i(2i+1)
i+j+1

Γ( 3
2)

(j−i)! Γ(i−j+ 3
2)

i ≤ j ≤
⌊
N
2

⌋

and
(
G̃−1

r

)
2i,2j+1

= 0 for i, j = 0, . . . ,
⌊
N
2

⌋
. Similarly, the odd rows of the inverse matrix G̃−1

r from

(24) may be written as

(26)
(
G̃−1

r

)
2i+1,2j+1

=





0 j < i

(−1)i+j

4i+j+1
(2(i+j+1))!

(i+j+1)! (i+j+1)!
r−2i−1(2i+2)

i+j+2

Γ( 3
2)

(j−i)! Γ(i−j+ 3
2)

i ≤ j ≤
⌊
N
2

⌋

and
(
G̃−1

r

)
2i+1,2j

= 0 for i, j = 0, . . . ,
⌊
N
2

⌋
.

Proof: See Appendix B. �

With Corollary 2 in hand, one may now see that each row and column of G̃−1
r is weakly dominated

by it’s diagonal entry. See Theorem 4 below for an exact statement.

Theorem 4. For nonzero entries of the inverse matrix G̃−1
r , the decay rate of each row is given by

(27)

∣∣∣(G̃−1
r )n,n+2x

∣∣∣ <
3
√
e

2
√
π

1
x
√
x−2

∣∣∣(G̃−1
r )n,n

∣∣∣ for x > 2,∣∣∣(G̃−1
r )n,n+2

∣∣∣ < 1
2

∣∣∣(G̃−1
r )n,n

∣∣∣ , and
∣∣∣(G̃−1

r )n,n+4

∣∣∣ < 1
8

∣∣∣(G̃−1
r )n,n

∣∣∣ for x = 1, x = 2.

The decay rate of each column is given by

(28)

∣∣∣(G̃−1
r )n−2x,n

∣∣∣ ≤
3
√
e√
2π

r2x

x
√
x−2

∣∣∣(G̃−1
r )n,n

∣∣∣ for 2 < x ≤
⌊
n
2

⌋
, n ≥ 6∣∣∣(G̃−1

r )n−2,n

∣∣∣ < r2

2

∣∣∣(G̃−1
r )n,n

∣∣∣ , and
∣∣∣(G̃−1

r )n−4,n

∣∣∣ < r4

4

∣∣∣(G̃−1
r )n,n

∣∣∣ for x = 1, x = 2, n ≥ 2x.

The diagonal entries of G̃−1
r satisfy

r−n

√
πn

(
1− 1

8n

)
≤
∣∣∣(G̃−1

r )n,n

∣∣∣ ≤ r−n

√
πn

for n > 0, and
∣∣∣(G̃−1

r )0,0

∣∣∣ = 1.(29)

Proof: First, let’s simplify the term Γ
(
3
2

)
/
(
(j − i)!Γ

(
i− j + 3

2

))
. Since Γ(3/2) =

√
π/2, and by

the reflection formula for the Gamma function (see, e.g., [47]), Γ(−z) = −π/ (zΓ(z) sin(πz)) for
z 6∈ Z, we have

Γ
(
3
2

)

(j − i)!Γ
(
i− j + 3

2

) =
(−1)j−i+1

2
√
π

(j − i− 3
2 )Γ(j − i− 3

2 )

(j − i)!
.

11



According to the half integer argument for the Gamma function, Γ(n/2) = ((n− 2)!!
√
π) /2(n−1)/2

for n ∈ Z
+, where n!! = (2k)!/

(
2kk!

)
when n = 2k − 1 for k ∈ Z

+. Thus,

Γ
(
3
2

)

(j − i)!Γ
(
i− j + 3

2

) =
(−1)j−i+1

2

(j − i− 3
2 )

(j − i)!

(2j − 2i− 5)!!

2j−i−2

=
(−1)j−i+1

2 · 4j−i−2

(j − i− 3
2 )

(j − i)(j − i− 1)

(2(j − i− 2))!

(j − i− 2)!(j − i− 2)!
.

By Stirling’s approximation, n! =
√
2πnnne−neRn , where 0 ≤ Rn ≤ 1/12n (see, e.g., [41, 17]),

Γ
(
3
2

)

(j − i)!Γ
(
i− j + 3

2

) =
(−1)j−i+1

2
√
π

(j − i− 3
2)

(j − i)(j − i− 1)
√
j − i− 2

eR2(j−i−2)−2Rj−i−2 .(30)

Now by Corollary 2 and (30), if n = 2i for i, x ∈ Z, i ≥ 0, and x > 2, then

(31)
∣∣∣(G̃−1

r )n,n+2x

∣∣∣ =
∣∣∣(G̃−1

r )n,n

∣∣∣ ·
∣∣∣ 1
4x

(n!)2

(2n)!
(2n+2x)!

(n+x)!(n+x)!
n+1

n+x+1
1

2
√
π

x− 3
2

x(x−1)
√
x−2

eR2(x−2)−2Rx−2

∣∣∣

Using Stirling’s approximation again for i ≥ 1 we have
∣∣∣(G̃−1

r )n,n+2x

∣∣∣ =
∣∣∣(G̃−1

r )n,n

∣∣∣
( √

n√
n+x

n+1
n+x+1

(x− 3
2
)

x−1
1

x
√
x−2

1
2
√
π
eR

a
)
,(32)

where Ra = 2Rn − R2n + R2n+2x − 2Rn+x + R2(x−2) − 2Rx−2 ≤ 1/3 for all n, x ∈ Z+ with x ≥ 3.
According to (31), when i = 0, it is easy to show that

(33)
∣∣∣(G̃−1

r )0,2x

∣∣∣ ≤
∣∣∣(G̃−1

r )0,0

∣∣∣ ·
6
√
e

2π

1

(x+ 1)

1

x3/2
√
x− 2

, for x > 2.

