
This item is the archived peer-reviewed author-version of:

Deterministic sparse FFT for M-sparse vectors

Reference:
Plonka Gerlind, Wannenw etsch Katrin, Cuyt Annie A.M., Lee Wen-Shin.- Deterministic sparse FFT for M-sparse vectors
Numerical algorithms - ISSN 1017-1398 - 78:1(2018), p. 133-159
Full text (Publisher's DOI): https://doi.org/10.1007/S11075-017-0370-5
To cite this reference: http://hdl.handle.net/10067/1491230151162165141

Institutional repository IRUA

http://anet.uantwerpen.be/irua

Deterministic Sparse FFT for M -sparse Vectors

Gerlind Plonka∗, Katrin Wannenwetsch∗,
Annie Cuyt†, and Wen-shin Lee†

June 21, 2017

Abstract

In this paper we derive a new deterministic sparse inverse FFT algorithm for the
case that the resulting vector is sparse. The sparsity needs not to be known in advance
but will be determined during the algorithm. If the vector to be reconstructed is M -
sparse then the complexity of the method is at most O(M2 logN) if M2 < N and falls
back to the usual O(N logN) algorithm for M2 ≥ N . The method is based on the
divide-and-conquer approach and may require the solution of a Vandermonde system
of size at most M ×M at each iteration step j if M2 < 2j . To ensure the stability of
the Vandermonde system, we propose to employ a suitably chosen parameter σ that
determines the knots of the Vandermonde matrix on the unit circle.

Key words: sparse signals, Vandermonde matrices, discrete Fourier trans-
form, sparse FFT

AMS Subject classifications. 65T50, 42A38

1 Introduction

Usual FFT algorithms require O(N logN) operations for the discrete Fourier trans-
form of length N . But assuming that some further a priori information about the
resulting vector is available, the question arises, whether this computation can be
done even faster.

Let us assume that x = (xk)
N−1
k=0 ∈ CN is a vector of length N = 2J , and denote

by x̂ := FN x ∈ CN its discrete Fourier transform, where FN := (ωjkN)N−1j,k=0 with

ωN := e−2πi/N is the Fourier matrix of order N . In this paper, we will derive a stable
deterministic algorithm to reconstruct x from x̂ using the assumption that x is an
M -sparse vector. The proposed algorithm uses only at most M logN components of
the vector x̂ = (x̂k)

N−1
k=0 . We do not assume that the possible sparsity M < N is

known in advance. Applying an iterative procedure, we will adaptively choose the
components x̂k being used for the reconstruction of x. The number of needed values

∗University of Göttingen, Institute for Numerical and Applied Mathematics, Lotzestr. 16-18, 37083
Göttingen, Germany. Email: plonka,k.wannenwetsch@math.uni-goettingen.de
†University of Antwerp, Department of Mathematics–Computer Science, Middelheimlaan 1, 2020

Antwerpen, Belgium. Email: annie.cuyt,wen-shin.lee@uantwerpen.be

1

at each level will depend on the sparsity of the periodization of x found so far and
thus is always at most M . In order to compute a new periodization of x of double
length from the preceding one, we have to solve a Vandermonde system of size at most
O(M), where the system matrix is a special partial matrix of the Fourier matrix. The
arithmetical complexity will be O(min{M2 logN,N logN}), where the O constant is
small. Particularly, if no (exploitable) sparsity of x is recognized, then we fall back
to the usual inverse FFT.

While the sparse FFT algorithm is described here for the inverse transform, the
idea can be simply transferred to the case when x ∈ CN is given and x̂ ∈ CN has to
be computed and is a priori known to be sparse.

Sparse FFT methods can be applied in many different applications, where it is a
priori known that the resulting signal in time/space or frequency domain is (approxi-
mately) sparse, as e.g. for computing cross-correlation signals for GPS systems [9] or
pattern matching problems, see e.g. [12].

Our proposed sparse FFT algorithm to compute the sparse vector x is completely
deterministic and exact if for each nonzero (significant) component xk of x the sums

x
(j)

kmod2j
:=
∑N/2j−1

`=0 xk+2j` do not vanish for all j = 0, . . . , J − 1. For randomly
chosen signals this condition is satisfied with high probability and it is obviously true,
if e.g. all nonzero components of x lie in the same quadrant of the complex plane.

