Skip to main content

Advertisement

Log in

Strong convergence result for monotone variational inequalities

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Our aim in this paper is to study strong convergence results for L-Lipschitz continuous monotone variational inequality but L is unknown using a combination of subgradient extra-gradient method and viscosity approximation method with adoption of Armijo-like step size rule in infinite dimensional real Hilbert spaces. Our results are obtained under mild conditions on the iterative parameters. We apply our result to nonlinear Hammerstein integral equations and finally provide some numerical experiments to illustrate our proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Antipin, A. S.: On a method for convex programs using a symmetrical modification of the Lagrange function. Ekonomika i Matematicheskie Metody 12, 1164–1173 (1976)

    Google Scholar 

  2. Apostol, R. Y., Grynenko, A. A., Semenov, V. V.: Iterative algorithms for monotone bilevel variational inequalities. J. Comp. Appl. Math. 107, 3–14 (2012)

    Google Scholar 

  3. Aubin, J. -P., Ekeland, I.: Applied nonlinear analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  4. Banas, J.: Integrable solutions of Hammerstein and Uryshon integral equations. J. Aust. Math. Soc. A 46, 61–68 (1989)

    Article  MATH  Google Scholar 

  5. Banas, J., Knap, Z.: Measure of weak noncompactness and nonlinear integral equations of convolution type. J. Math. Anal. Appl. 146, 353–362 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baiocchi, C., Capelo, A.: Variational and quasivariational inequalities: applications to free boundary problems. Wiley, New York (1984)

    MATH  Google Scholar 

  7. Bauschke, H. H., Combettes, P. L.: Convex analysis and monotone operator theory in Hilbert Spaces, CMS Books in Mathematics. Springer, New York (2011)

    Book  MATH  Google Scholar 

  8. Berinde, V.: Iterative approximation of fixed points 1912 (2007). ISBN 978-3-540-72233-5.

  9. Bnouhachem, A.: A self-adaptive method for solving general mixed variational inequalities. J. Math. Anal. Appl. 309, 136–150 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brez̀is, H., Browder, F. E.: Some new results about Hammerstein equations. Bull. Amer. Math. Soc. 80, 567–572 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brez̀is, H., Browder, F. E.: Existence theorems for nonlinear integral equations of Hammerstein type. Bull. Amer. Math. Soc. 81, 73–78 (1975)

    Article  MathSciNet  Google Scholar 

  12. Brez̀is, H., Browder, F. E.: Nonlinear integral equations and system of Hammerstein type. Advances in Math. 18, 115–147 (1975)

    Article  MathSciNet  Google Scholar 

  13. Browder, F. E.: Nonlinear mappings of nonexpansive and accretive type in Banach spaces. Bull. Amer. Math. Soc. 73, 875–882 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  14. Browder, F. E., Figueiredo, D. G., Gupta, P.: Maximal monotone operators and a nonlinear integral equations of Hammerstein type. Bull. Amer. Math Soc. 76, 700–705 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Browder, F. E., Gupta, P.: Monotone operators and nonlinear integral equations of Hammerstein type. Bull. Amer. Math Soc. 75, 1347–1353 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cegielski, A.: Iterative methods for fixed point problems in Hilbert Spaces, Lecture Notes in Mathematics 2057. Springer, Berlin (2012). ISBN 978-3-642-30900-7

    Google Scholar 

  17. Ceng, L. -C., Hadjisavvas, N., Wong, N. -C.: Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems. J. Global Optimization 46, 635–646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Software 26, 827–845 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chepanovich, R. S. h.: Nonlinear Hammerstein equations and fixed points,. Publ. Inst. Math. (Beograd) N. S. 35, 119–123 (1984)

    MathSciNet  Google Scholar 

  21. Chidume, C. E.: Geometric properties of Banach spaces and nonlinear iterations, vol. 1965, p XVII, 326. Springer Verlag series: lecture notes in mathematics (2009). ISBN 978-1-84882-189-7

  22. Chidume, C. E., Ofoedu, E. U.: Solution of nonlinear integral equations of Hammerstein type. Nonlinear Anal. 74, 4293–4299 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chidume, C. E., Shehu, Y.: Strong convergence theorem for approximation of solutions of equations of Hammerstein type. Nonlinear Anal. 75, 5664–5671 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chidume, C. E., Shehu, Y.: Iterative approximation of solutions of equations of Hammerstein type in certain Banach spaces. Appl. Math. Comput. 219, 5657–5667 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Chidume, C. E., Zegeye, H.: Approximation of solutions nonlinear equations of Hammerstein type in Hilbert space. Pro. Amer. Math. Soc. 133, 851–858 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dolezale, V.: Monotone operators: its applications in automation and network theory, Studies in Automation and control. Elesevier Science Publ, New York (1979)