Similarly, if n = 2i+ 1 for i ≥ 0 it is not difficult to verify that (32) still holds. Therefore, one can
see that each row satisfies

∣∣∣(G̃−1
r )n,n+2x

∣∣∣ <
3
√
e

2
√
π

1

x
√
x− 2

∣∣∣(G̃−1
r )n,n

∣∣∣ .

The remainder of the proof of (27) is now easily established using Corollary 2.
Similarly, we can bound the rate of decay of each column off of the diagonal. By Corollary 2,

(30), and Stirling’s approximation, if n = 2i for i ≥ 3, 2 < x ≤
⌊
n
2

⌋
, then

∣∣∣(G̃−1
r )n−2x,n

∣∣∣ =
∣∣∣(G̃−1

r )n,n

∣∣∣ · r2x

2
√
π

(√
n

n−x

)
n−2x+1
n−x+1

(
x− 3

2
x−1

)
eR̃

a

x
√
x−2

where R̃a = 2Rn − R2n +R2(n−x) − 2Rn−x + R2(x−2) − 2Rx−2 ≤ 1/3 for all n, x ∈ Z+ with x ≥ 3.

Since
√
n/(n− x) ≤

√
2 for 2 < x ≤ i,

(34)
∣∣∣(G̃−1

r )n−2x,n

∣∣∣ <
∣∣∣(G̃−1

r )n,n

∣∣∣ · r2x√
2π

3
√
e

x
√
x−2

.

For n = 2i + 1 an analogous calculation reveals that (34) still holds. The remainder of the proof
of (28) is now easily established using Corollary 2. Lastly, the proof of (29) is easily established
using Lemma 1 together with Theorem 2.6 in [44]. �

We are now in the position to begin studying the compressibility of f̂ ′r = G̃−1
r f̃ in terms of the

compressibility of f̃ . Let σ : [N ] → [N ] be a permutation of [N ] such that
∣∣∣f̃σ(j)

∣∣∣ ≥
∣∣∣f̃σ(j+1)

∣∣∣
12



holds for all j ∈ [N − 1]. Let ρ : R → R

+ ∪ {∞} be a modified ramp function with ρ(x) = x for
all x ∈ R+, and ρ(x) = ∞ for all x < 0. Finally, define the right-distance form j ∈ [N ] to the set{
σ(n)

∣∣∣ n ∈ [s− 1], σ(n) ≡ j mod 2
}

to be

ds(j) := min

({
ρ (σ(n)− j)

2

∣∣∣ n ∈ [s− 1], σ(n) ≡ j mod 2

}
∪ {∞}

)
.

We now have sufficient notation to consider the sizes of specific entries of f̂ ′r.

Lemma 2. Let s ∈ [N ] \ {0}. We have that
∣∣∣∣
(
f̂ ′r
)
j
− (G̃−1

r )j,j f̃j

∣∣∣∣ <
31

20

∣∣∣(G̃−1
r )j,j

∣∣∣
∣∣∣f̃σ(s)

∣∣∣+
3
√
e

2
√
π

(
‖f̃‖1

ds(j)
√
ds(j)− 2

) ∣∣∣(G̃−1
r )j,j

∣∣∣

holds for all j ∈ [N ] with ds(j) > 2.

Proof: Using that f̂ ′r = G̃−1
r f̃ with G̃−1

r upper triangular as per Lemma 1, we have that

(
f̂ ′r
)
j
= (G̃−1

r )j,j f̃j +

⌊N−j

2 ⌋∑

l=1

(G̃−1
r )j,j+2lf̃j+2l.

Rearranging this expression we can see that

∣∣∣∣
(
f̂ ′r
)
j
− (G̃−1

r )j,j f̃j

∣∣∣∣ ≤
ds(j)−1∑

l=1

∣∣∣(G̃−1
r )j,j+2l

∣∣∣
∣∣∣f̃j+2l

∣∣∣+
⌊N−j

2 ⌋∑

l=ds(j)

∣∣∣(G̃−1
r )j,j+2l

∣∣∣
∣∣∣f̃j+2l

∣∣∣

<
∣∣∣f̃σ(s)

∣∣∣




ds(j)−1∑

l=1

∣∣∣(G̃−1
r )j,j+2l

∣∣∣


+

3
√
e

2
√
π

(
‖f̃‖1

ds(j)
√
ds(j) − 2

)∣∣∣(G̃−1
r )j,j

∣∣∣ ,

where the second inequality follows from Hölder’s Inequality, Theorem 4, and the definition of ds(j).
Appealing to Theorem 4 again we can also see that

ds(j)−1∑

l=1

∣∣∣(G̃−1
r )j,j+2l

∣∣∣ <
∣∣∣(G̃−1

r )j,j

∣∣∣
(
1

2
+

1

8
+

3
√
e

6
√
π
+

3
√
e

2
√
π

∫ ∞

3

dx

x
√
x− 2

)
.

The remainder of the proof now follows. �

We can now begin to understand the compressibility of f̂ ′r. In particular, we have the following

result concerning the best s · k approximation to f̂ ′
1
for any k ∈ Z+ with k > 5.

Lemma 3. Let s, k ∈ [N ] with k > 5, s > 8, and nmin := min
{
σ(n)

∣∣∣ n ∈ [s− 1]
}
> k. Then,

∥∥∥∥f̂
′
1 −

(
f̂ ′1
) opt

s·k

∥∥∥∥
1

< 7
√
N
∣∣∣f̃σ(s)

∣∣∣+ s‖f̃‖1√
nmin − 4

√
k − 5

.