In recent years, different approaches have been suggested to derive sparse FFT
algorithms. Usual assumptions on the signal to be recovered are e.g. sparsity or a
small amount of significant signal components. Often, further a priori knowledge is
used, as e.g. that components to be recovered are from a finite range of real values
(see e.g. [8]), or that the significant components of x are clustered, see [18, 19, 2].

There exist deterministic [1, 2, 10, 11, 15, 18, 19, 17] and randomized methods
[8, 16, 20] for sparse FFT. We also refer to the recent review [7] that describes some
basic principles of sparse FFT algorithms. Randomized methods are usually faster
but do not always produce correct results.

Compared to other deterministic sparse FFT algorithms based on combinatorial
approaches, see [1, 2, 10, 11, 15], our method has the advantage that the recovery
of x only employs components of the DFT vector x̂ ∈ CN and is therefore directly
comparable to the usual discrete Fourier transform. The reconstruction based on
Prony’s method in [17] may still suffer from occurring numerical instabilities. In [5, 6],
the ill-conditioning is alleviated with high probability by a random redistribution of
the nodes on the unit circle. All previous sparse FFT approaches (except for [19])
need a priori knowledge on the sparsity M or need to run repeatedly for different
guesses of M , while our approach automatically recognizes a possible sparsity of the
resulting vector.

Indeed, our algorithm can be seen as a generalization of [19], where non-negative
vectors with short support have been computed by (inverse) sparse FFT. However,
this generalization is essential, the transfer from one short support to general sparsity
of a vector requires new ideas for stable recovery of x.

The paper is structured as follows. In Section 2, we derive the main algorithm
that is based on a multi-scale reconstruction technique. In order to determine a well-
conditioned coefficient matrix to compute the next periodization x(j+1) ∈ C2j+1

of
x at level j, we restrict ourselves to matrices with a Vandermonde structure that
are determined by the indices of the nonzero entries found so far and on one further

2

parameter σ that we have to choose suitably. Section 3 is devoted to some general
considerations on the problem to find a suitable σ and also answers the question which
improvement can be expected by employing only one single parameter σ. Assuming
that the indices 0 ≤ n1 < . . . < nMj < 2j of nonzero entries are known, we show
that σ should be chosen in a way such that the new knots ωσnk

2j
determining the

Vandermonde matrix are well distributed on the unit circle. This can be achieved
by maximizing the minimal distance between two neighboring values σnk on the 2j-
periodic interval. It is also shown that, in rare cases, even the optimal parameter
only leads to the minimal distance 2j/M2 while the optimal distance in the case of M
equidistant values is 2j/M . Section 4 provides further ideas on efficient computation
of σ. We present some insights on how to determine σ and propose two approaches
to find a suitable σ with a computational effort not exceeding O(M2). Moreover, we
show that if the sparsity Mj of the periodized vector does not change compared to
the previous iteration step, σj can just be taken as 2σj−1. The ideas are illustrated
by different examples. In Section 5, the approach is illustrated by further examples
and numerical experiments are presented.

2 Multi-scale reconstruction

Assume that x ∈ CN is M -sparse, where 0 ≤ M ≤ N , i.e., x possesses M significant
nonzero components. Let x̂ = FNx = (x̂k)

N−1
k=0 be the discrete Fourier transform of

x. Assume further that N := 2J with some J > 0. We want to derive an iterative
stable procedure to reconstruct x from adaptively chosen Fourier entries of x̂. For
that purpose, we consider the periodized vectors

x(j) = (x
(j)
k)2

j−1
k=0 :=

2J−j−1∑
`=0

xk+2j`

2j−1

k=0

∈ C2j , j = 0, . . . , J. (2.1)

Hence, x(0) =
N−1∑
k=0

xk is the sum of all components of x, x(1) =

(
N/2−1∑̀

=0

x2`,
N/2−1∑̀

=0

x2`+1

)T
,

and x(J) = x. As already mentioned in the introduction, we assume that no cancel-
lation appears in the periodic vectors, i.e., for each significant component xk 6= 0 of
x, we have

x
(j)

kmod 2j
6= 0 for all j = 0, . . . , J − 1. (2.2)

Numerically, we suppose that |x(j)
kmod2j

| > ε for a fixed shrinkage constant ε. Through-
out the paper, we assume that (2.2) is satisfied.

We recall the following relationship from [18] for the discrete Fourier transform of
the vectors x(j), showing that the components of x̂(j) are already given by components
of x̂.

