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Abstract

Linear multistep methods (LMMs) applied to approximate the solution of initial
value problems—typically arising from method-of-lines semidiscretizations of partial
differential equations—are often required to have certain monotonicity or bounded-
ness properties (e.g. strong-stability-preserving, total-variation-diminishing or total-
variation-boundedness properties). These properties can be guaranteed by imposing
step-size restrictions on the methods. To qualitatively describe the step-size restric-
tions, one introduces the concept of step-size coefficient for monotonicity (SCM, also
referred to as the strong-stability-preserving (SSP) coefficient) or its generalization,
the step-size coefficient for boundedness (SCB). A LMM with larger SCM or SCB is
more efficient, and the computation of the maximum SCM for a particular LMM is
now straightforward. However, it is more challenging to decide whether a positive SCB
exists, or determine if a given positive number is a SCB. Theorems involving sign con-
ditions on certain linear recursions associated to the LMM have been proposed in the
literature that allow us to answer the above questions: the difficulty with these theo-
rems is that there are in general infinitely many sign conditions to be verified. In this
work we present methods to rigorously check the sign conditions. As an illustration,
we confirm some recent numerical investigations concerning the existence of positive
SCBs in the BDF and in the extrapolated BDF (EBDF) families. As a stronger result,
we determine the optimal values of the SCBs as exact algebraic numbers in the BDF
family (with 1 ≤ k ≤ 6 steps) and in the Adams–Bashforth family (with 1 ≤ k ≤ 3
steps).
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1 Introduction

Let us consider an initial-value problem

u′(t) = F (u(t)) for t ≥ 0, with u(0) = u0, (1)

where F : V → V is a given function, u0 ∈ V is a given initial value in some vector space
V, and u denotes the unknown function. In applications it is often crucial for the numerical
solution un to satisfy certain monotonicity or boundedness properties.

Example 1.1. Many important partial differential equations have the property that they
preserve

(i) the interval containing the initial data;

(ii) or, as a special case, non-negativity of the initial data.

For example, if one considers a scalar hyperbolic conservation law with initial condition
U(x, t0) ∈ [Umin, Umax] with some constants Umin ≤ Umax for x ∈ R, then it is known that the
solution satisfies U(x, t) ∈ [Umin, Umax] for x ∈ R and t ≥ t0. To approximate the solution
U of this partial differential equation, one often uses a method-of-lines semidiscretization
in space, and obtains a system of ordinary differential equations (1). For many semidis-
cretizations, the initial-value problem (1) also preserves (i) or (ii). Finally, one typically
uses a Runge–Kutta method or a linear multistep method to discretize (1): in this setting it
is natural to require that the time discretization un should also preserve (i) or (ii).

In situations when the numerical method is a linear multistep method (LMM) approxi-
mating the solution of (1), the boundedness property can be expressed as

‖un‖ ≤ µ · max
0≤j≤k−1

‖uj‖ (n ≥ k), (2)

where the constant µ ≥ 1 is independent of n, the starting vectors uj (0 ≤ j ≤ k − 1)
and the problem (1); µ is determined only by the LMM. The monotonicity property, or
strong-stability-preserving (SSP) property, is recovered if (2) holds with µ = 1. Common
choices for the seminorm ‖ · ‖ on V in applications include the supremum norm or the total
variation seminorm. For LMMs, a more detailed exposition of the above topics together
with references can be found, for example, in [16, Section 1]. For Runge–Kutta methods,
analogous questions have been analyzed thoroughly and solved satisfactorily in [8]. In what
follows, we focus on LMMs.

In the literature a considerable amount of work has been done on developing conditions
that guarantee (2). One possibility is to impose some restrictions on the step size ∆t of
the LMM. These restrictions lead to the concepts of step-size coefficient for monotonicity
(SCM) and step-size coefficient for boundedness (SCB)—see Definitions 1.4 and 1.5 below.
Depending on the context, the SCM is also referred to as the strong-stability-preserving
(SSP) coefficient. The SCB is a generalization of the SCM: for many practically important
LMMs, there is no positive SCM, while a positive SCB still exists. It is thus natural to
ask whether a positive step-size coefficient (SCM or SCB) exists for a particular LMM, or
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determine if a given positive number is a step-size coefficient. Since a LMM with larger
step-size coefficient is more efficient, one is also interested in the maximum value of the SCM
or SCB. Conditions that are easy to check and are necessary and sufficient for the existence
of a positive SCM, or for a given positive number to be a SCM have already been devised,
see [16, Section 1.1].

However, even for a single LMM, it seems more difficult

(i) to decide whether a positive SCB exists;

(ii) to determine if a given positive number is a SCB;

(iii) to compute the maximum SCB.

In the rest of the paper, we pursue these goals. The theoretical framework we use is presented
in [9, 16], while the computational techniques we apply show many similarities with those
of [10]. All computations in this work have been performed by using Mathematica 10.

The structure of our paper is as follows. In Section 1.1 we present some definitions and
notation. In Sections 1.2 and 1.3 we review the main results of [9] and [16] concerning (ii)
and (i) above, respectively. Section 2 contains our theorems for three families of multistep
methods:

• for the extrapolated BDF (EBDF) methods we answer (i);

• for the BDF methods (as implicit methods) we answer (iii);

• for the Adams–Bashforth (AB) methods (as explicit methods) we answer (iii).

The proofs are described in Section 3.

Remark 1.2. In our proofs we essentially need to establish the non-negativity of certain
(parametric) linear recursions. Recently, some general results have been devised solving the
problem of (ultimate) positivity in several classes of integer linear recursions, see, for exam-
ple, the series of papers [11, 12, 13, 14].

1.1 Preliminaries and notation

A LMM has the form

un =
k∑

j=1

ajun−j + ∆t
k∑

j=0

bjF (un−j) (n ≥ k), (3)

where k ≥ 1, the step number of the LMM, is a fixed integer, and the coefficients aj, bj ∈ R
determine the method. The step size of the method ∆t > 0 is assumed to be fixed, and
we suppose that the starting values for the LMM, u0 (appearing in (1)) and uj (1 ≤ j ≤
k − 1), are also given. The quantity un approximates the exact solution value u(n∆t). The
generating polynomials associated with the LMM are denoted by

ρ(ζ) := ζk −
k∑

j=1

ajζ
k−j and σ(ζ) :=

k∑
j=0

bjζ
k−j. (4)
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A non-constant univariate polynomial is said to satisfy the root condition, if all of its roots
have absolute value ≤ 1, and any root with absolute value = 1 has multiplicity one. As in
[16], the LMMs in this work are also required to satisfy the following basic assumptions.