Proof: We bound the sum of the magnitudes of all entries in f̂ ′
1
whose indices have right-distance

≥ k from
{
σ(n)

∣∣∣ n ∈ [s− 1]
}

using two cases:

Case I. We bound the magnitudes of the small entries with j ≤ nmin − k. Using Lemma 2 we
can see that

nmin−k∑

j=0

∣∣∣∣
(
f̂ ′1
)
j

∣∣∣∣ <
nmin−k∑

j=0

∣∣∣(G̃−1
r )j,j

∣∣∣
(
51

20

∣∣∣f̃σ(s)
∣∣∣+

3
√
e√
π/2

(
‖f̃‖1

(nmin − j)
√
nmin − j − 4

))
.
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Theorem 4 now implies that

nmin−k∑

j=0

∣∣∣∣
(
f̂ ′1
)
j

∣∣∣∣ <
51
√
2 · nmin

10
√
π

∣∣∣f̃σ(s)
∣∣∣+ 2‖f̃‖1

nmin − 1
+

3
√
e
√
2‖f̃‖1
π

·
nmin−k∑

j=2

1
√
j(nmin − j − 4)

3
2

<
51
√
2 · nmin

10
√
π

∣∣∣f̃σ(s)
∣∣∣+ 2‖f̃‖1

nmin − 1
+

3
√
e
√
2‖f̃‖1
π

·
∫ nmin−k+1

1

dx
√
x (nmin − 4− x)3/2

< 4.1
√
nmin

∣∣∣f̃σ(s)
∣∣∣+ 4‖f̃‖1√

nmin − 4
√
k − 5

.

Case II. Here we bound the sum of the magnitudes of all entries

∣∣∣∣
(
f̂ ′1

)
j

∣∣∣∣ with j ∈ A := {x | x >
nmin and ds(x) ≥ k}. Note that there can be at most (s − 1)k entries in [N ] \ (A ∪ [nmin]). Using
Lemma 2, Theorem 4, and definition of A we can see that

∑

j∈A

∣∣∣∣
(
f̂ ′1
)
j

∣∣∣∣ <
51

20
√
π

∣∣∣f̃σ(s)
∣∣∣




N∑

j=nmin+1

1√
j


+

3
√
e(s− 1)

2π
√
nmin

( ∞∑

l=k

‖f̃‖1
l
√
l − 2

)

<
51
√
N

10
√
π

∣∣∣f̃σ(s)
∣∣∣+

3
√
e(s − 1)

π
√
nmin

‖f̃‖1√
k − 3

.

Combining the bounds from Cases I and II now finishes the proof. �

Note that the vector f̂ ′r contains only the (potentially nonzero) negative Fourier series coefficients
of f1(x) =

(
1− e2ix

)
f (cos(x)). Let

f̂1 :=




f̂1 (N + 2)
...

f̂1 (0)
...

f̂1 (−N)




∈ R2N+3

consist of all the potentially nonzero Fourier series coefficients of f1(x). Noting that f (cos(x)) is

an even real-valued function, one can see that f̂1 (ω) = −f̂1 (2− ω) holds for all ω ∈ Z

+ (with

f̂1 (1) = 0). As a result, Lemmas 2 and 3 trivially extend to f̂1. Using this fact in combination
with results from [28] finally allows us to prove the main result of this section.

Theorem 5. Let s, k ∈ [N ] with k > 5, s > 8, S :=
{
σ(n)

∣∣∣ n ∈ [s− 1]
}
, and nmin := minS > k.

Given j ∈ S, define the new right-distance from j to S to be

d′s(j) := min

({
ρ (σ(n)− j)

2

∣∣∣ n ∈ [s− 1], σ(n) ≡ j mod 2

}
\ {0} ∪ {∞}

)
> 0 = ds(j).

Then, the deterministic variant of the algorithm referred to by Theorem 1 will recover all j ∈ S
satisfying both

(35)
∣∣∣f̃j
∣∣∣ ≥

(
224

√
πN

7s · k +
31

20

) ∣∣∣f̃σ(s)
∣∣∣+ 17

√
N‖f̃‖1

2k
√

(nmin − 4)(k − 5)
,

and d′s(j) ≥ k. Its operation count will be

O
(
s2 · k2 · log4N

)
.
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Proof: We consider the behavior of the deterministic variant of the algorithm referred to by The-
orem 1 when executed on f1(x) =

(
1− e2ix

)
f (cos(x)) with sparsity parameter 2s and ǫ = 1/k.

In the course of forming its output trigonometric polynomial, ys, this algorithm is guaranteed to
identify every j ∈ [−N,N + 2] ∩ Z with the property that

∣∣∣f̂1 (j)
∣∣∣ >

2

∥∥∥∥f̂1 −
(
f̂1

) opt

2s·k

∥∥∥∥
1

s · k
by Lemma 6 in [28].

Suppose that f̃j satisfies (35) and also has d′s(j) ≥ k. A trivial variant of Lemma 2 then implies
that

∣∣∣f̂1 (−j)
∣∣∣ >

∣∣∣(G̃−1
r )j,j

∣∣∣
∣∣∣f̃j
∣∣∣− 31

20

∣∣∣(G̃−1
r )j,j

∣∣∣
∣∣∣f̃σ(s)

∣∣∣−
3
√
e

2
√
π

(
‖f̃‖1

d′s(j)
√
d′s(j) − 2

)∣∣∣(G̃−1
r )j,j

∣∣∣ .

Using (35) and that d′s(j) ≥ k one can now see that

∣∣∣f̂1 (−j)
∣∣∣ >

∣∣∣(G̃−1
r )j,j

∣∣∣
(
28 · 8√πN

7s · k
∣∣∣f̃σ(s)

∣∣∣+ 32
√
πN‖f̃‖1

7k
√

(nmin − 4)(k − 5)

)
.