Lemma 2.1 For the vectors x(j) ∈ C2j , j = 0, . . . , J , in (2.1), we have the discrete
Fourier transform

x̂(j) := F2j x(j) = (x̂2J−jk)
2j−1
k=0 ,

where x̂ = (x̂k)
N−1
k=0 = FN x is the discrete Fourier transform of x ∈ CN .

3

Idea of the algorithm. Assume now that x ∈ CN is M -sparse but the sparsity
0 ≤M ≤ N is not known a priori.
Step 0. We start by considering x(0). Obviously,

x(0) =

N−1∑
k=0

xk = x̂0.

From (2.2) we can conclude that for x̂0 = 0 the vector x is the zero-vector, i.e., it is
0-sparse.
Step 1. Having found x(0) = x̂0 6= 0, we proceed and consider x(1). Obviously, we

have x(1) = (x
(1)
0 , x

(1)
1)T , where x

(1)
0 + x

(1)
1 = x(0) = x̂0 is already known. Choosing

now the Fourier component x̂
(1)
1 = x̂N/2 = x

(1)
0 − x

(1)
1 and using x

(1)
1 = x(0) − x(1)0 we

obtain x̂N/2 = 2x
(1)
0 − x(0), i.e.,

x
(1)
0 =

1

2

(
x(0) + x̂N/2

)
, x

(1)
1 =

1

2

(
x(0) − x̂N/2

)
= x(0) − x(1)0 .

If x
(1)
0 = 0, we can conclude that all even components of x vanish, and we do not need

to consider them further. If x
(1)
1 = 0, it follows analogously that all odd components

of x are zero.

Step j + 1. Assume now that we have computed x(j) ∈ C2j at the j-th level of
iteration, and let Mj ≤ 2j be the found sparsity of x(j). Obviously, we have Mj ≤M .
Further, let

0 ≤ n(j)1 < n
(j)
2 < . . . < n

(j)
Mj
≤ 2j − 1

be the indices of the corresponding nonzero components of x(j). Observe that gener-

ally for x(j+1) =
(
x
(j+1)
k

)2j+1−1

k=0
we have

x
(j+1)
k + x

(j+1)

k+2j
= x

(j)
k , k = 0, . . . , 2j − 1. (2.3)

Hence, in order to compute now x(j+1), we only need to consider the 2Mj components

x
(j+1)
nk and x

(j+1)

nk+2j
for k = 1, . . . ,Mj as candidates for nonzero entries in x(j+1) while

all other components of x(j+1) can be assumed to be zero. Moreover, (2.3) provides
already Mj conditions on these values, so that we need only Mj suitably chosen further
Fourier data to recover x(j+1). In particular, we have

Theorem 2.2 Let x(j), j = 0, . . . , J , be the vectors defined in (2.1) satisfying (2.2).

Then, for each j = 0, . . . , J − 1, we have: If x(j) ∈ C2j is Mj-sparse with support

indices 0 ≤ n
(j)
1 < n

(j)
2 < . . . < n

(j)
Mj
≤ 2j − 1, then the vector x(j+1) can be uniquely

recovered from x(j) and Mj components x̂k1 , . . . , x̂kMj of x̂ = FNx, where the indices

k1, . . . , kMj are taken from the set {2J−j−1(2` + 1) : ` = 0, . . . 2j − 1} such that the
matrix (

ω
kpn

(j)
r

N

)Mj

p,r=1

=
(

e−2πikpn
(j)
r /N

)Mj

p,r=1
∈ CMj×Mj

is invertible.

4

Proof. Using the vector notation x
(j+1)
0 :=

(
x
(j+1)
k

)2j−1
k=0

and x
(j+1)
1 :=

(
x
(j+1)
k

)2j+1−1

k=2j
,

we have
x(j) = x

(j+1)
0 + x

(j+1)
1 (2.4)

such that we only need to compute x
(j+1)
0 in order to recover x(j+1). By Lemma 2.1,

we find

(x̂2J−j−1k)
2j+1−1
k=0 = x̂(j+1) = F2j+1

(
x
(j+1)
0

x
(j+1)
1

)
= F2j+1

(
x
(j+1)
0

x(j) − x
(j+1)
0

)

=
(
ωk`2j+1

)2j+1−1,2j−1

k=0,`=0
x
(j+1)
0 +

(
(−1)kωk`2j+1

)2j+1−1,2j−1

k=0,`=0

(
x(j) − x

(j+1)
0

)
. (2.5)

We simply observe that the even indexed entries x̂
(j+1)
2` = x̂

(j)
` = x̂2J−j` do not further

contribute to the recovery of the vector x
(j+1)
0 but are determined already from x(j)

that is known from the previous step. Let now 0 ≤ n(j)1 < n
(j)
1 < . . . < n

(j)
Mj
≤ 2j−1 be

the indices of the nonzero entries of x(j). Then by (2.4) also x
(j+1)
0 can have nonzero

entries only at these components. We restrict the vectors accordingly to

x̃
(j+1)
0 :=

(
x
(j+1)

n
(j)
r

)Mj

r=1
∈ CMj , x̃(j) :=

(
x
(j)

n
(j)
r

)Mj

r=1
∈ CMj .

