Skip to main content

Advertisement

Log in

A novel cognitive transformation algorithm based on Gaussian cloud model and its application in image segmentation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The representation and processing of uncertain concepts are key issue for both the study of artificial intelligence with uncertainty and human knowledge processing. The intension and extension of a concept can be transformed automatically in the human cognition process, while it is difficult for computers. A Gaussian cloud model (GCM) is used to realize the cognitive transformation between intension and extension of a concept through computer algorithms, including forward Gaussian cloud transformation (FGCT) algorithms and backward Gaussian cloud transformation (BGCT) algorithms. A FGCT algorithm can transform a concept’s intension into extension, and a BGCT algorithm can implement the cognitive transformation from a concept’s extension to intension. In this paper, the authors perform a thorough analysis on the existing BGCT algorithms firstly, and find that these BGCT algorithms have some drawbacks. They cannot obtain the stable intension of a concept sometimes. For this reason, a new backward Gaussian cloud cognitive transformation algorithm based on sample division is proposed. The effectiveness and convergence of the proposed method is analyzed in detail, and some comparison experiments on obtaining the concept’s intension and applications to image segmentation are conducted to evaluate this method. The results show the stability and performance of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angiulli, F., Fassetti, F.: Indexing uncertain data in general metric spaces. IEEE Trans. Knowl. Data Eng. 24(9), 1640–1657 (2012)

    Article  Google Scholar 

  2. Arifin, A.Z., Asano, A.: Image segmentation by histogram thresholding using hierarchical cluster analysis. Pattern Recogn. Lett. 27(13), 1515–1521 (2006)

    Article  Google Scholar 

  3. Cai, W.: The extension set and non-compatible problems. Journal of Science Explore (in Chinese) 1, 83–97 (1983)

    Google Scholar 

  4. Casella, G., Berger, R.L.: Statistical Inference. China Machine Press, Beijing (2002)

    MATH  Google Scholar 

  5. Deng, J.: Grey Systems. China Machine Press, Beijing (1988)

    Google Scholar 

  6. Deng, W., Wang, G., Zhang, X.: A novel hybrid water quality time series prediction method based on cloud model and fuzzy forecasting. Chemom. Intell. Lab. Syst. 149, 39–49 (2015)

    Article  Google Scholar 

  7. Ding, W., Guan, Z., Shi, Q., Wang, J.: A more efficient attribute self-adaptive co-evolutionary reduction algorithm by combining quantum elitist frogs and cloud model operators. Inform. Sci. 293, 214–234 (2015)

    Article  Google Scholar 

  8. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, Berlin (2002)

    MATH  Google Scholar 

  9. Fan, S., Lin, Y., Wu, C.: Image thresholding using a novel estimation method in generalized gaussian distribution mixture modeling. Neurocomputing 72 (1-3), 500–512 (2008)

    Article  Google Scholar 

  10. Hirota, K.: Concetps of probabilistic sets. Fuzzy Set. Syst. 5(1), 31–46 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hu, Q., Yu, D., Pedrycz, W., Chen, D.: Kernelized fuzzy rough sets and their applications. IEEE Trans. Knowl. Data Eng. 23(11), 1649–1667 (2011)

    Article  Google Scholar 

  12. Jiang, B., Pei, J., Tao, Y., Lin, X.: Clustering uncertain data based on probability distribution similarity. IEEE Trans. Knowl. Data Eng. 25(4), 751–763 (2013)

    Article  Google Scholar 

  13. Johnson, J.L., Padgett, M.L.: Pcnn models and applications. IEEE Trans. Neural Netw. 10(3), 480–498 (1999)

    Article  Google Scholar 

  14. Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

    Article  MATH  Google Scholar 

  15. Li, D.: The cloud control method and balancing patterns of triple link inverted pendulum systems. Eng. Sci. 1(2), 41–46 (1999)