1.
k∑

j=1

aj = 1 and
k∑

j=1

jaj =
k∑

j=0

bj (consistency).

2. The polynomial ρ satisfies the root condition (zero-stability).

3. The polynomials ρ and σ have no common root (irreducibility).

4. b0 ≥ 0.

(5)

All well-known methods used in practice satisfy the four conditions in (5).
The stability region of the LMM, denoted by S, is defined as

S := {λ ∈ C : 1− λb0 6= 0 and ρ− λσ satisfies the root condition},

see [16, Section 2.1]. The interior of the stability region will be denoted by int(S).

Remark 1.3. Notice that the above definition of the stability region S is slightly more re-
strictive than the usual one. The usual definition of the stability region (see, for example, in
[4]),

S̃ := {λ ∈ C : ρ− λσ satisfies the root condition},

does not exclude the case of a vanishing leading coefficient of the polynomial P(·, λ) :=

ρ(·) − λσ(·). With this definition S̃, one can construct simple examples with the following
properties:

• the order of the recurrence relation generated by the LMM becomes < k for certain
values of the step size ∆t > 0, hence k starting values of the LMM cannot be chosen
arbitrarily;

• there is an isolated point of the boundary of S̃ (being an element of S̃);

• the boundary of S̃ is not a subset of the root locus curve due to these isolated boundary
points.

Similarly, in the class of multiderivative multistep methods (being a generalization of LMMs),
it seems advantageous to exclude the values of λ ∈ C from the definition of the stability region
for which the leading coefficient of the corresponding polynomial P(·, λ) vanishes.

The set of natural numbers {0, 1, . . .} is denoted by N, while the complex conjugate of
z is z̄. The dominant root of a non-constant univariate polynomial is any root having the
largest absolute value.

When we define algebraic numbers in later sections, a polynomial

n∑
j=0

ajx
j with aj ∈ Z, an 6= 0 and n ≥ 3
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will be represented simply by its coefficient list

{an, an−1, . . . , a0}. (6)

Now we recall the definition of the step-size coefficient for boundedness and monotonicity,
respectively, corresponding to a given linear multistep method.

Definition 1.4. Suppose that the method coefficients aj ∈ R (1 ≤ j ≤ k) and bj ∈ R
(0 ≤ j ≤ k) satisfy (5). We say that γ > 0 is a step-size coefficient for boundedness (SCB)
of the corresponding LMM, if ∃ µ ≥ 1 such that

• for any vector space with seminorm (V, ‖ · ‖),

• for any function F : V→ V satisfying

∃τ > 0 ∀v ∈ V : ‖v + τF (v)‖ ≤ ‖v‖,

• for any ∆t ∈ (0, γ τ ],

• and for any starting vectors uj ∈ V (0 ≤ j ≤ k − 1),

the sequence un generated by (3) has the property ‖un‖ ≤ µ ·max0≤j≤k−1 ‖uj‖ for all n ≥ k.

Definition 1.5. We say that γ > 0 is a step-size coefficient for monotonicity (SCM) of the
LMM, if Definition 1.4 holds with µ = 1.

Given a LMM, the following abbreviations will be used throughout this work:

• ∃ SCM > 0 and @ SCM > 0 to indicate that there is a positive / there is no positive
step-size coefficient for monotonicity, respectively;

• ∃ SCB > 0 and @ SCB > 0 to indicate that there is a positive / there is no positive
step-size coefficient for boundedness, respectively.

It is clear from Definitions 1.4-1.5 that for a given LMM

∃ SCM > 0 =⇒ ∃ SCB > 0.

If ∃ SCB > 0, then we define

γsup := sup{γ > 0 : γ is a SCB}.

When a family of k-step LMMs is given, sometimes we will use the symbol γsup,k instead.
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1.2 A necessary and sufficient condition for γ > 0 to be a SCB

Let us fix a particular LMM. For a given γ ∈ R, we define an auxiliary sequence µn(γ)
(n ∈ Z) as in [16, (2.10)] by

µn(γ) :=



0 for n < 0,

bn − γ b0µn(γ) +
k∑

j=1

(aj − γ bj)µn−j(γ) for 0 ≤ n ≤ k,

− γ b0µn(γ) +
k∑

j=1

(aj − γ bj)µn−j(γ) for n > k.

(7)

The following characterization appears in [16, Theorem 2.2].

Theorem 1.6. Suppose the LMM satisfies (5) and let γ > 0 be given. Then γ is a SCB if
and only if

− γ ∈ int(S), and µn(γ) ≥ 0 for all n ∈ N+. (8)

The above theorem is based on the material developed in [9]. In [9, Section 6], the
authors numerically determine the maximum SCB values for members of several parametric
families of LMMs by repeatedly applying the following test. For a particular LMM and given
γ > 0, they check if γ is a SCB by choosing a large N ∈ N, and verifying µn(γ) ≥ 0 for all
1 ≤ n ≤ N . However, as the authors point out in [9], it is not obvious (neither a priori nor a
posteriori) how large N one should choose to conclude—with high certainty—that µn(γ) ≥ 0
for all n ∈ N+. They typically use N ≈ 103; as a comparison, see our Remark 3.4.

1.3 The existence of a SCB

For a fixed LMM and given γ > 0, Theorem 1.6 provides a necessary and sufficient condition
for γ to be a SCB. But to decide—with the help of this theorem—whether @ SCB > 0,
one should check condition (8) for infinitely many γ > 0 values, and for each γ, there are
infinitely many sign conditions µn(γ) ≥ 0 to be verified.

To overcome this difficulty, [16, Theorem 3.1] combines Theorem 1.6 with the results of
[1] to present some simpler conditions that are almost necessary and sufficient for ∃ SCB >
0. “Almost” in the previous sentence means that the conditions in [16, Theorem 3.1] are
necessary and sufficient for ∃ SCB > 0 (not in the full, but) in a slightly restricted class of
LMMs; and “simpler” means that these conditions do not involve the parametric recursion
µn(γ) in (7), rather, a non-parametric recursion τn determined by the method coefficients as

τn :=



0 for n < 0,

bn +
k∑

j=1

ajτn−j for 0 ≤ n ≤ k,

k∑
j=1

ajτn−j for n > k.

