Skip to main content
Log in

A generalized inexact Uzawa method for stable principal component pursuit problem with nonnegative constraints

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The problem of recovering the low-rank and sparse components of a matrix is known as the stable principal component pursuit (SPCP) problem. It has found many applications in compressed sensing, image processing, and web data ranking. This paper proposes a generalized inexact Uzawa method for SPCP with nonnegative constraints. The main advantage of our method is that the resulting subproblems all have closed-form solutions and can be executed in distributed manners. Global convergence of the method is proved from variational inequalities perspective. Numerical experiments show that our algorithm converges to the optimal solution as other distributed methods, with better performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aybat, N.S.: Algorithms for stable PCA. Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing (2016)

  2. Aybat, N.S., Iyengar, G.: A unified approach for minimizing composite norms. Math. Program. 144(1–2), 181–226 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  4. Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Analysis of the inexact uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34(3), 1072–1092 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, J.F., Cand, S.E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, X., Han, D., Yuan, X.: On the convergence of the direct extension of ADMM for three-block separable convex minimization models with one strongly convex function. Comput. Optim. Appl. 66(1), 39–73 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3), 11 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chandrasekaran, V., Sanghavi, S., Parrilo, P.A., Willsky, A.S.: Rank-sparsity incoherence for matrix decomposition. SIAM J. Optim. 21(2), 572–596 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, C., He, B., Ye, Y., Yuan, X.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Program. 155(1–2), 57–79 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66(3), 889–916 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55 (1–3), 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eckstein, J., Yao, W.: Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives. Pac. J. Optim. 11, 619–644 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Fortin, M., Glowinski, R.: Augmented Lagrangian methods: Applications to the numerical solution of boundary-value problems. Elsevier (2000)

  14. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems, Studies in Mathematics and its Applications, vol. 15, pp 299–331. Elsevier, (1983)

  15. Glowinski, R.: On alternating direction methods of multipliers: a historical perspective. In: Modeling, Simulation and Optimization for Science and Technology, pp. 59–82. Springer (2014)

  16. Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. Revue franċaise d’automatique, informatique, recherche opérationnelle. Analyse numérique 9(2), 41–76 (1975)

    Article  MATH  Google Scholar 

  17. Han, D., Yuan, X.: A note on the alternating direction method of multipliers. J. Optim. Theory Appl. 155(1), 227–238 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, B., Ma, F., Yuan, X.: Convergence study on the symmetric version of ADMM with larger step sizes. SIAM J. Imag. Sci. 9(3), 1467–1501 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. He, B., Tao, M., Yuan, X.: Convergence rate analysis for the alternating direction method of multipliers with a substitution procedure for separable convex programming. Math. Oper. Res. doi:10.1287/moor.2016.0822 (2017)

  20. He, B., Yuan, X.: On the O(1/n) convergence rate of the Douglas-Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. He, B., Yuan, X.: On the direct extension of ADMM for multi-block separable convex programming and beyond: From variational inequality perspective. Manuscript optimization online (2014)

  22. He, B., Yuan, X.: On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers. Numer. Math. 130(3), 567–577 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4 (5), 303–320 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hong, M., Luo, Z.Q.: On the linear convergence of the alternating direction method of multipliers. Math. Program. 162(1), 165–199 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hu, Q., Zou, J.: An iterative method with variable relaxation parameters for saddle-point problems. SIAM J. Matrix Anal. Appl. 23(2), 317–338 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hu, Q., Zou, J.: Two new variants of nonlinear inexact Uzawa algorithms for saddle-point problems. Numer. Math. 93(2), 333–359 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hu, Q., Zou, J.: Nonlinear inexact Uzawa algorithms for linear and nonlinear saddle-point problems. SIAM J. Optim. 16(3), 798–825 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, L., Huang, W., Gu, I.Y.H., Tian, Q.: Statistical modeling of complex backgrounds for foreground object detection. IEEE Trans Image Process 13 (11), 1459–1472 (2004)

    Article  Google Scholar 

  29. Li, M., Sun, D., Toh, K.C.: A convergent 3-block semi-proximal ADMM for convex minimization problems with one strongly convex block. Asia-Pac J Oper Res 32(04), 1550,024 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lin, T., Ma, S., Zhang, S.: On the global linear convergence of the ADMM with multiblock variables. SIAM J. Optim. 25(3), 1478–1497 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lin, T., Ma, S., Zhang, S.: On the sublinear convergence rate of multi-block ADMM. J. Oper. Res. Soc. Chin. 3(3), 251–274 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lin, Z., Chen, M., Ma, Y.: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055 (2010)

  33. Lin, Z., Ganesh, A., Wright, J., Wu, L., Chen, M., Ma, Y.: Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. Comput. Adv. Multi-Sensor Adapt. Process. 61 (2009)

  34. Ma, S.: Alternating proximal gradient method for convex minimization. J. Sci. Comput. 68(2), 546–572 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 123–231 (2013)

    Google Scholar 

  36. Powell, M.J.: A method for non-linear constraints in minimization problems. UKAEA (1967)

  37. Tao, M., Yuan, X.: Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J. Optim. 21(1), 57–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In: Advances in neural information processing systems, pp. 2080–2088 (2009)

  39. Yang, J., Yuan, X.: Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization. Math. Comput. 82(281), 301–329 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yuan, X., Yang, J.: Sparse and low-rank matrix decomposition via alternating direction methods. Pac. J. Optim. 9(1), 167–180 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Zhou, Z., Li, X., Wright, J., Candes, E., Ma, Y.: Stable principal component pursuit. In: 2010 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 1518–1522. IEEE (2010)

Download references

Acknowledgements

The work is supported in part by the Natural Science Foundation of China Grant 71401176 and the Natural Science Foundation of Jiangsu Province Grant BK20140065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaizhan Huai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huai, K., Ni, M., Yu, Z. et al. A generalized inexact Uzawa method for stable principal component pursuit problem with nonnegative constraints. Numer Algor 77, 653–674 (2018). https://doi.org/10.1007/s11075-017-0333-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0333-x

Keywords

Navigation