Skip to main content
Log in

Convergence of Steffensen’s method for non-differentiable operators

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We present a semilocal as well as a local convergence analysis of Steffensen’s method in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. The novelty of this paper is twofold. On the one hand, we show convergence under general conditions including earlier ones as special cases. In particular, these conditions allow the important study when the operator involved is not differentiable. On the other hand, we use a combination of conditions that allow a more precise computation of the upper bounds on the norms of the inverses involved leading to a tighter convergence analysis. Finally, we provide numerical examples involving nonlinear integral equations on mixed Hammerstein type that appear in chemistry, vehicular traffic theory, biology, and queuing theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alarcón, V., Amat, S., Busquier, S., López, D. J.: A Steffensen’s type method in Banach spaces with applications on boundary-value problems. J. Comput. Appl. Math. 216(1), 243–250 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Argyros, I. K.: A new convergence theorem for Steffensen’s method on Banach spaces and applications. Southwest J. Pure Appl. Math. 1, 23–29 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Argyros, I.: On the Secant method. Publ. Math. Debrecen 43(3-4), 223–238 (1993)

    MathSciNet  MATH  Google Scholar 

  4. Argyros, I. K., Ren, H: On an improved local convergence analysis for the Secant method. Numer. Algor. 52, 257–271 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bruns, D. D., Bailey, J. E.: Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chem. Eng. Sci. 32, 257–264 (1977)

    Article  Google Scholar 

  6. Chen, J., Shen, Z.: Convergence analysis of the secant type methods. Appl. Math. Comput. 188, 514–524 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Deimling, K.: Nonlinear functional analysis. Springer-Verlag, Berlin (1985)

    Book  MATH  Google Scholar 

  8. Ezquerro, J. A., Hernández, M. A., Romero, N., Velasco, A.: On Steffensen’s method on Banach spaces. J. Comput. Appl. Math. 249, 9–23 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hernández, M. A., Rubio, M. J., Ezquerro, J. A.: Secant-like methods for solving nonlinear integral equations of the Hammerstein type. J. Comput. Appl. Math. 115(1-2), 245–254 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hernández, M. A., Rubio, M. J.: A uniparametric family of iterative processes for solving nondifferentiable equations. J. Math. Anal. Appl. 275, 821–834 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hernández-Verón, M. A., Rubio, M. J.: On the ball of convergence of Secant-like methods for non-differentiable operators Applied Mathematics and Computation. doi:10.1016/j.amc.2015.10.007 (2015)

  12. Hongmin, R., Qingiao, W: The convergence ball of the Secant method under Hlder continuous divided differences. J. Comput. Appl. Math. 194, 284–293 (2006)

    Article  MathSciNet  Google Scholar 

  13. Kewei, L.: Homocentric convergence ball of the Secant method. Appl. Math. J. Chinese Univ. Ser. B 22(3), 353–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kung, H. T., Traub, J. F.: Optimal order of one-point and multipoint iteration Computer Science Department. Paper, 1747 (1973)

  15. Potra, F. A., Pták, V.: Nondiscrete induction and iterative methods. Pitman Publishing Limited, London (1984)

    MATH  Google Scholar 

  16. Potra, F. A.: A characterisation of the divided differences of an operator which can be represented by Riemann integrals. Anal. Numer. Theory Approx. 9, 251–253 (1980)

    MathSciNet  MATH  Google Scholar 

  17. Rashidinia, J., Zarebnia, M.: New approach for numerical solution of Hammerstein integral equations. Appl. Math. Comput. 185, 147–154 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Ren, H., Argyros, I. K.: Local convergence of efficient Secant-type methods for solving nonlinear equations. Appl. Math. Comput. 218, 7655–7664 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Shakhno, S.: On the Secant method under generalized Lipschitz conditions for the divided difference operator. PAMM-Proc. Appl. Math. Mech. 7, 2060083–2060084 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Argyros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argyros, I.K., Hernández-Verón, M.A. & Rubio, M.J. Convergence of Steffensen’s method for non-differentiable operators. Numer Algor 75, 229–244 (2017). https://doi.org/10.1007/s11075-016-0203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0203-y

Keywords

Mathematics Subject Classification (2010)

Navigation