(9)

Since we will not work with [16, Theorem 3.1] directly, here we cite only [16, Corollary 3.3].
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Corollary 1.7. Suppose the LMM satisfies (5). We define

n0 := min{n : 1 ≤ n ≤ k and τn 6= 0}. (10)

(i) If τn > 0 for all n ≥ n0, and the only root of the polynomial ρ appearing in (4) with
modulus 1 is 1, then ∃ SCB > 0.

(ii) If τn ≤ 0 for some n ≥ n0 being a multiple of n0, then @ SCB > 0.

The index n0 defined above can be shown to exist due to consistency and zero-stability of
the LMM.

As an application of [16, Theorem 3.1] or Corollary 1.7, [16, Section 5] analyzes some
well-known classical LMMs, including

• the Adams–Moulton (or implicit Adams),

• the Adams–Bashforth (or explicit Adams),

• the BDF,

• the extrapolated BDF (EBDF),

• the Milne–Simpson and

• the Nyström methods.

These investigations confirm and extend some earlier results [5, 6, 7, 9] concerning the
existence of step-size coefficients for monotonicity or step-size coefficients for boundedness.
The results of [16, Section 5] have the following form.

Consider a discrete family of LMMs from the previous paragraph, parametrized by the
step number k ∈ N. Let 1 ≤ kmin ≤ kmax ≤ +∞ denote some fixed bounds on k coming
from practical considerations (e.g. zero-stability of the LMM), that is, we consider the step
numbers kmin ≤ k ≤ kmax. Then there exist two integers 0 ≤ kmon ≤ kbdd such that

• ∃ SCM > 0 ⇐⇒ kmin ≤ k ≤ kmon;

• (@ SCM > 0 and ∃ SCB > 0)⇐⇒ kmon + 1 ≤ k ≤ kbdd;

• @ SCB > 0⇐⇒ kbdd + 1 ≤ k ≤ kmax.

It is to be understood that if `1 ≤ k ≤ `2 with `1 > `2 in any of the inequalities above, then
the corresponding case does not occur. Some examples from [16, Section 5] are provided in
the table below.

LMM family kmin kmax kmon kbdd
Adams–Bashforth 1 +∞ 1 3

BDF 1 6 1 6
EBDF 1 6 1 5

Milne–Simpson 2 +∞ 1 1
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Out of the several LMMs investigated in [16, Section 5], there are however two families—
the BDF methods with 3 ≤ k ≤ 6 steps, and the EBDF methods with 3 ≤ k ≤ 5 steps—for
which the corresponding inequalities

τn > 0 for n ≥ n0 (11)

appearing in Corollary 1.7 are not verified completely. More precisely, (11) is verified only
up to a finite value n0 ≤ n ≤ N (for example, up to N = 500), and it is observed that, for
these large n values, τn is already close enough to limn→+∞ τn = 1 to conclude (“we have no
formal proof . . . , but convincing numerical evidence instead”) the validity of (11) (see [16,
Conclusions 5.3 and 5.4]).

2 Main results

2.1 Positivity of the τn sequences in the EBDF family

Theorem 2.1. Let us fix any 3 ≤ k ≤ 5 and consider the EBDF family with k steps. Then
the sequence τn satisfies τn > 0 for n ≥ n0 = 1 (see (9) and (10)).

The above theorem completes and verifies the numerical proof of [16, Conclusion 5.4]
regarding the EBDF methods with k ∈ {3, 4, 5} steps. In the proof of Theorem 2.1, given in
Sections 3.1 and 3.4, we explicitly represent τn as a linear combination of powers of algebraic
numbers to estimate this sequence from below and hence prove its positivity.

As a combination of [16, Conclusion 5.4] and our Theorem 2.1 we obtain the following
result.

Corollary 2.2. In the EBDF family

• ∃ SCM > 0 for the 1-step EBDF method;

• @ SCM > 0 but ∃ SCB > 0 for the k-step EBDF method with k ∈ {2, 3, 4, 5};

• @ SCB > 0 for the 6-step EBDF method.

2.2 Exact optimal SCB values in the BDF family

We complete the numerical proof of [16, Conclusion 5.3] concerning the existence of SCB for
the BDF methods with 3 ≤ k ≤ 6 steps. However, instead of just proving the positivity of
the corresponding sequences τn, we directly determine the exact and optimal values of the
SCB constants for 2 ≤ k ≤ 6. For the sake of completeness, the k = 1 case (the implicit
Euler method) is also included. The approximate numerical values of γsup,k below have been
rounded down. The polynomial coefficients—see (6) for the notation—corresponding to the
cases k = 5 and k = 6 have been aligned for easier readability (and they are to be read in
the usual way, horizontally from left to right).

Theorem 2.3. The optimal values of the step-size coefficients for boundedness γsup,k in the
BDF family are given by the following exact algebraic numbers:
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• γsup,1 = +∞;

• γsup,2 = 1/2;

• γsup,3 ≈ 0.831264155297 is the smallest real root of the 4th-degree polynomial

{5184,−539352, 4277340,−7093698, 3248425};

• γsup,4 ≈ 0.486220284043 is the unique real root of the 5th-degree polynomial

{147456,−4065024, 97751296,−178921248, 146499984,−39945535};

• γsup,5 ≈ 0.304213712525 is the smaller real root of the 10th-degree polynomial

{9183300480000000000, 85812841152000000000, 11922800956027200000000,
−158236459797931200000000, 1300372831455671124000000, −3469598208824475416400000,
5222219230639370911710000, −4938342912266137089480000, 2829602902356809601352800,
−897140360120473365541380, 113406532200497326720157};

• γsup,6 ≈ 0.131359487166 is the smaller real root of the 18th-degree polynomial

{301499153838045275528311603200000000, 122639585534504839818945201438720000000,

384963168041618344234237602954215424000000, 27549570033081885223128023207444584857600000,

688321830171904949334479202088109368934400000, −3841469418723966761157769983211793789485056000,
114843588487750902323103668249803599786305126400, −1006269459507863531788997342497299304467812843520,

5587246198359348966734174906666273788289332150272, −17429944795858965010882996868073155329514839408640,
35959114141443095864886240750517884787497897431040, −53357827225132542443145327442029250536098863687680,
58779078470720235677143648519968524504336318905600, −48117131040654192740877887801688549303578668712064,
28809153195856173726312967696976168633917662024240, −12158530101520566099221248226347019432756062262240,
3383327891741061214240426918034255832010259451480, −541370800878125712591610585145194659522378896880,
33328092641186254550760247661168148768262937067}.

The proofs of the above results are given in Sections 3.2 and 3.5. From a technical point
of view, the proof of the k = 3 case is different from the other cases, see Remark 3.5.