Theorem 4 followed by Lemma 3 finally implies that
∣∣∣f̂1 (−j)

∣∣∣ > 28 ·
√
N

s · k
∣∣∣f̃σ(s)

∣∣∣+ 4‖f̃‖1
k
√

(nmin − 4)(k − 5)

=
2

s · k

(
14
√
N
∣∣∣f̃σ(s)

∣∣∣+ 2s‖f̃‖1√
nmin − 4

√
k − 5

)

>

2

∥∥∥∥f̂1 −
(
f̂1

) opt

2s·k

∥∥∥∥
1

s · k .

This guarantees that j will indeed be identified as claimed. �

The final corollary of this section applies Theorem 5 to the situation of exactly s-sparse vectors
f̃ . We have the following result:

Corollary 3. Let s ∈ [N ] with s > 8, S :=
{
σ(n)

∣∣∣ n ∈ [s− 1]
}
, and nmin := minS > N

17s/2−5+4 >

17s/2. Furthermore, suppose that f̃ is exactly s-sparse with
∣∣∣f̃σ(0)

∣∣∣ =
∣∣∣f̃σ(s−1)

∣∣∣ > f̃σ(s) = 0. Then,

there exists a deterministic algorithm which will recover a set of cardinality O
(
s3
)
that is guaranteed

to contain S as a subset. Its operation count will be O
(
s4 · log4N

)
.

Proof: Apply Theorem 5 with k = 17s/2. The deterministic variant of the algorithm referred to
by Theorem 1 will recover all j ∈ S satisfying both d′s(j) ≥ 17s/2, and

∣∣∣f̃j
∣∣∣ ≥

√
N‖f̃‖1

s
√
(nmin − 4)(17s/2 − 5)

, where

√
N‖f̃‖1

s
√
(nmin − 4)(17s/2 − 5)

<
‖f̃‖1
s

=
∣∣∣f̃σ(s−1)

∣∣∣ ,

as a subset of a set A of cardinality O(s2). Returning all j ∈ [N ] whose right-distance to A is
< 17s/2 provides a set of cardinality O

(
s3
)
that is guaranteed to contain S as a subset. The result

follows. �
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We conclude this section by mentioning several obvious facts regarding Theorem 5 and Corol-
lary 3. First, we have no doubt that they can be improved in general. The easiest way to do this
is to utilize randomized SFT methods in place of the deterministic algorithm from Theorem 1 in
order to reduce the computational complexities involved. It is also clear that the assumptions in
Corollary 3 can be relaxed rather easily at the price of increased computational costs. Less trivial
improvements would probably revolve around developing better variants of f1(x) whose Fourier
coefficients are less contaminated by Legendre coefficients that are “far away” from the associated
ones (i.e., G̃−1

r should be “more diagonally dominant”). Alternatively, one might design efficient
filtering schemes which gradually reveal the lower (generally more energetic) frequencies of f1(x)
so that they do not overwhelm larger (generally less energetic) frequencies as we hunt for them.
However, we will leave such considerations for future work. We are now ready to consider how ac-
curately we can estimate the Legendre coefficients for the set of supporting polynomials, S ⊂ [N ],
we identify in this section.

4.2. Coefficient Estimation. Estimating the Legendre coefficients for the polynomials that have
been identified as present in f is comparatively easy given all the previous work on bounded
orthonormal systems. We have the following result:

Lemma 4. Suppose that the normalized random sampling matrix, R̃ ∈ R(m+1)×(N+1), passed to
Algorithm 1 satisfies (11) of Theorem 2 with ǫ = 3/5. Let δ ∈ R+, and S ⊂ [N ] have cardinality
|S| = s. Then line 2 of of Algorithm 1 can produce an s-sparse vector, z ∈ RN+1, satisfying

∥∥∥f̃ − z

∥∥∥
2

≤ 5
∥∥∥f̃Sc

∥∥∥
2
+

4
∥∥∥f̃Sc

∥∥∥
1√

s
+

√
5

2
δ

in O
(
s2 ln4(N) · ln

(
‖f̃‖

1
δ

))
-time.

Proof: Let f̃ ′′S ∈ R|S| be such that R̃S f̃ ′′S = R̃f̃S (i.e., let f̃ ′′S be f̃S with all it’s zero-valued entries

indexed by Sc removed). Let f̃ ′S , zmin ∈ R|S| be defined as in line 2 of Algorithm 1. We have that
∥∥∥f̃ ′S − f̃ ′′S

∥∥∥
2

≤ ‖R̃S f̃
′
S−R̃S f̃

′′
S‖2√

1−ǫ
Since (11) holds

≤ ‖R̃Szmin−R̃S f̃
′′
S‖2

+ δ
√
1−ǫ

By CG discussion (21) in §3
≤ 1√

1−ǫ

(∥∥∥R̃Szmin − y

∥∥∥
2
+
∥∥∥R̃f̃Sc

∥∥∥
2
+ δ

)
Since y = R̃

(
f̃S + f̃Sc

)

≤ 2√
1−ǫ

∥∥∥R̃f̃Sc

∥∥∥
2
+ δ√

1−ǫ
By the definition of zmin

≤ 2
√
1+ǫ√
1−ǫ

(∥∥∥f̃Sc

∥∥∥
2
+

‖f̃Sc‖
1√

s

)
+ δ√

1−ǫ
Using Exercise 6.6 in [17]

.