Further, let k1, . . . , kMj be pairwise different indices from {2J−j−1(2` + 1) : ` =
0, . . . 2j − 1}, i.e., we have kp := 2J−j−1(2κp + 1) with κp ∈ {0, . . . , 2j − 1} for
p = 1, . . . ,Mj . We now restrict the system in (2.5) to the Mj equations corresponding
to these indices k1, . . . , kMj and find

ẑ(j+1) :=

 x̂k1
...

x̂kMj

 =

x̂
(j+1)
2κ1+1

...

x̂
(j+1)
2κMj+1

 = A(j+1) x̃
(j+1)
0 −A(j+1)

(
x̃(j) − x̃

(j+1)
0

)
,

(2.6)
where

A(j+1) =

(
ω
kpn

(j)
r

N

)Mj

p,r=1

=

(
ω
κpn

(j)
r

2j

)Mj

p,r=1

diag
(
ω
n
(j)
1

2j+1 , . . . , ω
n
(j)
Mj

2j+1

)
. (2.7)

If A(j+1) resp. (ω
κpn

(j)
r

2j
)
Mj

p,r=1 is invertible, it follows from (2.6) that

A(j+1)x̃
(j+1)
0 =

1

2

(
ẑ(j+1) + A(j+1)x̃(j)

)
, (2.8)

and we can recover x̃
(j+1)
0 by solving this (Mj ×Mj) equation system. Hence the

components of x(j+1) ∈ C2j+1
are given by

x
(j+1)
` =

(
x̃
(j+1)
0

)
k

for ` = n
(j)
k ,(

x̃(j)
)
k
−
(
x̃
(j+1)
0

)
k

for ` = n
(j)
k + 2j ,

0 else.

5

Theorem 2.2 yields that we essentially have to solve a linear system in (2.8) of size
Mj in order to compute x(j+1) from x(j). We summarize our findings in the following
Algorithm, where we use the conventional FFT at each step as long as this is more
efficient than solving the system in (2.8).

Algorithm 2.3 (Reconstruction of a vector from Fourier measurements)

Input: N = 2J (length of the vector x);
possible access to Fourier values x̂k, k = 0, . . . , N − 1;
shrinkage constant ε.

Set M := 0 and K := {0}. Choose the Fourier value x̂0.
If |x̂0| < ε, then x = 0 and I(J) = ∅.
If |x̂0| ≥ ε, then

1. Set M := 1, I(0) := {0} and x̃(0) = x̂0.

2. For j = 0 to J − 1 do
If M2 ≥ 2j, then

Choose ẑ(j+1) :=
(
x̂
(j+1)
2p+1

)2j−1
p=0

=
(
x̂2J−j−1(2p+1)

)2j−1
p=0

∈ CM and solve the linear

system

F2jdiag
(

(ωk2j+1)2
j−1
k=0

)
x
(j+1)
0 =

1

2

(
ẑ(j+1) + F2jdiag

(
(ωk2j+1)2

j−1
k=0

)
x(j)

)
using an FFT algorithm
else

2.1 Choose M indices kp = 2J−j−1(2κp + 1) with κp ∈ {0, . . . , 2j − 1} for
p = 1, . . . ,M such that

A(j+1) :=
(
ω
kp`
N

)
p=1,...,M ;`∈I(j)

is well-conditioned and set K := K ∪ {k1, . . . , kM}.
2.2 Choose the Fourier values ẑ(j+1) := (x̂kp)

M
p=1 ∈ CM and solve the linear

system

A(j+1)x̃
(j+1)
0 =

1

2

(
ẑ(j+1) + A(j+1) x̃(j)

)
.

