Skip to main content
Log in

A feasible and effective technique in constructing ERKN methods for multi-frequency multidimensional oscillators in scientific computation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In last few years, many ERKN methods have been investigated for solving multi-frequency multidimensional second-order ordinary differential equations, and the numerical efficiency has been checked strongly in scientific computation. But in the constructions of (especially high-order) new ERKN methods, lots of time and effort are costed in presenting the practical order conditions firstly and then in adding some reasonable assumptions to get the coefficient functions finally. In this paper, a feasible and effective technique is given which makes the construction of ERKN methods finished in a few seconds or a few minutes, even for high-order integrators. Moreover, this technique does not need any more information and knowledge except the classical RKN method. And this paper also gives the theoretical explanation to guarantee that the ERKN method obtained from this technique has the same order and the same properties as the underlying RKN method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Stiefel, EL, Scheifele, G: Linear and regular celestial mechanics. Springer-Verlag, New York (1971)

    Book  MATH  Google Scholar 

  2. Butcher, JC: Numerical methods for ordinary differential equations, 2nd edn. Wiley, Chichester (2008)

    Book  MATH  Google Scholar 

  3. Hairer, E, Nørsett, S.P., Wanner, G: Solving ordinary differential equations, vol. I. Nonstiff Problems, Springer-Verlag, Berlin (1993)

  4. Hairer, E, Lubich, C, Wanner, G: Geometric numerical integration: structure - preserving algorithms for ordinary differential equations, 2nd edn. Springer-Verlag, Berlin, Heidelberg (2006)

    MATH  Google Scholar 

  5. Wu, X, You, X, Wang, B: Structure-Preserving algorithms for oscillatory differential equations. Springer-Verlag, Berlin Heidelberg (2013)

    Book  MATH  Google Scholar 

  6. Wu, X, Liu, K, Shi, W: Structure-Preserving algorithms for oscillatory differential equations, vol. II. Springer-Verlag Berlin Heidelberg and Science Press, Beijing, China (2015)

  7. Wang, B, Wu, X: A highly accurate explicit symplectic ERKN method for multi-frequency and multidimensional oscillatory Hamiltonian systems. Numer. Algor. 65, 705–721 (2014)

    Article  MATH  Google Scholar 

  8. Li, J, Wang, B, You, X, Wu, X: Two-step extended RKN methods for oscillatory sysems. Comput. Phys. Commun. 182, 2486–2507 (2011)

    Article  MATH  Google Scholar 

  9. Wu, X, Wang, B, Liu, K, Zhao, H: ERKN methods for long-term integration of multidimensional orbital problems. Appl. Math. Model. 37, 2327–2336 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Yang, H, Wu, X, You, X, Fang, Y: Extended RKN-type methods for numerical integration of perturbed oscillators. Comput. Phys. Comm 180, 1777–1794 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Yang, H, Zeng, X, Wu, X, Ru, Z: A simplified Nyström-tree theory for extended Runge-Kutta-Nyström integrators solving multi-frequency oscillatory systems. Comput. Phys. Comm 185, 2841–2850 (2014)

    Article  MATH  Google Scholar 

  12. You, X, Zhao, J, Yang, H, Fang, Y, Wu, X: Order conditions for RKN methods solving general second-order oscillatory systems. Numer. Algor. 66, 147–176 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wu, X, Wang, B, Shi, W: Effective integrators for nonlinear second-order oscillatory systems with a time-dependent frequency matrix. Appl. Math. Model. 37, 6505–6518 (2013)

    Article  MathSciNet  Google Scholar 

  14. Wu, X, You, X, Shi, W, Wang, B: ERKN integrators for systems of oscillatory second-order differential equations. Comput. Phys. Commun. 181, 1873–1887 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Yang, H, Wu, X: Trigonometrically-fitted ARKN methods for perturbed oscillators. Appl. Numer. Math. 58, 1375–1395 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Zeng, X, Yang, H, Wu, X: An improved tri-colored rooted-tree theory and order conditions for ERKN methods for general multi-frequency oscillatory systems, Numerical Algorithm, proceeding