One can now (implicitly) form z = zS from f̃ ′S in the obvious fashion. Doing so we learn that
∥∥∥f̃ − z

∥∥∥
2
≤
∥∥∥zS − f̃S

∥∥∥
2
+
∥∥∥f̃Sc

∥∥∥
2

≤
(
1 +

2
√
1 + ǫ√
1− ǫ

)∥∥∥f̃Sc

∥∥∥
2
+

2
√
1 + ǫ√
1− ǫ

·

∥∥∥f̃Sc

∥∥∥
1√

s
+

δ√
1− ǫ

.

The total runtime complexity follows from the discussion regarding line 2 of Algorithm 1 in Sec-
tion 3. �

We are now prepared to test a particular version of Algorithm 1 numerically. As we shall
see, the experiments demonstrate (as a proof of concept) that SFTs can be used to build stable
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sublinear-time algorithms capable of rapidly computing Legendre coefficients whenever they exhibit
compressibility.

5. Empirical Evaluation

We now present representative results demonstrating the numerical robustness and efficiency of
the proposed SFT-based Legendre method. For the experiments in this section we used FFTW 3.3.4
to implement Iserles’ scheme [26] for the purposes of comparison (see (17) in §2.2). FFTW3 [18]
is a highly efficient implementation of the “standard” FFT algorithm – it has been systematically
optimized over the course of the last two decades and remains one of the fastest freely available
FFT implementations available today. The parameter r in (13) was chosen to be 1 − 10−8 for all
experiments. The qualitative behavior for other values of r sufficiently close to 1 is similar. The
number of terms, M , in (17) was varied differently in each experiment, as indicated below.

Algorithm 1 was implemented using AAFFT [29] as the sparse Fourier transform, followed by
a conjugate gradient code4 in order to compute the necessary Legendre coefficients. Although less
optimized than some other SFT implementations, AAFFT’s code is well documented, readable,
and easy to modify. All code used to perform the experiments below is freely available.5

Every data point in the first two figures below is the result of 100 trials performed on 100 different
randomly generated polynomials,

(36) f(x) =
∑

m∈S, |S|=s

amLm(x),

where S ⊂ [N ] contains s entries independently chosen uniformly at random from [N ], and each
am ∈ {−1, 1} is independently chosen to be ±1 with probability 1/2. Figure 1 reports runtime
results averaged over the 100 independent trials at each data point for Algorithm 1 versus the
method outlined in §2.2. All runtimes are reported in tick counts using the “cycle.h” header
included with the FFTW 3.3.4 library. Tick counts correspond closely to the number of CPU cycles
used during the execution of a program and, therefore, accurately reflect each implementation’s
comparative computational complexity. As one can see, Algorithm 1 is faster than the method
outlined in §2.2 when s≪ N .6
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(a) Runtime with N = 221 as sparsity, s, varies.
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(b) Runtime with s = 20 as N varies.

Figure 1. Runtime comparison between Algorithm 1 implemented with AAFFT
as the SFT, and the approach from [26] implemented with FFTW as the FFT.

AAFFT is an implementation of a randomized Fourier method with a user-tunable probability
of failure (see Theorem 1 for a similar probabilistic SFT recovery guarantee). The runtime results

4The conjugate gradient code is available at http://people.sc.fsu.edu/~jburkardt/cpp_src/cg/cg.html .
5All code is available at http://www.math.msu.edu/~markiwen/Code.html.
6Using a faster SFT implementation would doubtlessly produce faster results for Algorithm 1 – AAFFT is the

computational bottleneck here.
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for Algorithm 1 in Figure 1 were produced with settings for AAFFT which guaranteed Algorithm 1
to have an ℓ2-error of size < 10−5 on the s true Legendre coefficients, am with m ∈ S, for more
than 70 of the 100 trials used to generate each data point. More detailed information concerning
approximation errors for these experiments is reported in Figure 2a. Although highly accurate for
small values of N (see [26]), the method outlined in §2.2 has a relatively low accuracy for the large
degree polynomials considered herein, achieving only two or three digits of accuracy per Legendre
coefficient on average. Figure 2a compares its average ℓ2-error on the true Legendre coefficients, am
with m ∈ S, over all 100 trials at each data point against Algorithm 1’s average ℓ2-error over the at
least 70 trials at each data point for which it correctly identified a superset of S from (36). As one
can see, Algorithm 1 is generally more accurate when it manages to identify S. The error graphs
for the other values of N considered herein were similar. For example, the method outlined in §2.2
had an average ℓ2-error that was always less than 0.05 for the experiments reported in Figure 1b
at each N , while Algorithm 1’s average ℓ2-error was always < 10−5 for these experiments whenever
it found S (for more than 70% of the trials for each data point).
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(a) Average ℓ2 error for N = 221 runtime experiments

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3
Samples Used by Algorithm 1 for N = 221

Sparsity

P
er

ce
nt

ag
e 

S
am

pl
ed

(b) Algorithm 1 function evaluations for N = 221

Figure 2. Additional information regarding the runtime experiments in Figure 1a.
The number of terms, M , used in (17) for Figure 2a was chosen separately from
the range [1, 25] for each of the 100 trials in order to give the lowest possible error.
The best value of M was usually 1, however. Choosing M to be much larger did
not usually help. Figure 2b plots the average number of evaluations of each trial
polynomial f , as a percentage of N , that Algorithm 1 used in order to produce the
results plotted in Figures 2a and 1a.

Figure 3 reports the results of some additional experiments on numerical accuracy, stability, and
robustness to noise. For these experiments both the maximum degree, N , and the sparsity, s, of
the trial functions were fixed. In addition, the trial functions were modified so that each one was
of the form

(37) f(x) =
∑

m∈S, |S|=s

amLm(x) +
∑

m∈[N ]\S
bmLm(x),

where (i) S ⊂ [N ] contains s entires independently chosen uniformly at random from [N ], (ii) each
am ∈ {−1, 1} is independently chosen to be ±1 with probability 1/2, and (iii) each bm is an i.i.d
mean 0 Gaussian random number generated numerically via the Box-Muller method. As above,
each data point in Figure 3 is the result of 100 trials performed on 100 independently generated
polynomials of this form (37).

