Skip to main content
Log in

Fast multipole methods for approximating a function from sampling values

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Both barycentric Lagrange interpolation and barycentric rational interpolation are thought to be stable and effective methods for approximating a given function on some special point sets. A direct evaluation of these interpolants due to N interpolation points at M sampling points requires \(\mathcal {O}(NM)\) arithmetic operations. In this paper, we introduce two fast multipole methods to reduce the complexity to \(\mathcal {O}(\max \left \{N,M\right \})\). The convergence analysis is also presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions. National Bureau of Standards, Washington DC (1964)

    MATH  Google Scholar 

  2. Baker, R.D., Jackson, D.: Statistical application of barycentric rational interpolants: an alternative to splines. Comput. Stat. 29, 1065–1081 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baltensperger, R., Berrut, J.P., Noël, B.: Exponential convergence of a linear rational interpolant between transformed Chebyshev points. Math. Comp. 12, 1109–1120 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bernstein, S.N.: Sur l’ordre de la meilleure approximation des fonctions continues par les polynômes de degré donné. Mém. Acad. Roy Belg. 4, 1–103 (1912)

    MATH  Google Scholar 

  5. Berrut, J.P.: Rational functions for guaranteed and experimentally well-conditioned global interpolation. Comput. Math. Appl. 15, 1–16 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berrut, J.P., Baltensperger, R., Mittelmann, H.D.: Recent developments in barycentric rational interpolation. In: de Bruin, M. G., Mache, D. H., Szabados, J. (eds.) Trends and applications in constructive approximation. International Series of Numerical Mathematics, vol. 151, pp. 27–51. Basel, Birkhäuser (2005)

  7. Berrut, J.P., Floater, M.S., Klein, G.: Convergence rates of derivatives of a family of barycentric rational interpolants. Appl. Numer. Math. 61, 989–1000 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Berrut, J.P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46, 501–517 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Boyd, J.P.: Computing zeros on a real interval through Chebyshev expansion and polynomial rootfinding. SIAM J. Numer. Anal. 40, 1666–1682 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Boyd, J.P.: Finding the zeros of a univariate equation: proxy rootfinders, Chebyshev interpolation, and the companion matrix. SIAM Rev. 55, 375–396 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carrier, J., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm for particle simulations. SIAM J. Sci. Stat. Comput. 9, 669–686 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dutt, A., Gu, M., Rokhlin, V.: Fast algorithms for polynomial interpolation, integration, and differentiation. SIAM J. Numer. Anal. 33, 1689–1711 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Floater, M.S., Hormann, K.: Barycentric rational interpolation with no poles and high rates of approximation. Numer. Math. 107, 315–331 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gentleman, W.M.: Implementing Clenshaw-Curtis quadrature. Comm. ACM 15, 337–346 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gentleman, W.M.: Algorithm 424: Clenshaw-Curtis quadrature [D1]. Comm. ACM 15, 353–355 (1972)

    Article  Google Scholar 

  16. Good, I.J.: The colleague matrix, a Chebyshev analogue of the companion matrix. Quart. J. Math. 12, 61–68 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  17. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numer. 6, 229–269 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hale, N., Trefethen, L.N.: Chebfun and numerical quadrature. Sci. China 55, 1749–1760 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Higham, N.J.: The numerical stability of barycentric Lagrange interpolation. IMA J. Numer. Anal. 24, 547–556 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Klein, G., Berrut, J.: Linear barycentric rational quadrature. BIT 52, 407–424 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Liu, Y.J.: Fast multipole boundary element method: theory and applications in engineering. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  23. Martinsson, P.G., Rokhlin, V.: An accelerated kernel-independent fast multipole method in one dimension. SIAM J. Sci. Comput. 29, 1160–1178 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Runge, C.: Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Z Math. Phys. 46, 224–243 (1901)

    MATH  Google Scholar 

  25. Salzer, H.E.: Lagrange interpolation at the Chebyshev points \(x_{n},\nu =\cos (\pi /n), \nu =0(1)n\); some unnoted advantages. Comput. J. 15, 156–159 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  26. Schwarz, H.R.: Numerische mathematik, 4th edn. Teubner, Stuttgart (1997)

    Book  MATH  Google Scholar 

  27. Specht, W.: Die lage der nullstellen eines polynoms. Math. Nachr. 21, 201–222 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  28. Taylor, W.J.: Method of Lagrangian curvilinear interpolation. J. Research. Natl. Bur. Stand. 35, 151–159 (1945)

    Article  MATH  MathSciNet  Google Scholar 

  29. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw-Curtis?. SIAM Rev. 50, 67–87 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Trefethen, L.N.: Approximation theory and approximation practice. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  31. Trefethen, L.N., et al.: Chebfun Version 4.0, The Chebfun Development Team, http://www.maths.ox.ac.uk/chebfun/ (2011)

  32. Wang, H., Huybrechs, D., Vandewalle, S.: Explicit barycentric weights for polynomial interpolation in the roots or extrema of classical orthogonal polynomials. Math. Comp. 83, 2893–2914 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wang, H., Xiang, S.: On the convergence rates of Legendre approximation. Math. Comp. 81, 861–877 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Xiang, S.: On interpolation approximation: convergence rates for polynomial interpolation for functions of limited regularity. SIAM J. Numer. Anal. 54, 2081–2113 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  35. Xiang, S., Chen, X., Wang, H.: Error bounds for approximation in Chebyshev points. Numer. Math. 116, 463–491 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Yarvin, N., Rokhlin, V.: An improved fast multipole algorithm for potential fields on the line. SIAM J. Numer. Anal. 36, 629–666 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  37. Zhang, B., Huang, J., Pitsianis, N.P., Sun, X.: RECFMM: Recursive parallelization of the adaptive fast multipole method for coulomb and screened coulomb interactions. Commun. Comput. Phys. 20, 534–550 (2016)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guidong Liu.

Additional information

This work is supported partly by NSF of China (No.11371376), the Innovation-Driven Project and the Mathematics and Interdisciplinary Sciences Project of Central South University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Xiang, S. Fast multipole methods for approximating a function from sampling values. Numer Algor 76, 727–743 (2017). https://doi.org/10.1007/s11075-017-0279-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0279-z

Keywords

Mathematics Subject Classification (2010)

Navigation