  17. Brugnano, L, Iavernaro, F, Trigiante, D: A simple framework for the derivatiion and analysis of effective one-step methods for ODEs. Appl. Math. Comput. 218, 8475–8485 (2012)

    MATH  MathSciNet  Google Scholar 

  18. Hairer, E: Energy-preserving variant of collocation methods. J. AIAM J. Numer. Anal. Ind. Appl. Math. 5, 73–84 (2010)

    MATH  MathSciNet  Google Scholar 

  19. Wu, X, Wang, B, Shi, W: Efficient energy-perserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235, 587–605 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wu, X, Wang, B, Xia, J: Explicit symplectic multidimensional exponential fitting modified Runge-Kutta-Nyström methods. BIT 52, 773–795 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Blanes, S: Explicit symplectic RKN methods for perturbed non-autonomous oscillators: Splitting, extended and exponentially fitting methods. Comput. Phys. Commun. 193, 10C18 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hochbruck, M, Ostermann, A: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hochbruck, M, Lubich, C: A Gautschi - type method for oscillatory second - order differential equations. Numer. Math. 83, 403–426 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hochbruck, M, Lubich, C: Exponential integrators for quantum-classical molecular dynamics. BIT 39, 620–645 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Cox, SM, Matthews, PC: Exponential time differencing for stiff systems. J. Comput. Phys. 176(2), 430–455 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Franco, JM: Exponentially fitted explicit Runge-Kutta-Nyström methods. J. Comput. Appl. Math. 167, 1–19 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Berland, H, Owren, B, Skaflestad, B: B-series and order conditions for exponential integrators. SIAM J. Numer. Anal. 43(4), 1715–1727 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wang, B, Iserles, A, Wu, X: Arbitrary-order trigonometric Fourier collocation methods for multi-frequency oscillatory systems. Found. Comput. Math. 16, 151–181 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  29. Brugnano, L, Iavernaro, F, Trigiante, D: Energy and Quadratic Invariants Preserving integrators based upon Gauss collocation formulae. SIAM J. Numer. Anal. 50, 2897–2916 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. Cohen, D, Hairer, E, Lubich, C: Numerical energy conservation for multi-frequency oscillatory differential equations. BIT 45, 287–305 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Brugnano, L, Iavernaro, F: Line integral methods which preserve all invariants of conservative problems. J. Comput. Appl. Math. 236, 3905–3919 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Feng, K, Qin, MZ: Symplectic geometric algorithms for Hamiltionian systems, Zhejiang Publishing United Group, Zhejiang Science and Technology Publishing House. Hangzhou and Springer-Verlag, Berlin Heidelberg (2010)

    Book  Google Scholar 

  33. Sanz-Serna, JM, Calvo, MP: Numerical hamiltonian problems. Chapman & Hall, 2-6 Boundary Row, London SE1 8HN, UK (1994)

    Book  MATH  Google Scholar 

  34. Wang, B, Yang, HL, Meng, FW: Sixth-order symplectic and symmetric explicit ERKN schemes for solving multi-frequency oscillatory nonlinear Hamiltonian equations. Calcolo 53, 1–14 (2016). doi:10.1007/s10092-016-0179-y

    Article  MATH  MathSciNet  Google Scholar 

  35. Chen, Z, You, X, Shi, W, Liu, Z: Symmetric and symplectic ERNK methods for oscillatory Hamiltonian systems. Comput. Phys. Comm. 183, 86–98 (2012)

    Article  MATH  Google Scholar 

  36. Shi, W, Wu, X, Xia, J: Explicit multi-symplectic extended leap-frog methods for Hamiltonian wave equations. J. Comput. Phys. 231, 7671–7694 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wang, B, Wu, X: A Filon-type asymptotic approach to solving highly oscillatory second-order initial value problems. J. Comput. Phys. 243, 210–223 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  38. Wang, B, Wu, X, Zhao, H: Novel improved multifimensional Strömer-Verlet formulas with applications to four aspects in scientific computation. Math. Comput. Model. 57, 857–872 (2013)