For the experiments in Figure 3, Algorithm 1 had its parameters set so that it would compute
all Legendre coefficients to at least 8 digits of precision for at least 90% of trials in the noiseless
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Figure 3. Robustness to approximate sparsity. The horizontal axis varies over ten

signal-to-noise values given by log10

(
s∑

m∈[N]\S b2m

)
= log10

(
50∑

m∈[N]\S b2m

)
. The

vertical axis graphs the average ℓ2-error of each method.

setting (i.e., when (36) holds). The log signal-to-noise ratio,

(38) log10

( ∑
m∈S a

2
m∑

m∈[N ]\S b
2
m

)
= log10

(
s∑

m∈[N ]\S b
2
m

)
,

was then varied by renormalizing the i.i.d. bm’s generated for each trial. The resulting log signal-
to-noise ratios appear on the horizontal axis of Figure 3. The vertical axis plots the average ℓ2-error
on the true Legendre coefficients, am with m ∈ S, over all trials at each noise level of the method in
§2.2 against Algorithm 1’s average ℓ2-error over the at least 90 trials at each noise level for which
it correctly identified a superset of S ⊂ [N ] from (37). The number of terms, M , used in (17) for
the §2.2 method was again chosen separately for each of the 100 trials in order to give the lowest
possible error, except that hereM ∈ [1, 45]. The best value ofM was, as before, usually 1, however.
IncreasingM still did not usually help decrease the error. The qualitative behavior for other values
of s and N was similar. As above, we conclude that Algorithm 1 is generally more accurate than
the original §2.2 method provided that it correctly identifies (a superset of) the support set S.

6. Conclusion

In this paper we have demonstrated that SFT techniques can be used to help rapidly approximate
functions with sparse Legendre coefficient expansions. Together with the problems already relegated
to future work, we believe that it would be interesting to consider extending these methods to
functions which exhibit sparsity in other types of Gegenbauer polynomial expansions. Given the
level of success in both the Chebyshev and Legendre settings it seems likely that SFTs can be
utilized to good effect more generally.
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Appendix A. Proof of Lemma 1

Assuming that f : [−1, 1] → R is a Legendre polynomial of degree N , we can begin to compute

f̂r. This will, in turn, reveal the entries of G̃−1
r from (18). Recall that

fr(x) =
(
1− r2e2ix

)
f

(
1

2

(
r−1

e

−ix + reix
))

=
(
1− r2e2ix

)


⌊N

2 ⌋∑

j=0

f̃(2j) · L2j

(
r−1

e

−ix + reix

2

)
+

⌈N
2
−1⌉∑

j=0

f̃(2j + 1) · L2j+1

(
r−1

e

−ix + reix

2

)

 .

Setting z := r−1
e

−ix+reix

2 and expanding the Legendre polynomials in terms of the canonical poly-
nomial basis (see, e.g., [47]) we obtain

fr(x) =
(
1− r2e2ix

)


⌊N

2 ⌋∑

j=0

f̃(2j)

j∑

k=0

(−1)k
(4j − 2k)!

4jk!(2j − k)!(2j − 2k)!
z2(j−k)

(39)

+

⌈N
2
−1⌉∑

j=0

f̃(2j + 1)

j∑

k=0

(−1)k
(4j − 2k + 2)!

2 · 4jk!(2j − k + 1)!(2j − 2k + 1)!
z2(j−k)+1


 .
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Note that even powers of z will only ever contain even powers of both r−1
e

−ix and reix. Similarly,
odd powers of z will only ever contain odd powers of r−1

e

−ix and reix. Thus, it we can see that

f̂r(ω) =

{
f̂e(ω) if ω ≡ 0 mod 2

f̂o(ω) if ω ≡ 1 mod 2

where

fe(x) =
(
1− r2e2ix

)


⌊N

2 ⌋∑

j=0

f̃(2j)

j∑

k=0

(−1)k
(4j − 2k)!

4jk!(2j − k)!(2j − 2k)!

(
r−1

e

−ix + reix

2

)2(j−k)




=
(
1− r2e2ix

)


⌊N

2 ⌋∑

j=0

f̃(2j)
(−1)j

4j

j∑

k=0

(−1)k
(2j + 2k)!

(j − k)!(j + k)!(2k)!

(
r−1

e

−ix + reix

2

)2k


(40)

and

fo(x) =
(
1− r2e2ix

)
·



⌈N

2
−1⌉∑

j=0

f̃(2j + 1)

j∑

k=0

(−1)k
(4j − 2k + 2)!

2 · 4jk!(2j − k + 1)!(2j − 2k + 1)!

(
r−1
e

−ix + reix

2

)2(j−k)+1




=
(
1− r2e2ix

)
·



⌈N

2
−1⌉∑

j=0

f̃(2j + 1)
(−1)j

2 · 4j
j∑

k=0

(−1)k
(2j + 2k + 2)!

(j − k)!(j + k + 1)!(2k + 1)!

(
r−1
e

−ix + reix

2

)2k+1


 .(41)

A.1. The Even Fourier Coefficients. Expanding fe(x) from (40) using the Binomial Theorem,
reindexing, and then changing the order of summation, we obtain

fe(x) =
(
1− r2e2ix

)


⌊N

2 ⌋∑

j=0

f̃(2j)
(−1)j

4j

j∑

k=0

(−1)k

4k
(2j + 2k)!