2.3 Exact optimal SCB values in the Adams–Bashforth family

To further illustrate our techniques, we have computed the largest SCB values for an explicit
LMM family as well; we chose the Adams–Bashforth methods with 1 ≤ k ≤ 4 steps.

For k = 1 (i.e. for the explicit Euler method) it is known ([16, Theorem 5.2]) that
∃ SCM > 0, hence ∃ SCB > 0.

For any k ≥ 4, [16, Theorem 5.2] proves—with the help of the sequence τn—that @ SCB >
0. The reason we include the k = 4 case here is to show an example of using the parametric
sequence µn(γ) and Theorem 1.6 instead of τn in Corollary 1.7 (ii) to detect @ SCB > 0.

Theorem 2.4. The optimal values of the step-size coefficients for boundedness in the Adams–
Bashforth family are given by the rational numbers below:

• γsup,1 = 1;
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• γsup,2 = 4/9 ≈ 0.44444;

• γsup,3 = 84/529 ≈ 0.15879;

• for k = 4, @ SCB > 0.

The proofs of these results are found in Sections 3.3 and 3.6.

3 Proofs

3.1 Summary of the proof techniques for the EBDF methods

The proofs in Section 3.4 for the EBDF methods use the following argument. Since τn in
(9) is a solution of a linear recursion, it is represented as

τn =
k∑

j=1

cj%
n
j , (12)

where the quantities %j ∈ C are the roots of the corresponding characteristic polynomial
(without multiple roots for each EBDF method), and the constants cj ∈ C are determined
by the starting values. By bounding |cj| and |%j|, we prove the inequality τn > 0 for all
n ≥ 1.

3.2 Summary of the proof techniques for the BDF methods

The proofs in Section 3.5 for the BDF methods are based on the following. For any given
γ > 0, the linear recursion (7) takes the form

k∑
j=0

cj(γ)µn−j(γ) = 0 (k ≤ n ∈ N), (13)

where the coefficients cj(γ) (0 ≤ j ≤ k) and the starting values µj(γ) (0 ≤ j ≤ k − 1) are
determined by the LMM. The corresponding characteristic polynomial is denoted by

Pk(%, γ) :=
k∑

j=0

cj(γ)%k−j. (14)

We apply the characterization in Theorem 1.6 together with Observations 1-4 presented
below. Lemma 3.1 and Lemma 3.2 will be used to bound γsup from above for the k-step
BDF methods with k = 3 and k ∈ {2, 4, 5, 6}, respectively. Then, by using representations
similar to (12) and Observation 4, we show in each case that the proposed upper bound for
γsup is sharp.

• Observation 1
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For a k-step BDF method (1 ≤ k ≤ 6), it is known [4] that −γ ∈ int(S) for any γ > 0.
Therefore, the condition (8) in Theorem 1.6 reduces to µn(γ) ≥ 0 (n ∈ N+).

• Observation 2
It is easily seen from Definition 1.4 that if γ0 > 0 is a SCB, then each number from the
interval (0, γ0] is also a SCB; thus, by (8), we also have µn(γ) ≥ 0 for all n ∈ N+ and
γ ∈ (0, γ0]. Since the function γ 7→ µn(γ) (clearly being a rational function for any fixed
n ∈ N due to the form of the linear recursion (7)) cannot be non-negative in a neighborhood
of a simple zero, we immediately obtain the following upper bound on γsup (in the lemma,
µ′n denotes the derivative of the function µn(·)).

Lemma 3.1. Suppose there exist some n ∈ N+ and γ∗ > 0 such that µn(γ∗) = 0 and
µ′n(γ∗) ∈ R \ {0}. Then γsup ≤ γ∗.

• Observation 3
The following lemma will be applied to bound γsup from above when the characteristic
polynomial has a unique pair of complex conjugate roots that are dominant.

Lemma 3.2. Suppose that z ∈ C \R with |z| = 1, w ∈ C \ {0}, and a real sequence νn → 0
(n→ +∞) are given. Then wzn + w̄(z̄)n + νn < 0 for infinitely many n ∈ N.

Proof. We introduce ϕ, ψ ∈ [0, 2π) via the relations z = exp(iϕ) and w = |w| exp(iψ). Due to
symmetry, we can suppose that ϕ ∈ (0, π), so there is a δ ∈ (0, π/2) such that δ < ϕ < π−δ.
Then

wzn + w̄(z̄)n + νn = 2|w| cos (nϕ+ ψ) + νn. (15)

We show that
cos (nϕ+ ψ) ≤ cos(π/2 + δ/2) for infinitely many n. (16)

Indeed, the inequality in (16) holds if and only if n ∈ N and k ∈ Z are chosen such that

LHS := (π/2 + δ/2− ψ + 2πk)/ϕ ≤ n ≤ (3π/2− δ/2− ψ + 2πk)/ϕ =: RHS. (17)

But RHS − LHS = (π − δ)/ϕ > 1, so, by taking k ∈ N larger and larger, we see that there
are infinitely many n ∈ N satisfying (17). Finally, by using |w| 6= 0, (16), cos(π/2 + δ/2) < 0
and νn → 0, we get that (15) is also negative for infinitely many n indices.

• Observation 4
By taking into account the first sentence of Observation 2, we get the following lower bound.

∃ γ0 > 0 : µn(γ0) ≥ 0 (∀n ∈ N+) =⇒ γsup ≥ γ0. (18)

Remark 3.3. Notice the similarities between Lemma 3.1 and [2, Lemma 4.5], and between
Lemma 3.2 and [2, Lemma 3.1]. Also compare Lemma 3.2 and [16, Theorem 4.3].
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Remark 3.4. Obtaining the exact value of γsup,4 ≈ 0.48622 proved to be significantly harder
than determining that of γsup,3, because we could not apply Lemma 3.1 to bound γsup,4 from
above. The value of γsup,4 was found via a series of numerical experiments. For example,
to see γsup,4 < 0.48625, one checks that the sequence µn in Theorem 1.6 for 1 ≤ n ≤ 27000
satisfies

µn(48625/100000) < 0⇐⇒ n ∈ {26814, 26875, 26886, 26936, 26947, 26997}.

To find all these six indices, we used 16000 digits of precision to evaluate the terms of the
recursion µn(48625/100000)—15000 digits would be insufficient. In fact, these experiments
led to the formulation of Lemma 3.2.