2.3 Set x̃
(j+1)
1 := x̃(j) − x̃

(j+1)
0 and x̃(j+1) :=

((
x̃
(j+1)
0

)T
,
(
x̃
(j+1)
1

)T)T
.

end (if)

2.4 Determine the set of active indices I(j+1) ⊂
(
I(j) ∪ (I(j) + 2j)

)
by deleting

all indices in I(j)∪ (I(j) +2j) that correspond to entries in x̃(j+1) with mod-
ulus being smaller than ε. Set M := #I(j+1) being the number of nonzero
entries of x(j+1).

end (do)

Output: I(J), the set of active indices in x with M = #I(J);
x̃ = x̃(J) = (xk)k∈I(J), the vector restricted to nonzero entries;
K, the index set of used Fourier values from x̂.

6

Note that the matrices A(j+1) are just restrictions of the Fourier matrices FN

to the columns n
(j)
1 , . . . n

(j)
Mj

and the rows k1, . . . , kMj . Equivalently, they can be

represented by (2.7) using a matrix product, where one factor is the restriction of

F2j to the columns n
(j)
1 , . . . , n

(j)
Mj

and the rows κ1, . . . , κMj , and the other factor is a

unitary diagonal matrix. Observe that we can always choose kp = 2J−j−1(2κp + 1)
with κp = p− 1, for p = 1, . . . ,Mj to ensure invertibility.

Example 2.4 Assume that we want to recover the 5-sparse vector x ∈ C64 with
xk = 1 for k ∈ I(6) := {1, 5, 6, 13, 59}. For the periodizations of x we find the index
sets and the sparsities

I(0) = {0}, M0 = 1;

I(1) = {0, 1}, M1 = 2;

I(2) = {1, 2, 3}, M2 = 3;

I(3) = {1, 3, 5, 6}, M3 = 4;

I(4) = {1, 5, 6, 11, 13}, M4 = 5;

I(5) = {1, 5, 6, 13, 27}, M5 = 5.

For j = 0, 1, 2 we have M2
j ≥ 2j and therefore just apply the FFT of length 2j to

recover x(3) = (0, 1, 0, 1, 0, 2, 1, 0)T . Although M2
3 = 24, we apply for j ≥ 3 the new

approach for illustration. To recover x(4) ∈ C16, the index set of possible candidates
for nonzero entries is I(3)∪ (I(3) + 8) = {1, 3, 5, 6, 9, 11, 13, 14}. We simply choose the
indices kp = 2J−j−1(2κp + 1) with κp = p − 1, for p = 1, . . . ,Mj at each level. This
choice relates to taking just the first Mj rows of F2j in (2.7). Here we get for j = 3

the product of the restriction of F8 to the first 4 rows and the 4 columns n
(3)
r from the

set I(3) and a unitary diagonal matrix,

A(4) =

(
ω
(p−1)n(3)

r

8

)4

p,r=1

· diag
(
ω1
16, ω

3
16, ω

5
16, ω

6
16

)
with condition number 2.69 to recover x(4). Similarly we find at the next iteration
steps

A(5) =

(
ω
(p−1)n(4)

r

16

)5

p,r=1

· diag
(
ω1
32, ω

5
32, ω

6
32, ω

11
32, ω

13
32

)
with condition number 3.93 to recover x(5) and

A(6) =

(
ω
(p−1)n(5)

r

32

)5

p,r=1

· diag
(
ω1
64, ω

5
64, ω

6
64, ω

13
64, ω

27
64

)
with cond A(6) = 35.57 to recover x(6). Thus, we have employed only the Fourier
entries x̂8k, k = 0, . . . , 7, in the first three iteration steps (j = 0, 1, 2) to recover x(3),
the entries x̂4(2k+1), k = 0, 1, 2, 3, at level j = 3, x̂2(2k+1), k = 0, 1, 2, 3, 4, at level
j = 4, and x̂2k+1, k = 0, 1, 2, 3, 4, at level j = 5. Summing up, we have to employ
22 of the 64 Fourier components to recover x, while the arithmetical complexity is
governed by solving the 3 equation systems of size 4 resp. 5 with coefficient matrices
A(4), A(5) and A(6).