    MathSciNet  Google Scholar 

  16. Li, D., Du, Y.: Artificial Intelligence with Uncertainty. Chapman and Hall/CRC, London (2007)

    Book  MATH  Google Scholar 

  17. Li, D., Liu, C.: Study on the universality of the normal cloud model. Eng. Sci. 6(8), 28–34 (2004)

    Google Scholar 

  18. Li, D., Liu, C., Gan, W.: A new cognitive model: cloud model. Int. J. Intell. Syst. 24(3), 357–375 (2009)

    Article  MATH  Google Scholar 

  19. Liu, B., Xiao, Y., Yu, P., Cao, L.: Uncertain one-class learning and concept summarization learning on uncertain data streams. IEEE Trans. Knowl. Data Eng. 26(2), 468–484 (2014)

    Article  Google Scholar 

  20. Liu, C., Feng, M., Dai, X., Li, D.: A new algorithm of backward cloud. Journal of System Simulation 16(11), 2417–2420 (2004)

    Google Scholar 

  21. Liu, C., Li, D., Du, Y., Han, X.: Some statistical analysis of the normal cloud model. Inf. Control. 34(2), 236–248 (2005)

    Google Scholar 

  22. Liu, X., Pedrycz, W., Song, M.: The development of fuzzy rough sets with the use of structures and algebras of axiomatic fuzzy sets. IEEE Trans. Knowl. Data Eng. 23(3), 443–462 (2009)

    Google Scholar 

  23. Liu, Y., Li, D., He, W., Wang, G.: Granular computing based on gaussian cloud transformation. Fundamenta Informaticae 127(1-4), 385–398 (2013)

    Google Scholar 

  24. Lu, H., Wang, Y., Li, D., Liu, C.: The application of backward cloud in qualitative evaluation. Chinese Journal of Computers 26(8), 1009–1014 (2003)

    Google Scholar 

  25. Moore, R.E.: Interval Analysis, pp 25–29. Prentice-Hall, Englewood Cliffs, NJ (1996)

    Google Scholar 

  26. Muresan, R.C.: Pattern recognition using pulse-coupled neural networks and discrete fourier transforms. Neurocomputing 51, 487–493 (2003)

    Article  Google Scholar 

  27. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. SMC 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  28. Pawlak, Z.: Rough sets. Int. J. Comput. Inform. Sci. 11(5), 341–356 (1982)

    Article  MATH  Google Scholar 

  29. Pawlak, Z., Skowron, A.: Rough sets: some extension. Inform. Sci. 177(1), 28–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qin, K., Xu, K., Liu, F., Li, D.: Image segmentation based on histogram analysis utilizing the cloud model. Comput. Math. Appl. 62, 2824–2833 (2011)

    Article  MATH  Google Scholar 

  31. Snyder, W.E., Qi, H.: Machine Vision. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  32. Tizhoosh, H.: Image thresholding using type ii fuzzy sets. Pattern Recogn. 38 (12), 2363–2372 (2005)

    Article  MATH  Google Scholar 

  33. Wallerstein, I.: The Uncertainties of Knowledge. Temple University Press, Philadelphia (2004)

    Google Scholar 

  34. Wang, G.: Rough set based uncertainty knowledge expressing and processing. In: 13th International Conference of Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, pp 11–18. Springer, Berlin Heidelberg, Moscow, Russia (2011)

    Chapter  Google Scholar 

  35. Wang, G., Xu, C.: Cloud model—a bidirectional cognition model between concept’s extension and intension. In: First International Conference on Advanced Machine Learning Technologies and Applications, pp 391–400. Springer, Berlin Heidelberg, Cairo, Egypt (2012)

    Chapter  Google Scholar 

  36. Wang, G., Xu, C., Zhang, Q., Wang, X.: A multi-step backward cloud generator algorithm. In: The 8th International Conference on Rough Sets and Current Trends in Computing, pp 313–322. Springer, Berlin Heidelberg, Chengdu, China (2012)