Remark 3.5. Regarding the determination of γsup,3, the characteristic polynomial P3(·, γ)
has one real root %1(γ) > 0 and a pair of complex conjugate roots %2,3(γ) with |%1(γ)| =
|%2(γ)| = |%3(γ)| for γ = 5/6 ≈ 0.83333. From Lemma 3.2 we would get the bound γsup,3 ≤
5/6, but this bound is not sharp. However, Lemma 3.1 with n = 6 yields the exact value of
γsup,3 ≈ 0.83126.

3.3 Summary of the proof techniques for the Adams–Bashforth
methods

Since these LMMs are explicit, we have b0 = 0 in (3), so from (7) we see that for any n ∈ N
the function γ 7→ µn(γ) is a polynomial and µ0(γ) = 0. For 1 ≤ k ≤ 3, we study the roots of
these polynomials µn(·) for small n to conjecture the value of γsup,k. Of course, Observation
1 from the previous section cannot be applied now, because we have to take into account
the condition −γ ∈ int(S) in (8) as well. So we use Lemma 3.1 together with

(∃ γ0 > 0 : −γ0 ∈ int(S) and µn(γ0) ≥ 0 (∀n ∈ N+)) =⇒ γsup ≥ γ0 (19)

to verify that the conjectured γsup is indeed the optimal SCB.

Remark 3.6. For 2 ≤ k ≤ 3, it turns out that the dominant root of the characteristic
polynomial Pk(·, γ) in (14) is positive real for γ = γsup,k, so in these cases a result similar to
Lemma 3.2 is not applicable.

3.4 Proofs for the EBDF methods

The coefficients for the EBDF methods are listed, for example, in [15].

3.4.1 The EBDF3 method

For this method, the recursion (9) takes the form

11τn − 18τn−1 + 9τn−2 − 2τn−3 = 0 (n ≥ 4) (20)

with
τ1 = 18/11, τ2 = 126/121, τ3 = 1212/1331.
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We have τ0 = 0 and n0 = 1, hence it is enough to prove τn > 0 for all n ≥ 1. One root of
the characteristic polynomial corresponding to (20) is 1, so we get the representation

τn = 1 +

(
7

22
+
i
√

39

22

)n

+

(
7

22
− i
√

39

22

)n

(n ≥ 1).

But for n ≥ 1 we have∣∣∣∣∣ 7

22
+
i
√

39

22

∣∣∣∣∣
n

+

∣∣∣∣∣ 7

22
− i
√

39

22

∣∣∣∣∣
n

= 2 ·
(

2

11

)n/2

≤ 9/10,

and the positivity of τn > 0 follows.

3.4.2 The EBDF4 method

The recursion (9) now reads

25τn − 48τn−1 + 36τn−2 − 16τn−3 + 3τn−4 = 0 (n ≥ 5)

with
τ1 = 48/25, τ2 = 504/625, τ3 = 10992/15625, τ4 = 366516/390625.

We again have τ0 = 0 and n0 = 1. The explicit form of the sequence is

τn = 1 +
3∑

j=1

%nj (n ≥ 1),

where %1 ∈ R and %2,3 ∈ C \R are the three roots of the cubic polynomial {25,−23, 13,−3}.
This time we have for n ≥ 3 that

3∑
j=1

|%j|n ≤ 3 · (3/5)n ≤ 9/10,

proving τn > 0 for n ≥ 1.

3.4.3 The EBDF5 method

For this method, the recursion (9) is

137τn − 300τn−1 + 300τn−2 − 200τn−3 + 75τn−4 − 12τn−5 = 0 (n ≥ 6)

with
τ1 = 300/137, τ2 = 7800/18769, τ3 = 1271400/2571353,

τ4 = 415574100/352275361, τ5 = 64978409160/48261724457.

We have τ0 = 0 and n0 = 1. The explicit form of the sequence is

τn = 1 +
4∑

j=1

%nj (n ≥ 1),

13



where %1,2,3,4 ∈ C \ R are the four roots of the polynomial {137,−163, 137,−63, 12}. But
|%1,2,3,4| ≤ 71/100, so for n ≥ 5 we have

4∑
j=1

|%j|n ≤ 4 · (71/100)n ≤ 9/10,

proving τn > 0 for n ≥ 1.

3.5 Proofs for the BDF methods

The coefficients for the BDF methods are listed, for example, in [4].

3.5.1 The BDF1 method

We include this method here for the sake of completeness. The recursion (13) now has the
form

(γ + 1)µn(γ)− µn−1(γ) = 0 (n ≥ 1)

with

µ0(γ) =
1

γ + 1
.

The explicit solution is µn(γ) = 1/(γ + 1)n+1 > 0, so, due to Theorem 1.6, we have that γ is
a SCB for any γ > 0.

3.5.2 The BDF2 method

The recursion (13) takes the form

(2γ + 3)µn(γ)− 4µn−1(γ) + µn−2(γ) = 0 (n ≥ 2)

with

µ0(γ) =
2

2γ + 3
, µ1(γ) =

8

(2γ + 3)2
.

Its characteristic polynomial P2(·, γ) is quadratic for γ > 0. This polynomial has

• two distinct real roots for 0 < γ < 1/2;

• a double real root for γ = 1/2;

• a pair of complex conjugate roots for γ > 1/2.

For any fixed γ > 1/2 we thus have

µn(γ) = |%1(γ)|n
[
c1(γ)

(
%1(γ)

|%1(γ)|

)n

+ c1(γ)

(
%1(γ)

|%1(γ)|

)n]
with a suitable c1(γ) ∈ C \ {0} and %1(γ) ∈ C \ R. Due to Lemma 3.2 with νn ≡ 0, the
expression in [. . .] is negative for infinitely many n. Hence, by Theorem 1.6, 1/2 + ε is not a
SCB for any ε > 0, implying γsup,2 < 1/2 + ε.

Conversely, by verifying µn(1/2) = 2−n−1(n+1) ≥ 0 for all n ∈ N and taking into account
(18), we see that γsup,2 ≥ 1/2, so the proof is complete.
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3.5.3 The BDF3 method

The recursion (13) is

(6γ + 11)µn(γ)− 18µn−1(γ) + 9µn−2(γ)− 2µn−3(γ) = 0 (n ≥ 3)

with

µ0(γ) =
6

6γ + 11
, µ1(γ) =

108

(6γ + 11)2
, µ2(γ) =

54(−6γ + 25)

(6γ + 11)3
.

Let us consider the term

µ6(γ) =
6 (5184γ4 − 539352γ3 + 4277340γ2 − 7093698γ + 3248425)

(6γ + 11)7
.