    Google Scholar 

  27. Emmanuele, G.: Integrable solutions of a functional-integral equation. J. Integral Equations Appl. 4, 89–94 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Emmanuele, G.: An existence theorem for Hammerstein integral equations. Port. Math. 51, 607–611 (1994)

    MathSciNet  MATH  Google Scholar 

  29. De Figueiredo, D. G., Gupta, C. P.: On the variational methods for the existence of solutions to nonlinear equations of Hammerstein type. Bull. Amer. Math. Soc. 40, 470–476 (1973)

    MathSciNet  Google Scholar 

  30. Facchinei, F., Pang, J. -S.: Finite-dimensional variational inequalities and complementarity problems, vol. II. Springer Series in Operations Research, Springer, New York (2003)

  31. Fang, C., Chen, S.: Some extragradient algorithms for variational inequalities. Advances in variational and hemivariational inequalities, 145-171, Adv. Mech Math., vol. 33. Springer, Cham (2015)

  32. Gibali, A.: A new non-Lipschitzian projection method for solving variational inequalities in Euclidean spaces. J. Nonlinear Anal. Optim. 6, 41–51 (2015)

    MathSciNet  Google Scholar 

  33. Glowinski, R., Lions, J. -L., Trémolierès, R.: Numerical analysis of variational inequalities. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  34. Hammerstein, A.: Nichtlineare integralgleichungen nebst anwendungen. Acta Math. 54, 117–176 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  35. He, B. -S., Yang, Z. -H., Yuan, X. -M.: An approximate proximal-extragradient type method for monotone variational inequalities. J. Math. Anal. Appl. 300, 362–374 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Iusem, A. N., Nasri, M.: Korpelevich’s method for variational inequality problems in Banach spaces. J. Global Optim. 50, 59–76 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Iusem, A. N., Svaiter, B. F.: A variant of Korpelevich’s method for variational inequalities with a new search strategy. Optimization 42, 309–321 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications. Academic, New York (1980)

    MATH  Google Scholar 

  39. Korpelevich, G. M.: The extragradient method for finding saddle points and other problems. Ekonomika i Matematicheskie Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  40. Konnov, I. V.: Combined relaxation methods for variational inequalities. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  41. Latracha, K., Taoudi, M. A.: Existence results for a generalized nonlinear Hammerstein equation on l 1 spaces. Nonlinear Anal. 66, 2325–2333 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lyashko, S. I., Semenov, V. V., Voitova, T. A.: Low-cost modification of Korpelevich’s method for monotone equilibrium problems. Cybern. Syst. Anal. 47, 631–639 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Khobotov, E. N.: Modification of the extragradient method for solving variational inequalities and certain optimization problems. USSR Comput. Math. Math. Phys. 27, 120–127 (1989)

    Article  MATH  Google Scholar 

  44. Kraikaew, R., Saejung, S.: Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 163, 399–412 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mainge, P. E., Gobinddass, M. L.: Convergence of one-step projected gradient methods for variational inequalities. In press: J. Optim. Theory Appl. doi:10.1007/s10957-016-0972-4

  46. Mainge, P. E.: Numerical approach to monotone variational inequalities by a one-step projected reflected gradient method with line-search procedure 72(3), 720–728 (2016)

  47. Malitsky, Y. u. V., Semenov, V. V.: A hybrid method without extrapolation step for solving variational inequality problems. J. Global Optim. 61, 193–202 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mann, W. R.: Mean value methods in iterations. Bull. Amer. Math. Soc. 4, 506–510 (1953)

    MathSciNet  MATH  Google Scholar 

  49. Nadezhkina, N., Takahashi, W.: Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings. SIAM J. Optim. 16, 1230–1241 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Nagurney, A.: Network economics: a variational inequality approach. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  51. Shehu, Y.: Strong convergence theorem for integral equations of Hammerstein type in Hilbert spaces. Appl. Math. Comput. 231, 140–147 (2014)

    MathSciNet  Google Scholar 

  52. Shehu, Y.: Convergence theorems for maximal monotone operators and fixed point problems in Banach spaces. Appl. Math. Comput. 239, 285–298 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Solodov, M. V., Svaiter, B. F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  54. Takahashi, W.: Nonlinear functional analysis. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  55. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  56. Xu, H. K.: Iterative algorithm for nonlinear operators. J. London Math. Soc. 66(2), 1–17 (2002)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yekini Shehu.

Additional information

The First Author is currently an Alexander von Humboldt Postdoctoral Fellow at the Institute of Mathematics, University of Wurzburg, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehu, Y., Iyiola, O.S. Strong convergence result for monotone variational inequalities. Numer Algor 76, 259–282 (2017). https://doi.org/10.1007/s11075-016-0253-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0253-1

Keywords

Mathematics Subject Classification (2010)

Navigation