    Chapter  Google Scholar 

  37. Wang, L.: The basic mathematical properties of normal cloud and cloud filter. Personal Communication (2011)

  38. Wang, S., Li, D., Shi, W., Li, D., Wang, X.: Cloud model-based spatial data mining. Geographical Information Science 9(1–2), 60–70 (2003)

    Google Scholar 

  39. Wang, Z.: Probability Theory and its Applications. Beijing Normal University Press, Beijing (1995)

    Google Scholar 

  40. Wei, S., Hong, Q., Hou, M.: Automatic image segmentation based on pcnn with adaptive threshold time constant. Neurocomputing 74(9), 1485–1491 (2011)

    Article  Google Scholar 

  41. Wu, T., Qin, K.: Image segmentation using cloud model and data field. Pattern Recogition and Artificial Intelligence 25(3), 397–405 (2012)

    Google Scholar 

  42. Wu, W., Chen, K., Zeng, B., Yang, M., Geng, S.: Cloud-based decision framework for waste-to-energy plant site selection—a case study from China. Waste Manag. 48, 593–603 (2016)

    Article  Google Scholar 

  43. Wu, Z., Jia, W., Zhao, L., Wu, C.: Maximum wind power tracking based on cloud rbf neural network. Renew. Energy 86, 466–472 (2016)

    Article  Google Scholar 

  44. Xu, J.: Normal cloud heavy-tailed model research based on the semi-invariantion. Journal of Software Engineering 9(2), 276–286 (2015)

    Article  Google Scholar 

  45. Yasnoff, W.A., Mui, J.K., Bacus, J.W.: Error measures for scene segmentation. Pattern Recogn. 9(4), 217–231 (1977)

    Article  Google Scholar 

  46. Zadeh, L.: Fuzzy sets. Inf. Control. 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  47. Zadeh, L.: Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Set. Syst. 90(2), 111–127 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, Q., Wang, G.: The uncertainty measure of hierarchical quotient space structure. Math. Probl. Eng. 2011, 1–16 (2011)

    MathSciNet  Google Scholar 

  49. Zhang, W., Liu, S., Sun, B., Liu, Y., Pecht, M.: A cloud model-based method for the analysis of accelerated life test data. Microelectron. Reliab. 55, 123–128 (2015)

    Article  Google Scholar 

  50. Zhang, Y.: Image Engineering, 2nd edn. Tsinghua University Press, Beijing (2007)

    Google Scholar 

  51. Zhang, Y., Zhang, W., Lin, Q., Lin, X.: Effectively indexing the multidimensional uncertain objects. IEEE Trans. Knowl. Data Eng. 26(3), 608–622 (2014)

    Article  Google Scholar 

  52. Zhao, K.: Set Pair Analysis and its Primary Application. Zhejiang Science and Technology Press, Hangzhou (2000)

    Google Scholar 

  53. Zhou, Q., Wang, W., Pang, Y., Zhou, Z., Luo, H.: Temporal and spatial distribution characteristics of water resources in Guangdong Province based on a cloud model. Water Science and Engineering 8(4), 263–272 (2015)

    Article  Google Scholar 

  54. Cai, X., Chan, R., Zeng, T.: A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding. SIAM J. Imag. Sci. 6(1), 368–390 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Li, Z., Zeng, T.: A two-stage image segmentation model for multi-channel images. Communications in Computational Physics 19(4), 904–926 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Lin Xu.

Additional information

This paper is an expanded version of “G.Y. Wang, C.L. Xu, et al. A Multi-step backward cloud generator algorithm. 8th International Conference, RSCTC2012, Berlin: Springer, 2012, 313-322”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, CL., Wang, GY. A novel cognitive transformation algorithm based on Gaussian cloud model and its application in image segmentation. Numer Algor 76, 1039–1070 (2017). https://doi.org/10.1007/s11075-017-0296-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0296-y

Keywords

Navigation