The polynomial {5184,−539352, 4277340,−7093698, 3248425} in the numerator has 4 real
roots; let γ∗ ≈ 0.831264 denote its smallest root (the other 3 zeros are located at ≈ 1.22747,
≈ 6.42689 and ≈ 95.556). Then, due to Lemma 3.1, we have γsup,3 ≤ γ∗.

To complete the proof, we show that µn(γ∗) ≥ 0 (∀n ∈ N), meaning that γsup,3 ≥ γ∗ by
(18). Indeed, for γ = γ∗, the explicit form of the recursion is

µn(γ∗) = c1%
n
1 + c2%

n
2 + c2(%2)

n (n ≥ 0),

where

• %1 ≈ 0.500518 is the largest real root of the polynomial

PBDF31 := {34012224,−85030560, 108650160,−91171656, 55033668,

−25076142, 8777889,−2366334, 486000,−75816, 10080,−1152, 64};

• %2 ≈ 0.312678 + 0.390087i is the root of PBDF31 with the largest real part;

• c1 ≈ 0.50155509 is the largest real root of the polynomial

PBDF32 := {91221089034315373632,−76017574195262811360,

26664298621295150160,−9975778735584785400, 2799915334883820972,

−498764709912473586, 93247136355378087,−8606361446997984,

425210419226880,−10041822761472, 76685377536,−237993984, 262144};

• c2 ≈ −0.0631319− 0.270418i is the root of PBDF32 with the smallest real part.

Remark 3.7. The 12th-degree algebraic numbers %1,2 are of course roots of the cubic char-
acteristic polynomial (14), with γ replaced by the 4th-degree algebraic number γ∗; that is,
P3(%1,2, γ

∗) = 0.

Remark 3.8. Notice that |%2| ≈ 0.499935 is relatively close to |%1| ≈ 0.500518. This results
in an increased computational cost needed to finish the proof (cf. Remark 3.5).
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Now, clearly, µn(γ∗) = %n1 [c1 + c2 (%2/%1)
n + c2 (%2/%1)

n], and we have∣∣∣∣c2(%2%1
)n

+ c2

(
%2
%1

)n∣∣∣∣ ≤ 2|c2|
∣∣∣∣%2%1
∣∣∣∣n < 2 · 2777

10000

(
9989

10000

)n

.

On the other hand,

2 · 2777

10000

(
9989

10000

)n

<
50155

100 000
< c1

for n ≥ 93, therefore µn(γ∗) > 0 for n ≥ 93.
Finally, one checks that µn(γ∗) > 0 for n ∈ {0, 1, . . . , 92} \ {6} (recall that µ6(γ

∗) = 0),
so the proof is complete.

Remark 3.9. We have µ92(γ
∗) ≈ 1.585176 · 10−28.

3.5.4 The BDF4 method

The recursion (13) is

(12γ + 25)µn(γ)− 48µn−1(γ) + 36µn−2(γ)− 16µn−3(γ) + 3µn−4(γ) = 0 (n ≥ 4)

with

µ0(γ) =
12

12γ + 25
, µ1(γ) =

576

(12γ + 25)2
, µ2(γ) =

1296(−4γ + 13)

(12γ + 25)3
,

µ3(γ) =
192 (144γ2 − 1992γ + 2137)

(12γ + 25)4
.

For γ > 0, the characteristic polynomial of the recursion, P4(·, γ), has multiple roots if
and only if γ = 7/12 ≈ 0.5833. In the rest of the proof, it will be sufficient to focus on the
interval 0 < γ < 7/12.

For any 0 < γ < 7/12, let us denote the four distinct roots of P4(·, γ) by %1,2,3,4(γ). Then
0 < %2(γ) < %1(γ) < 1 and %3,4(γ) ∈ C \ R. Let us denote by

γ∗ ≈ 0.48622 (21)

the 5th-degree algebraic number listed in the row of γsup,4 in Theorem 2.3. By separating
the real and imaginary parts of P4(x + iy, γ), then setting up and solving the appropriate
system of polynomial equations over the reals, we can prove that

• |%3(γ)| = |%4(γ)| < %1(γ) for 0 < γ < γ∗;

• |%3(γ∗)| = |%4(γ∗)| = %1(γ
∗) for γ = γ∗;

• %1(γ) < |%3(γ)| = |%4(γ)| for γ∗ < γ < 7/12.

In other words, the positive real root %1(γ) is no longer dominant for γ > γ∗.
First we prove γsup,4 ≥ γ∗ by proving µn(γ∗) > 0 (∀n ∈ N), see (18). For γ = γ∗ we have

the representation

µn(γ∗) = c1(γ
∗) (%1(γ

∗))n + c2(γ
∗) (%2(γ

∗))n + c3(γ
∗) (%3(γ

∗))n + c3(γ∗)
(
%3(γ∗)

)n
(n ≥ 0),

where
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• %1(γ∗) ≈ 0.605651 is the unique real root of the polynomial

{96,−144, 86,−30, 9,−2};

• %2(γ∗) ≈ 0.437941 is the unique real root of the polynomial

{7080,−8928, 6410,−2826, 621,−54};

• %3(γ∗) ≈ 0.25655 + 0.54863i is the root of the polynomial

{82944,−140544, 160624,−112944, 60516,−27800, 12636,−5832, 1969,−384, 36}

having the property |%3(γ∗)| = %1(γ
∗);

• c1(γ∗) ≈ 1.21912 is the unique real root of the polynomial

{638976,−1308672, 767680,−148848, 255,−16};

• c2(γ∗) ≈ −0.583734 is the unique real root of the polynomial

{15582086307840, 11032756568064, 1374924543424, 141329286000,

−715299903, 8503056};

• c3(γ∗) ≈ −0.123106− 0.169757i is the root of the polynomial

{654252399875063808, 147972616215330816, 117436085430648832,

23378947275620352, 6522272391303168, 504776558675968, 75411131715456,

−3364763918784, 58367021905,−452933856, 1679616}

having the smallest real part.

Remark 3.10. Here again we have converted polynomials whose coefficients are algebraic
numbers to higher-degree polynomials with integer coefficients (cf. Remark 3.7).

