Skip to main content
Log in

Piecewise Chebyshevian splines: interpolation versus design

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider the wide class of all piecewise Chebyshevian splines with connection matrices at the knots. We prove that a spline space of this class is “good for interpolation” if and only if the spline space obtained by integration is “good for design”. As a consequence, this provides us with a simple practical description of all such spline spaces which can be used for solving Hermite interpolation problems. These results strongly rely on the properties of blossoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barry, P.J.: de Boor-Fix dual functionals and algorithms for Tchebycheffian B-splines curves. Constr. Approx. 12, 385–408 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barsky, B.A.: The β-spline, a local representation based on shape parameters and fundamental geometric measures. Ph.D. dissertation, Dept. of Computer Science, University of Utah, Salt Lake City Utah (1981)

  3. Barsky, B.A., Beatty, J.C.: Local control of bias and tension in beta-splines. ACM Trans. Graphics 2, 09–134 (1983)

    Article  MATH  Google Scholar 

  4. de Boor, C.: A Practical Guide to Splines, revised version, Applied Math. Sc., Springer 27 (2001)

  5. de Boor, C., DeVore, R.: A geometric proof of total positivity for spline interpolation. Math. Comput. 45, 497–504 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brilleaud, M., Mazure, M.-L.: Mixed hyperbolic/trigonometric spaces for design. Comp. Math. Appl. 64, 2459–2477 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brilleaud, M., Mazure, M.-L.: Design with L-splines. Num. Algorithms 65, 91–124 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carnicer, J.-M., Peña, J.-M.: Total positivity and optimal bases. In: Gasca, M., Micchelli, C.A. (eds.) Total Positivity and its Applications, pp. 133–155. Kluwer Academic Pub. (1996)

  9. Dyn, N., Micchelli, C.A.: Piecewise polynomial spaces and geometric continuity of curves. Numer. Math. 54, 319–337 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goodman, T.N.T.: Properties of beta-splines. J. Approx. Theory 44, 132–153 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goodman, T.N.T.: Total positivity and the shape of curves. In: Gasca, M., Micchelli, C.A. (eds.) Total Positivity and its Applications, pp. 157–186. Kluwer Academic Pub. (1996)

  12. Karlin, S.J., Studden, W.J.: Tchebycheff Systems: with Applications in Analysis and Statistics. Wiley Interscience, N.Y. (1966)

  13. Kayumov, A., Mazure, M.-L.: Chebyshevian splines: interpolation and blossoms. C. R. Acad. Sci. Paris, Ser. I(344), 65–70 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee, J.H., Yang, S.N.: Shape preserving and shape control with interpolating bézier curves. J. Comput. Applied Math. 28, 269–280 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lyche, T., Schumaker, L.L.: Total positivity properties of LB-splines, 35–46 (1996)

  16. Mazure, M.-L.: Blossoming: a geometrical approach. Constr. Approx. 15, 33–68 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mazure, M.-L.: Chebyshev splines beyond total positivity. Adv. Comp. Math. 14, 129–156 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mazure, M.-L.: B-spline bases and osculating flats: one result of H.-P. Seidel revisited. ESAIM Math. Model. Numer. Anal. 36, 1177–1186 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mazure, M.-L.: Blossoms and optimal bases. Adv. Comp. Math. 20, 177–203 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mazure, M.-L.: On the equivalence between existence of B-spline bases and existence of blossoms. Constr. Approx. 20, 603–624 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mazure, M.-L.: Chebyshev spaces and Bernstein bases. Constr. Approx. 22, 347–363 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mazure, M.-L.: Towards existence of piecewise Chebyshevian B-spline bases. Numerical Algorithms 39, 399–414 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mazure, M.-L.: Ready-to-blossom bases in Chebyshev spaces. In: Jetter, K., Buhmann, M., Hauss-mann, W., Schaback, R., Stoeckler, J. (eds.) Topics in Multivariate Approximation and Interpolation, pp. 109–148. Elsevier (2006)

  24. Mazure, M.-L.: Extended Chebyshev piecewise spaces characterised via weight functions. J. Approx. Theory 145, 33–54 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mazure, M.-L.: Ready-to-blossom bases and the existence of geometrically continuous piecewise Chebyshevian B-splines. C. R. Acad. Sci. Paris Ser. I(347), 829–834 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mazure, M.-L.: Finding all systems of weight functions associated with a given extended Chebyshev space. J. Approx. Theory 163, 363–376 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mazure, M.-L.: How to build all Chebyshevian spline spaces good for geometric design? Numer. Math. 119, 517–556 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mazure, M.-L.: From Taylor interpolation to Hermite interpolation via duality. Jaén J. Approx. 4, 15–45 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Mazure, M.-L.: Polynomial splines as examples of Chebyshevian splines. Num. Algorithms 60, 241–262 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mazure, M.-L.: Constructing totally positive piecewise Chebyhevian B-splines, preprint

  31. Melkman, A.: Another proof of the total positivity of the discrete spline collocation matrix. J. Approx. Theory 84, 265–273 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mrken, K.: Total positivity of the discrete spline collocation matrix II. J. Approx. Theory 84, 247–264 (1996)

    Article  MathSciNet  Google Scholar 

  33. Mühlbach, G.: ECT-B-splines defined by generalized divided differences. J. Comput. Applied Math. 187, 96–122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mühlbach, G.: One sided Hermite interpolation by piecewise different generalized polynomials. J. Comput. Applied Math. 196, 285–298 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pottmann, H.: The geometry of Tchebycheffian splines. Comput. Aided Geom. Design 10, 181–210 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ramshaw, L.: Blossoms are polar forms. Comput. Aided Geom. Design 6, 323–358 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schoenberg, I.J., Whitney, A.: On pólya frequency functions III. The positivity of translation determinants with applications to the interpolation problem by spline curves. Trans. Amer. Math. Soc. 74, 246–259 (1953)

    MathSciNet  MATH  Google Scholar 

  38. Schumaker, L.L.: On tchebycheffian spline functions. J. Approx. Theory 18, 278–303 (1981). N.Y.

    Article  MathSciNet  Google Scholar 

  39. Schumaker, L.L.: Spline Functions. Wiley Interscience, N.Y. (1981)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Laurence Mazure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazure, ML. Piecewise Chebyshevian splines: interpolation versus design. Numer Algor 77, 1213–1247 (2018). https://doi.org/10.1007/s11075-017-0360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0360-7

Keywords

Mathematics Subject Classification (2010)

Navigation