(j − k)!(j + k)!(2k)!

k∑

l=−k

(
2k

k + l

)(
reix

)2l



=
(
1− r2e2ix

)



⌊N
2 ⌋∑

l=−⌊N
2 ⌋

(
reix

)2l
⌊N

2 ⌋∑

j=|l|
f̃(2j)

(−1)j

4j

j∑

k=|l|

(−1)k

4k
(2j + 2k)!

(j − k)!(j + k)!(2k)!

(
2k

k + l

)

 .

Multiplying the
(
1− r2e2ix

)
factor through the sum above and recombining terms now yields

fe(x) =

[(
reix

)−2⌊N
2 ⌋ −

(
reix

)2⌊N
2 ⌋+2

](
4
⌊
N
2

⌋

2
⌊
N
2

⌋
)
f̃ (2 ⌊N/2⌋)
16⌊N/2⌋

+

⌊N
2 ⌋∑

l=−⌊N
2 ⌋+1

(
reix

)2l




⌊N
2 ⌋∑

j=|l|
f̃(2j)

(−1)j

4j

j∑

k=|l|

(−1)k

4k
(2j + 2k)!

(j − k)!(j + k)!(2k)!

(
2k

k + l

)
(42)

−
⌊N

2 ⌋∑

j=|l−1|
f̃(2j)

(−1)j

4j

j∑

k=|l−1|

(−1)k

4k
(2j + 2k)!

(j − k)!(j + k)!(2k)!

(
2k

k + l

)
k + l

k + 1− l





22



Recalling from (18) that we are primarily concerned with l = 0,−1, . . . ,−
⌊
N
2

⌋
in the expression

above, we can now recombine terms in the bracketed sum to obtain the relevant even Fourier series
coefficients of fr from fe (please note that, in fact, that the last line of our calculation above does
not technically hold as written unless l ≤ 0!). Doing so, we learn that

f̂r (2l) =r
2l




f̃(2|l|) 1

16|l|

(
4|l|
2|l|

)
+

⌊N
2 ⌋∑

j=|l|+1

f̃(2j)
(−1)j

4j

[
(−1)|l|

4|l|
(2j + 2|l|)!

(j − |l|)!(j + |l|)!(2|l|)!

+

j∑

k=|l|+1

(−1)k

4k
(2j + 2k)!

(j − k)!(j + k)!(2k)!

(
2k

k + l

)
1− 2l

k − l + 1





(43)

for l = 0,−1, . . . ,−
⌊
N
2

⌋
+ 1. This combined with (42) gives all entries in the even rows of G̃−1

r .

A.2. The Odd Fourier Coefficients. Expanding fo(x) from (41) using the Binomial Theorem,
reindexing, and then changing the order of summation, we obtain

fo(x) =
(
1− r2e2ix

)
·



⌈N

2
−1⌉∑

j=0

f̃(2j + 1)
(−1)j

2 · 4j
j∑

k=0

(−1)k

2 · 4k
(2j + 2k + 2)!

(j − k)!(j + k + 1)!(2k + 1)!

k+1∑

l=−k

(
2k + 1

k + l

)(
reix

)2l−1




=
(
1− r2e2ix

)
·



⌈N

2
−1⌉∑

l=0

Cl

(
reix

)2l+1
+

0∑

l=−⌈N
2
−1⌉

(
reix

)2l−1
⌈N

2
−1⌉∑

j=|l|
f̃(2j + 1)

(−1)j

2 · 4j
j∑

k=|l|

(−1)k

2 · 4k
(2j + 2k + 2)!

(j − k)!(j + k + 1)!(2k + 1)!

(
2k + 1

k + l

)

 .

for some C0, . . . , C⌈N
2
−1⌉ ∈ R with which we need not concern ourselves at the moment. Multiplying

the
(
1− r2e2ix

)
factor through the sum above and recombining terms now yields

fo(x) =
(
1− r2e2ix

) ⌈
N
2
−1⌉∑

l=0

Cl

(
reix

)2l+1
+

(
reix

)−2⌈N
2
−1⌉−1

(
4
⌈
N
2 − 1

⌉
+ 2

2
⌈
N
2 − 1

⌉
+ 1

)
f̃ (2 ⌈N/2− 1⌉+ 1)

4 · 16⌈N/2−1⌋

(44)

+
0∑

l=−⌈N
2
−1⌉+1

(
reix

)2l−1





⌈N
2
−1⌉∑

j=|l|
f̃(2j + 1)

(−1)j

2 · 4j
j∑

k=|l|

(−1)k

2 · 4k
(2j + 2k + 2)!

(j − k)!(j + k + 1)!(2k + 1)!

(
2k + 1

k + l

)

−
⌈N

2
−1⌉∑

j=|l−1|
f̃(2j + 1)

(−1)j

2 · 4j
j∑

k=|l−1|

(−1)k

2 · 4k
(2j + 2k + 2)!

(j − k)!(j + k + 1)!(2k + 1)!

(
2k + 1

k + l

)
k + l

k + 2− l




.
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We can now recombine terms in the bracketed sum to obtain the relevant odd Fourier series
coefficients of fr from fo. Doing so, we learn that

f̂r (2l − 1) = r2l−1

{
f̃(2|l| + 1)

1

4 · 16|l|
(
4|l|+ 2

2|l|+ 1

)

+

⌈N
2
−1⌉∑

j=|l|+1

f̃(2j + 1)
(−1)j

2 · 4j

[
(−1)|l|

2 · 4|l|
(2j + 2|l|+ 2)!

(j − |l|)!(j + |l|+ 1)!(2|l| + 1)!

+

j∑

k=|l|+1

(−1)k

2 · 4k
(2j + 2k + 2)!

(j − k)!(j + k + 1)!(2k + 1)!