By rewriting µn(γ∗) (n ∈ N) as

(%1(γ
∗))n

[
c1(γ

∗) + c2(γ
∗)

(
%2(γ

∗)

%1(γ∗)

)n

+ c3(γ
∗)

(
%3(γ

∗)

%1(γ∗)

)n

+ c3(γ∗)

(
%3(γ∗)

%1(γ∗)

)n]
,

and noticing that∣∣∣∣∣c2(γ∗)
(
%2(γ

∗)

%1(γ∗)

)n

+ c3(γ
∗)

(
%3(γ

∗)

%1(γ∗)

)n

+ c3(γ∗)

(
%3(γ∗)

%1(γ∗)

)n∣∣∣∣∣ ≤
|c2(γ∗)|

∣∣∣∣%2(γ∗)%1(γ∗)

∣∣∣∣n + 2|c3(γ∗)|
∣∣∣∣%3(γ∗)%1(γ∗)

∣∣∣∣n = |c2(γ∗)|
∣∣∣∣%2(γ∗)%1(γ∗)

∣∣∣∣n + 2|c3(γ∗)| <

|c2(γ∗)|+ 2|c3(γ∗)| < 11/10 < |c1(γ∗)|,

we see that µn(γ∗) > 0 for all n ∈ N. Thus we have proved γsup,4 ≥ γ∗.
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To prove the converse inequality, γsup,4 ≤ γ∗, we apply Lemma 3.2. We set γ := γ∗ + ε
with some sufficiently small, but arbitrary ε > 0. Then for n ∈ N we have

µn(γ) = |%3(γ)|n (νn + wzn + w̄(z̄)n)

with z := %3(γ)/|%3(γ)|, w := c3(γ) and

νn := c1(γ)

(
%1(γ)

|%3(γ)|

)n

+ c2(γ)

(
%2(γ)

|%3(γ)|

)n

.

Due to the properties of the numbers %j(γ) listed in the paragraph of (21), we know that
R 3 νn → 0 as n→ +∞. Moreover, since the functions %3(·) and c3(·) are continuous (also)
at γ∗, we have z ∈ C \R, |z| = 1 and w ∈ C \ {0}, for ε > 0 small enough. Lemma 3.2 then
shows that µn(γ) cannot be non-negative for all n ∈ N, so by Theorem 1.6 we obtain that
γsup,4 < γ∗ + ε.

3.5.5 The BDF5 method

The recursion (13) is

(60γ + 137)µn(γ)− 300µn−1(γ) + 300µn−2(γ)− 200µn−3(γ)+

75µn−4(γ)− 12µn−5(γ) = 0 (n ≥ 5)

with

µ0(γ) =
60

60γ + 137
, µ1(γ) =

18000

(60γ + 137)2
, µ2(γ) =

18000(−60γ + 163)

(60γ + 137)3
,

µ3(γ) =
12000 (3600γ2 − 37560γ + 30469)

(60γ + 137)4
,

µ4(γ) =
4500 (−216000γ3 + 8600400γ2 − 22146420γ + 10021847)

(60γ + 137)5
;

see Figure 1.
The characteristic polynomial of the recursion P5(·, γ) has no multiple roots for γ > 0.

We denote the five distinct roots of P5(·, γ) by %1,2,3,4,5(γ) and let

γ∗ ≈ 0.30421

denote the 10th-degree algebraic number listed in the row of γsup,5 in Theorem 2.3. Then for
any γ ∈ (0, 1) we can prove that

• 0 < %1(γ) < 1 and %2,3,4,5(γ) ∈ C \ R;

• |%2,3,4,5(γ)| < %1(γ) for 0 < γ < γ∗;

• |%4,5(γ∗)| < |%2,3(γ∗)| = %1(γ
∗) for γ = γ∗;

• |%1,4,5(γ)| < |%2(γ)| = |%3(γ)| for γ∗ < γ < 1.
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Figure 1: The functions γ 7→ µn(γ) for 1 ≤ n ≤ 21 corresponding to the BDF5 method are
shown (the curves with indices n ∈ {1, 2, 5, 6, 10, 11} are not visible in this plot window).
The red dot is placed at γ = γsup,5 ≈ 0.30421.

For γ = γ∗ and n ≥ 0 we have

µn(γ∗) = %n1

[
c1 + c2

(
%2
%1

)n

+ c2

(
%2
%1

)n

+ c4

(
%4
%1

)n

+ c4

(
%4
%1

)n]
,

where, for brevity, now we omit the explicit form of the algebraic numbers cj and %j, and
only give their approximate values:

• %1 ≈ 0.737893, %2 ≈ 0.195442 + 0.711539i, %4 ≈ 0.401777 + 0.175943i,

• c1 ≈ 0.994377, c2 ≈ −0.117157− 0.126015i, c4 ≈ −0.186798− 0.0841337i.

From this we get that∣∣∣∣c2(%2%1
)n

+ c2

(
%2
%1

)n

+ c4

(
%4
%1

)n

+ c4

(
%4
%1

)n∣∣∣∣ ≤ 2|c2| · 1n + 2|c4| · 1n <
8

10
< c1,

so µn(γ∗) > 0 (n ∈ N), and hence γsup,5 ≥ γ∗ by (18).
The proof of the converse inequality, γsup,5 ≤ γ∗, is again based on Lemma 3.2, and is

completely analogous to the one presented in Section 3.5.4.

3.5.6 The BDF6 method

The recursion (13) is

3(20γ + 49)µn(γ)− 360µn−1(γ) + 450µn−2(γ)− 400µn−3(γ) + 225µn−4(γ)−

72µn−5(γ) + 10µn−6(γ) = 0 (n ≥ 6)

with

µ0(γ) =
20

20γ + 49
, µ1(γ) =

2400

(20γ + 49)2
,
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Figure 2: The roots of P6(·, γsup,6) corresponding to the BDF6 case.

µ2(γ) =
3000(−20γ + 47)

(20γ + 49)3
, µ3(γ) =

8000 (400γ2 − 3440γ + 2131)

3(20γ + 49)4
,

µ4(γ) =
500 (−24000γ3 + 695600γ2 − 1343380γ + 474833)

(20γ + 49)5
,

µ5(γ) =
160 (480000γ4 − 53296000γ3 + 283987200γ2 − 212499240γ + 84071653)

(20γ + 49)6
.