7

While the condition numbers of A(j) in the small example above are moderate,
the condition of A(j) can be a serious problem for numerical stability in other ex-
amples. Recovering the 5-sparse vector x ∈ C2048 with the same nonzero entries,
i.e., I(11) := {1, 5, 6, 13, 59} we obtain with the procedure above at the last level

A(10) =

(
ω
(p−1)n(10)

r

1024

)5

p,r=1

with condition number 2.29 · 107. Therefore, it remains to

answer the following question:
How should the M = Mj indices k1, . . . , kMj be chosen in dependence on the found

index set I(j) = {nj1, . . . , n
(j)
Mj
} at the j-th iteration step such that the matrix A(j+1)

has a small condition number leading to a numerically stable algorithm?
We restrict the adaptive search for suitable indices k1, . . . , kMj in a special way such

that at each level j the first factor of the obtained coefficient matrix A(j+1) in (2.7)
is a Vandermonde matrix with knots on the unit circle. We introduce one parameter
σ ∈ {1, . . . , 2j − 1} such that the first factor of A(j+1) is the restriction of F2j to the

fixed columns n
(j)
1 , . . . , n

(j)
Mj

from the index set I(j) and the rows 0, σ, 2σ, . . . (Mj−1)σ.

More precisely, we consider kp = 2J−j−1(2κp + 1) from Theorem 2.2 with κp :=
σ(p− 1) mod 2j for p = 1, . . . ,Mj . The idea is now to choose σ = σj ∈ {1, . . . , 2j − 1}
such that A(j+1) in (2.7) is well-conditioned. Observe that A(j+1) is of the form

A(j+1) = VMj diag(ω
n
(j)
1

2j+1 , . . . , ω
n
(j)
Mj

2j+1),

with the Vandermonde matrix

VMj := VMj

(
ω
σn

(j)
1

2j
, . . . , ω

σn
(j)
Mj

2j

)
:=

(
ω
σ(p−1)n(j)

r

2j

)Mj

p,r=1

=

(
ω
κpn

(j)
r

2j

)Mj

p,r=1

,

being determined by the knots ω
σn

(j)
1

2j
, . . . , ω

σn
(j)
Mj

2j
. In Sections 3 and 4, we will dis-

cuss the problem of efficiently finding a suitable parameter σ and ensuring a stable
reconstruction of x(j) at each level in more detail.

For A(j+1) in (2.7) being determined by a Vandermonde matrix, we can estimate
the complexity of Algorithm 2.3. For a stable computation of the equation system
in step 2.2, we may apply a QR decomposition to A(j+1) with complexity of O(M2)
arithmetical operations as suggested e.g. in [4]. Thus, as long as M2

j ≥ 2j , the FFT

of length 2j is more efficient than solving this system. As suggested in the algorithm,
we employ the FFT if M2

j ≥ 2j since the O-constants of the FFT are very small.
Algorithm 2.3 requires at most

O(min{M2(blogM2c+ dlog2(N/M
2)e), N logN)}) = O(min{M2 log2N,N logN)})

arithmetical operations, where the first L = blogM2c steps of the iteration useO(L2L)
operations while the remaining steps require O(M2(J−L)) = O(M2(logN−logM2))
operations. A more detailed analysis of the arithmetical complexity is given in Section
4.

Remark 2.5 In case that the condition number of the quadratic Vandermonde ma-

trix VMj

(
ω
σn

(j)
1

2j
, . . . , ω

σn
(j)
Mj

2j

)
is not small enough, we can add further lines and use a

8

rectangular Fourier matrix. This means that we apply the rectangular Vandermonde

matrix V
(j)
M ′j ,Mj

(σ) =

(
ω
σkn

(j)
p

2j

)M ′j−1,Mj

k=0,p=1

with an improved condition number. The

algorithm in [4] still provides a QR decomposition for rectangular Vandermonde ma-
trices with complexity O(M2) as long as M ′j ≤ cMj with a fixed constant c being
independent of Mj.

3 Adaptive approach for stable reconstruction

Let us now consider the question, how to find an optimal σ = σj at each iteration
step in order to ensure a well-conditioned Vandermonde system. For simplicity, we
neglect the subscripts j in this section and reformulate the problem as follows. Let
0 ≤ n1 < n2 < . . . < nM < N be a known set of indices. We want to find an optimal
parameter σ such that the M ′ ×M Vandermonde matrix

VM ′,M (σ) :=
(
ω
σnk(p−1)
N

)M ′,M
p=1,k=1

(with N > M ′ ≥ M) determined by the knots ωσnkN , k = 1, . . . ,M , has a suitably
bounded condition number. At the same time, M ′ should stay in the same size as M
in order to reduce the costs for solving a corresponding Vandermonde system.