    Article  MATH  Google Scholar 

  39. Ruth, RD: A canonical integration technique. IEEE Trans. Nucl. Sci. 30, 2669–2671 (1983)

    Article  Google Scholar 

  40. Qin, MZ, Zhu, WJ: Construction of higher order symplectic schemes by somposition. Computing 47, 309–321 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  41. Hairer, E: Méthodes de Nyström pour l’équation différentielle \(y^{\prime \prime }=f(x,y)\). Numer. Math. 27, 283–300 (1977)

    Article  MATH  Google Scholar 

  42. Hairer, E, Wanner, G: On the Butcher group and general multi-value methods. Comuting 13, 1–15 (1974)

    MATH  MathSciNet  Google Scholar 

  43. Hairer, E, Wanner, G: A theory for Nyström methods. Numer. Math. 25, 383–400 (1976)

    Article  MATH  Google Scholar 

  44. Albrecht, J: Beiträge zum Runge-Kutta-Nerfahren. ZAMM 35, 100–110 (1955)

    Article  MATH  Google Scholar 

  45. Battin, RH: Resolution of Runge-Kutta-Nyström condition equations through eighth order. AIAA J. 14, 1012–1021 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  46. Beentjes, PA, Gerritsen, WJ: Higher order Runge-Kutta methods for the numerical solution of second order differential equations without first derivatives. Report NW 34/76, Mathematical Centrum, Amsterdam (1976)

    Google Scholar 

  47. Hairer, E: A one-step method of order 10 for \(y^{\prime \prime }=f(x,y)\). IMA J. Num. Anal. 2, 83–94 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  48. Qin, MZ, Zhu, WJ: Canonical Runge-Kutta-Nystrom (RKN) methods for second order ordinary differential equations. Comput. Math. Applic. 22, 85–95 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  49. Okunbor, D, Skeel, RD: Explicit canonical methods for Hamiltonian systems. Math. Comput. 59, 439–455 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  50. Okunbor, D, Skeel, RD: Canoncal Runge-Kutta-Nyström methods of orders 5 and 6. J. Comput. Appl. Math. 51, 375–382 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  51. Okunbor, D, Skeel, RD: An explicit Runge-Kutta-Nyström method is canonical if and only if its adjoint is explicit. SIAM J. Numer. Anal. 29, 521–527 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  52. Calvo, MP, Sanz-Serna, JM: High-order symplectic Runge-Kutta-Nyström methods. SIAM J. Sci. Comput. 14, 1237–1252 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  53. Calvo, MP, Sanz-Serna, JM: Order conditions for canonical Runge-Kutta-Nyström methods. BIT 32, 131–142 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  54. Hong, J, Jiang, S, Li, C: Explicit multi-symplectic methods for Klein-Gordon-Schrödinger equations. J. Comput. Phys. 228, 250–273 (2009)

    Article  Google Scholar 

  55. Suris, YB: The canonicity of mappings generated by Runge-Kutta type methods when integrating the systems ẍ =− U/ x, Xh. Vychisl. Mat. I Mat. Fiz., 29, 202-211 (in Russian); same as U.S.S.R. Comut. Maths. Phys., 29, 138–144

  56. Tocino, A, Vigo-Aguiar, J: Symplectic conditions for exponential fitting Runge-Kutta-Nyström methods. Math. Comput. Modell. 42, 873–876 (2005)

    Article  MATH  Google Scholar 

  57. De Vogelaere, R: Methods of integration which preserve the contact transformation property of the Hamiltonian equations Report, vol. 4. Department of Mathematics, University of Notre Dame, India (1956)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongli Yang.

Additional information

The research was supported in part by the Science Foundations of the Nanjing Institute of Technology under Grant CKJA201410 and under Grant QKJA201404, by the Educational Reform Foundations of the Nanjing Institute of Technology under Grant JG201440, by the Natural Science Foundation of China under Grant 11671200.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zeng, X. A feasible and effective technique in constructing ERKN methods for multi-frequency multidimensional oscillators in scientific computation. Numer Algor 76, 761–782 (2017). https://doi.org/10.1007/s11075-017-0281-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0281-5

Keywords

Mathematics Subject Classification (2010)

Navigation