Let us consider any 0 ≤ γ < 37/60 ≈ 0.6167. Then one checks by using the discriminant
that the 6 roots of P6(·, γ) = 0 are distinct. Let

γ∗ ≈ 0.13136

denote the 18th-degree algebraic number listed in the row of γsup,6 in Theorem 2.3. This
constant has been obtained after some non-trivial computation and simplification. The roots
%j(γ) (1 ≤ j ≤ 6) are distributed as follows:

• 0 < %2(γ) < %1(γ) < 1 and %3,4,5,6(γ) ∈ C \ R;

• |%2,3,4,5,6(γ)| < %1(γ) for 0 < γ < γ∗;

• |%2,5,6(γ∗)| < |%3,4(γ∗)| = %1(γ
∗) for γ = γ∗;

• |%1,2,5,6(γ)| < |%3(γ)| = |%4(γ)| for γ∗ < γ < 37/60.
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Figure 3: The sequence µn(γ∗) corresponding to the BDF6 method is depicted (using linear
interpolation).

For γ = γ∗ and n ≥ 0, one has the representation

µn(γ∗) = %n1

[
c1 + c2

(
%2
%1

)n

+ c3

(
%3
%1

)n

+ c3

(
%3
%1

)n

+ c5

(
%5
%1

)n

+ c5

(
%5
%1

)n]
,

where the algebraic numbers cj, %j have the approximate values

• %1 ≈ 0.87690236, %2 ≈ 0.41284041,

• %3 ≈ 0.13673253 + 0.86617664i, %5 ≈ 0.38057439 + 0.29512217i,

• c1 ≈ 1.0000077, c2 ≈ −0.13742979,

• c3 ≈ −0.11295491− 0.10160183i, c5 ≈ −0.124637633− 0.050848744i,

see Figure 2. For any n ≥ 0, the estimate∣∣∣∣c2(%2%1
)n

+ c3

(
%3
%1

)n

+ c3

(
%3
%1

)n

+ c5

(
%5
%1

)n

+ c5

(
%5
%1

)n∣∣∣∣ ≤
|c2|+ 2|c3|+ 2|c5| <

8

10
< c1

yields µn(γ∗) > 0, see Figure 3. This proves that γsup,6 ≥ γ∗ by (18).
As before, a final application of Lemma 3.2 shows that γsup,6 ≤ γ∗, completing the proof.

3.6 Proofs for the Adams–Bashforth methods

The coefficients for the Adams–Bashforth methods are listed, for example, in [3].
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3.6.1 The AB1 method

It is easily seen that the recursion (7) now has the form

µn(γ) = (1− γ)µn−1(γ) (n ≥ 2)

with µ1(γ) = 1, so any γ > 1 violates the non-negativity of µn(γ) in (8). Hence γsup,1 ≤ 1.
But µn(1) ≥ 0 for all n ∈ N, and it is known [4] that −1 ∈ int(S), so (19) finishes the proof.

3.6.2 The AB2 method

For this method, the recursion (7) is

µn(γ)−
(

1− 3γ

2

)
µn−1(γ)− γ

2
µn−2(γ) = 0 (n ≥ 3)

with µ1(γ) = 3/2 and µ2(γ) = −9γ/4 + 1. Lemma 3.1 with n = 2 and γ∗ = 4/9 shows that
γsup,2 ≤ 4/9. On the other hand,

µn(4/9) = 31−n (2n − 4(−1)n) /4 ≥ 0 (n ≥ 1),

and −4/9 ∈ int(S) (see [4]), so the proof is complete due to (19).

3.6.3 The AB3 method

For this method, the recursion (7) takes the form

µn(γ)−
(

1− 23γ

12

)
µn−1(γ)− 4

3
γµn−2(γ) +

5

12
γµn−3(γ) = 0 (n ≥ 4)

with

µ1(γ) =
23

12
, µ2(γ) = −529γ

144
+

7

12
, µ3(γ) =

12167γ2

1728
− 161γ

72
+ 1.

Lemma 3.1 with n = 2 and γ∗ = 84/529 shows that γsup,3 ≤ 84/529. We also know [4] that
−84/529 ∈ int(S), so by (19) it is enough to verify that µn(84/529) ≥ 0 for all n ≥ 1.

For n ≥ 1 we have

µn(84/529) =
3∑

j=1

cj%
n
j = %n3

(
c3 + c1

(
%1
%3

)n

+ c2

(
%2
%3

)n)
,

where the numbers %j (%1 < 0 < %2 < %3, |%1| < %3/2, %2 < %3/4) and cj (−5 < c1 < −3 <
c2 < 0 < 1 < c3) are the three roots of the polynomials {529,−368,−112, 35} and

{30733417008, 193547352348, 162435667337,−391554926405},

respectively. Since∣∣∣∣c1(%1%3
)n

+ c2

(
%2
%3

)n∣∣∣∣ ≤ 5

∣∣∣∣%1%3
∣∣∣∣n + 3

∣∣∣∣%2%3
∣∣∣∣n < 5

2n
+

3

4n
< 1 < c3

for n ≥ 3, and µn(84/529) ≥ 0 for 1 ≤ n ≤ 2, the proof is complete.
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3.6.4 The AB4 method

The starting terms of the recursion (7) satisfy

µ1(γ) =
55

24
, µ2(γ) = −3025γ

576
− 1

6
,

so the non-negativity condition in (8) for n = 2 is violated for any γ > 0, hence @ SCB > 0.

4 Conclusions

The step-size coefficient for boundedness (SCB) of a linear multistep method (LMM) is
a generalization of the strong-stability-preserving (SSP) coefficient of the LMM. The SCB
appears in conditions that ensure monotonicity or boundedness properties of the LMM, and
a method is more efficient if it possesses a larger SCB.

In [9, 16], a necessary and sufficient condition has been given for a number γ > 0 to be a
SCB of a LMM. This condition involves checking the non-negativity of an auxiliary sequence
µn(γ) that satisfies a linear recurrence relation in n ∈ N. For fixed n, the function µn(·) is a
rational function.

The main goal of the present work is to determine the maximum SCB, γsup for a given
linear multistep method. For each k-step BDF method (2 ≤ k ≤ 6) and each k-step Adams–
Bashforth method (1 ≤ k ≤ 3), we determine the exact value of γsup by finding the largest
γ > 0 that satisfies µn(γ) ≥ 0 for all non-negative n.

We have identified two types of conditions that characterize γsup in these multistep fam-
ilies:

(i) a positive real dominant root of the characteristic polynomial corresponding to the
recursion µn(γ) loses its dominant property at γ = γsup, or

(ii) there is an index n0 ∈ N such that γsup is a simple root of the function µn0(·).
It turns out that γsup is determined

• by condition (i) for the BDF methods with k ∈ {2, 4, 5, 6} steps;

• by condition (ii) with n0 = 6 for the 3-step BDF method;

• by condition (ii) with n0 = 2 for the Adams–Bashforth methods with k ∈ {1, 2, 3}
steps.
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