It is well-known that the Vandermonde matrix VM,M is invertible if and only if
the support indices (σnk modN) are pairwise distinct for k = 1, . . . ,M . Thus, we
can choose σ = 1 to ensure invertibility of VM,M . This choice is non-adaptive, it is
not related to the knowledge of the index set {n1, . . . , nM}. However, as seen in the
previous section, this can lead to bad condition numbers.

We aim at deriving suitable conditions for the parameter σ to ensure a good
condition of VM ′,M .

Indeed, the condition of the matrix VM ′,M strongly depends on the distribution
of the M support indices σnk, or equivalently, on the distribution of the values ωσnkN

on the unit circle. The condition number of VM,M can be even one, if and only if the
values ωσnkN are equidistantly distributed on the unit circle, i.e., if M is a divisor of
N and

{ωσnkN : k = 1, . . . ,M} = {c ωrM : r = 1, . . . ,M},

where c is a unitary constant, see [3].

Recall that the condition number of an (M ′ ×M) matrix VM ′,M (σ) based on the
spectral norm is determined by

κ2(VM ′,M (σ)) :=

max
u∈CM ,‖u‖2=1

‖VM ′,M (σ) u‖2

min
u∈CM ,‖u‖2=1

‖VM ′,M (σ) u‖2
.

In order to bound the condition number of VM ′,M , an observation by Moitra [13]
comes to our help. We slightly modify his result and give a different proof that
directly adapts Hilbert’s inequality in [14].

9

Theorem 3.1 Let 0 ≤ n1 < n2 < . . . < nM < N be a given set of indices. For a
given σ ∈ {1, . . . , N − 1} let

dσ := min
1≤k<`≤M

(±σ(n` − nk)) modN (3.1)

be the smallest (periodic) distance between two indices σn` and σnk, and assume
that dσ > 0. Then the condition number κ2(VM ′,M (σ)) of the Vandermonde matrix

VM ′,M (σ) :=
(
ωσnk`N

)M ′−1,M
`=0,k=1

satisfies

κ2(VM ′,M (σ))2 ≤ M ′ +N/dσ
M ′ −N/dσ

, (3.2)

provided that M ′ > N
dσ

.

Proof. 1. Assume that ñk := σnkmodN
N for k = 1, . . . ,M . By assumption, the values

ñk are distinct numbers in [0, 1) and the minimal (cyclic) distance between two of
these values is dσ/N . Considering the matrix (VM ′,M (σ))∗VM ′,M (σ) = (bk,l)

M
k,`=1 we

find

bk,` =

M ′−1∑
r=0

e−2πi(ñ`−ñk)r =

{
1−e−2πi(ñ`−ñk)M

′

1−e−2πi(ñ`−ñk)
ñk 6= ñ`,

M ′ ñk = ñ`,

i.e., we have
bk,` = e−2πi(ñl−ñk)(M

′−1)/2)DM ′ (2π(ñ` − ñk)) ,

where

DM ′(x) =

{
sin(M ′x/2)
sin(x/2) x 6= 0

M ′ x = 0

denotes the Dirichlet kernel. Hence the symmetric and positive semidefinite matrix

BM = (DM ′(2π(ñ` − ñk)))M`,k=1

possesses the same eigenvalues as (VM ′,M (σ))∗VM ′,M (σ) since

(VM ′,M (σ))∗VM ′,M (σ) = diag
(

e2πiñk(M
′−1)/2

)M
k=1

BM diag
(

e−2πiñ`(M
′−1)/2

)M
`=1

.

Let us first consider the Frobenius norm ‖VM ′,M (σ)‖F . Since BM (`, `) = M ′ for all
` = 1, . . . ,M , it follows that

‖VM ′,M (σ)‖2F = tr(VM ′,M (σ))∗VM ′,M (σ)) = tr BM = MM ′,

such that the spectral norm is bounded by ‖VM ′,M (σ)‖2 ≤ ‖VM ′,M (σ)‖F =
√
M ′M .

2. We consider now for arbitrary u ∈ CM

uTBMu =
M∑
k=1

M∑
`=1

uku`DM ′(2π(ñk − ñ`))

= M ′
M∑
k=1

|uk|2 +
M∑

k,`=1
k 6=`

uku`
sin(M ′π(ñk − ñ`))

sin(π(ñk − ñ`))
.

