Skip to main content
Log in

On the convergence of Newton-like methods using restricted domains

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We present a new semi-local convergence analysis for Newton-like methods in order to approximate a locally unique solution of a nonlinear equation containing a non-differentiable term in a Banach space setting. The new idea uses more precise convergence domains. This way the new sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies. Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar-type, are also provided in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amat, S., Busquier S., Gutiérrez, J.M.: Geometric constructions of iterative functions to solve nonlinear equations, vol. 157 (2003)

  2. Amat, S., Hernández, M.A., Romero, N.: A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 206(1), 164–174 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Amat, S., Busquier, S.: Third order iterative methods under Kantorovich conditions. J. Math. Anal. Appl. 336(1), 243–261 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amat, S., Busquier, S., Plaza, S.: Dynamics of the King’s and Jarratt iterations. Aequationes Math. 69, 212–213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amat, S., Busquier, S., Plaza, S.: Chaotic of a third-order Newton-type method. J. Math. Anal. Appl. 366(1), 24–32

  6. Amat, S., Busquier, S., Gutierrez, J.M.: Third order iterative methods with applications to Hammerstein equations: a unified approach. J. Comput. Appl. Math. 235(9), 2936–2943 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Amat, S., Busquier, S., Gutierrez, J.M., Hernández, M.A., Romero, N.: On the global convergence of Chebyshev’s iterative method. J. Comput. Appl. Math. 220, 17–21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Argyros, I.K.: The theory and application of abstract polynomial equations, St Lucie/CRC/Lewis Publ. Mathematics Series, Boca Raton, FL, USA (1998)

  9. Argyros, I.K.: On the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 169, 315–332 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Argyros, I.K.: A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Appl 298, 374–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Argyros, I.K.: Computational theory of iterative methods. In: Chui, C.K., Wuytack, L. (eds.) Series: Studies in Computational Mathematics, vol. 15. Elsevier Publ. Co, New York (2007)

    Google Scholar 

  12. Argyros, I.K.: On a class of Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 228, 115–122 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chandrasekhar, S.: Radiative transfer. Dover Publications, New York (1960)

    MATH  Google Scholar 

  14. Chen, X., Yamamoto, T.: Convergence domains of certain iterative methods for solving nonlinear equations. Numer. Funct. Anal. Optim. 10, 37–48 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Deimling, K.: Nonlinear functional analysis. Springer-Verlag, Berlin (1985)

    Book  MATH  Google Scholar 

  16. Dennis, J.E.: Toward a unified convergence theory for Newton-like methods. In: Rall, L.B. (ed.) Nonlinear Functional Analysis and Applications, pp 425–472. Academic Press, New York (1971)

    Chapter  Google Scholar 

  17. Deuflhard, P., Heindl, G.: Affine invariant convergence theorems for Newtons method and extensions to related methods. SIAM J. Numer. Anal 16, 1–10 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ezquerro, J.A., Hernández, M.A.: Recurrence relations for Chebyshev-type method. App. MAth. Optim. 41(2), 227–236 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ezquerro, J.A., Hernández, M.A., Romero, N., Velasco, A.I.: On steffensen’s method on Banach spaces. J. Comput. Appl. Math. 249, 9–23 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ezquerro, J.A., Hernández, M.A.: On the R-order of the Halley method. J. Math. Anal. Appl 303, 591–601 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ezquerro, J.A., Hernández, M.A.: New iterations of R-order four with reduced computational cost. BIT Numer. Math. 49, 325–342 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ganesh, M., Joshi, M.C.: Numerical solvability of Hammerstein integral equations of mixed type. IMA J. Numer. Anal. 11, 1–8 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gutiérrez, J.M., Hernández, M.A.: Recurrence relations for the super-Halley method. Comput. Math. Appl. 36(7), 1–8 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hernández, M.A.: Chebyshev’s approximation algorithms and applications. Comput. Math. Appl. 41(3-4), 433–455 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hernández, M.A., Rubio, M.J.: A uniparametric family of iterative process for solving nondifferentiable equations. J. Math. Anal. Appl. 275, 821–834 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hernández, M.A., Rubio, M.J.: On the ball of convergence of Secant-like methods for nondifferentiable operators. Appl. Math. Comput. 273(15), 506–512 (2016)

    MathSciNet  Google Scholar 

  27. Hernández, M.A., Rubio, M.J., Ezquerro, J.A.: Secant-like methods for solving nonlinear integral equations of the Hammerstein type. J. Comput. Appl. Math. 115(1-2), 245–254 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ma, C.: A smoothing Broyden-like method for the mixed complementarity problems. Math. Comput. Model. 41, 523–538 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Magrenán, A.A.: A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 215–225 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Miel, G.J.: Unified error analysis for Newton-type methods. Numer. Math. 33, 391–396 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. Miel, G.J.: Majorizing sequences and error bounds for iterative methods. Math. Comp. 34, 185–202 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  32. Moret, I.: A note on Newton type iterative methods. Computing 33, 65–73 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Potra, F.A.: Sharp error bounds for a class of Newton-like methods. Libertas Math. 5, 71–84 (1985)

    MathSciNet  MATH  Google Scholar 

  34. Potra, F.A., Pták, V.: Nondiscrete induction and iterative processes, Research Notes in Mathematics, vol. 103. Pitman Publ, Boston (1984)

    MATH  Google Scholar 

  35. Rheinboldt, W.C.: A unified convergence theory for a class of iterative processes. SIAM J. Numer. Anal. 5, 42–63 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yamamoto, T.: A convergence theorem for Newton-like methods in Banach spaces. Numer. Math. 51, 545–557 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zabrejko, P.P., Nguen, D.F.: The majorant method in the theory of Newton-Kantorovich approximations and the Pták error estimates. Numer. Funct. Anal. Optim 9, 671–684 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zincenko, A.I.: Some approximate methods of solving equations with non-differentiable operators, (Ukrainian), Dopovidi Akad. Nauk Ukran. RSR (1963)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santhosh George.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argyros, I.K., George, S. On the convergence of Newton-like methods using restricted domains. Numer Algor 75, 553–567 (2017). https://doi.org/10.1007/s11075-016-0211-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0211-y

Keywords

Mathematics Subject Classification (2010)

Navigation