(
2k + 1

k + l

)
2− 2l

k − l + 2





(45)

for l = 0,−1, . . . ,−
⌈
N
2 − 1

⌉
+1. This combined with (44) gives all entries in the odd rows of G̃−1

r .

Appendix B. Proof of Corollary 2

We will once again consider the even and odd rows separately.

B.1. The Even Rows. From (23) in Lemma 1, the nonzero entries in the even rows of the inverse

matrix G̃−1
r for i ≤ j ≤

⌊
N
2

⌋
can be rewritten as

(
G̃−1

r

)
2i,2j

=

(
−1

4

)i+j

r−2i(1 + 2i)

j−i∑

k=0

(
−1

4

)k (2j + 2i+ 2k)!

((j − i)− k)!(j + i+ k)!(2i + 1 + k)!k!
.

For every i, j, k ≥ 0 and m ∈ Z+,

(46)
(−m)k = (−1)km!

(m−k)! , (m+ k)! = (m)k+1(m− 1)!, and

(2(i+ j) + 2k)! = 4k (2(j + i))!(i+ j + 1)k
(
i+ j + 1

2

)
k
.

Thus, we deduce that

(
G̃−1

r

)
2i,2j

=

(
−1

4

)i+j r−2i(1 + 2i)

(j − i)!

j−i∑

k=0

(−(j − i))k (2j + 2i+ 2k)!

4k (j + i+ k)!(2i + 1 + k)!k!

=

(
−1

4

)i+j r−2i(1 + 2i)(2i + 2j)!

(j − i)!(j + i− 1)!(2i)!

j−i∑

k=0

(−(j − i))k(j + i+ 1)k
(
j + i+ 1

2

)
k

k!(j + i)k+1(2i + 1)k+1

=

(
−1

4

)i+j r−2i(2i+ 2j)!

(j − i)!(j + i)!(2i)!

j−i∑

k=0

(−(j − i))k
(
j + i+ 1

2

)
k

k!(2i+ 2)k

The hypergeometric function F can be expressed by

F (−m,β; γ; z) =
m∑

k=0

(−m)k(β)k
(γ)k

zk

k!
,

where m is a positive integer and γ is neither zero nor a negative integer (see, e.g., [37]). Therefore,

(
G̃−1

r

)
2i,2j

=

(
−1

4

)i+j r−2i(2i + 2j)!

(j − i)!(j + i)!(2i)!
F

(
−(j − i),

(
j + i+

1

2

)
; (2i + 2); 1

)
.
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The special value of F (α, β; γ, z) at z = 1 can be expressed in terms of a Gamma function [47].
That is, F (α, β; γ, 1) = (Γ(γ)Γ(γ − α− β)) / (Γ(γ − α)Γ(γ − β)). Thus, we deduce that

(
G̃−1

r

)
2i,2j

=

(
−1

4

)i+j r−2i(2i+ 2j)!

(j − i)!(j + i)!(2i)!

Γ(2i+ 2)Γ(32 )

Γ(i+ j + 2)Γ(i − j + 3
2 )

=

((
−1

4

)i+j (2i + 2j)!

(j + i)!(j + i)!

)(
r−2i(2i+ 1)

(i+ j + 1)

)(
Γ(32)

(j − i)!Γ(i − j + 3
2 )

)
.(47)

B.2. The Odd Rows. Similarly, from (24) in Lemma 1, the nonzero entries in the odd rows of

the inverse matrix G̃−1
r for i ≤ j ≤

⌊
N
2

⌋
can be rewritten as

(
G̃−1

r

)
2i+1,2j+1

=
(−1)i+j

4i+j+1
r−2i−1(2 + 2i)

j−i∑

k=0

(
−1

4

)k (2j + 2i+ 2k + 2)!

((j − i)− k)!(j + i+ 1 + k)!(2i + 2 + k)!k!
.

By using (46) we deduce that

(
G̃−1

r

)
2i+1,2j+1

=
(−1)i+j

4i+j+1

r−2i−1(2 + 2i)

(j − i)!

j−i∑

k=0

(−(j − i))k (2(j + i+ 1) + 2k)!

4k (j + i+ 1 + k)!(2i + 2 + k)!k!

=
(−1)i+j

4i+j+1

r−2i−1(2 + 2i)(2(j + i+ 1))!

(j − i)!(j + i)!(2i + 1)!

j−i∑

k=0

(−(j − i))k(j + i+ 2)k
(
j + i+ 3

2

)
k

k!(j + i+ 1)k+1(2i + 2)k+1

=
(−1)i+j

4i+j+1

r−2i−1(2(j + i+ 1))!

(j − i)!(j + i+ 1)!(2i + 1)!

j−i∑

k=0

(−(j − i))k
(
j + i+ 3

2

)
k

k!(2i + 3)k

=
(−1)i+j

4i+j+1

r−2i−1(2(j + i+ 1))!

(j − i)!(j + i+ 1)!(2i + 1)!
F

(
−(j − i),

(
j + i+

3

2

)
; (2i + 3); 1

)
,

where F is a hypergeometric function. Again, by using a Gamma function for the special value of
F at z = 1, we finally deduce that
(
G̃−1

r

)
2i+1,2j+1

=
(−1)i+j

4i+j+1

r−2i−1(2(j + i+ 1))!

(j − i)!(j + i+ 1)!(2i + 1)!

Γ(2i+ 3)Γ(32 )

Γ(i+ j + 3)Γ(i− j + 3
2)

=

(
(−1)i+j

4i+j+1

(2(j + i+ 1))!

(j + i+ 1)!(j + i+ 1)!

)(
r−2i−1(2i+ 2)

(i+ j + 2)

)(
Γ(32 )

(j − i)!Γ(i − j + 3
2)

)
.(48)
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