10

We recall the following result by Montgomery and Vaughan, see Theorem 1 in [14].
Let 0 ≤ x1 < x2 < . . . < xR < 1 and δ = min{|(xk − x`) mod 1| : k, ` = 1, . . . , R, k 6=
`}. Then ∣∣∣∣∣∣∣∣

R∑
k,`=1
k 6=`

uku`
sin(π(xk − x`))

∣∣∣∣∣∣∣∣ ≤
1

δ

R∑
k=1

|uk|2. (3.3)

Using sin(M ′π(ñk − ñ`)) = 1
2i(e

M ′πi(ñk−ñ`) − e−M
′πi(ñk−ñ`)) we now apply the

equation (3.3) twice, with uk replaced by uke
M ′jπiñk and uke

−M ′jπiñk , respectively.
Thus, we obtain with δ = dσ/N∣∣∣∣∣∣∣∣

M∑
k,`=1
k 6=`

uku`
sin(M ′π(ñk − ñ`))

sin(π(ñk − ñ`))

∣∣∣∣∣∣∣∣ ≤
N

dσ
‖u‖2.

This observation yields now

‖VM ′,M (σ)‖22 = max
u∈CM ,‖u‖2=1

uTBMu ≤M ′ + N

dσ
,

‖(VM ′,M (σ))−1‖22 =

(
min

u∈CM ,‖u‖2=1
uTBMu

)−1
≤
(
M ′ − N

dσ

)−1
.

Thus we find the condition of VM ′,M (σ) as given in (3.2).

The observation in Theorem 3.1 leads us to the problem to optimize for given
indices 0 ≤ n1 < n2 < . . . < nM < N the parameter σ such that dσ in (3.1) is
maximized. Before presenting an algorithm to compute the optimal σ̃, that satisfies

dσ̃ := max
σ∈{1,...,N−1}

dσ (3.4)

with dσ defined in (3.1), we want to answer the question, how small dσ̃ can happen
to be.

Theorem 3.2 Let N be of the form N = 2J , J ∈ N, and d = dσ̃ := max
σ∈{1,...,N−1}

dσ

with dσ defined in (3.1) be the distance obtained for the optimally chosen parameter
σ̃. Then we have

N

M2
≤ d ≤ N

M
.

Proof. 1. Considering the M knots 0 ≤ n1 < n2 < . . . < nM < N and the
corresponding knots σ̃nk modN , the distance d is obviously maximal if the knots σ̃nk
are equidistantly distributed on the (periodic) interval of length N , i.e., if d = N/M .

2. In order to show the lower bound, we apply a counting argument. Let us consider
the set D of M(M − 1) distances d`,k := (n` − nk) modN for `, k = 1, . . . ,M , ` 6= k.
Assume that ν indices nj are odd, and M − ν indices are even. Then we obtain
2ν(M − ν) odd distances d`,k and M(M − 1)− 2ν(M − ν) even distances.

11

We assume now to the contrary that d = dσ̃ < N/M2. Thus dσ < N/M2 for all
σ ∈ {1, . . . , N−1}, i.e., for each σ there exists a distance dσ`,k ∈ D with σdσ`,k modN <

N/M2. We will show that this assumption leads to a contradiction.
For each distance d`,k ∈ D we now determine the largest possible number of odd

integers σ such that σd`,k modN < N/M2. We distinguish between odd and even
distances d`,k and consider two cases.
Case 1: If the fixed distance d`,k ∈ D is odd, then σd`,k modN is again odd, and
for two pairwise different odd integers σ1, σ2 ∈ {1, . . . , N − 1} the corresponding
values σ1d`,k modN and σ2d`,k modN are different, since σ1d`,k = σ2d`,k modN yields
(σ1 − σ2)d`,k = 0 modN with the only solution σ1 = σ2.

Observe that there are dN/(2M2)+1/2e−1 (distinct) odd numbers in the interval
[0, N/M2]. Thus, there exist at most dN/(2M2) + 1/2e − 1 pairwise different odd
integers σ in {1, . . . , N − 1} such that σd`,k modN < N/M2.

Since we have at most 2ν(M − ν) distinct odd distances in D, there can be at
most

2ν(M − ν)

(⌈
N

2M2
+

1

2

⌉
− 1

)
pairwise different odd integers σ in {1, . . . , N − 1} such that the condition

σdσ`,k modN < N/M2 (3.5)

is satisfied with an odd distance d`,k. Observe that this upper bound can be only
achieved if all occurring odd distances d`,k in D are pairwise different.
Case 2: Let now d`,k be a fixed even distance. Then there exists a positive integer
µ such that d`,k = 2µd̃`,k and d̃`,k is odd. Thus, the condition σd`,k modN < N

M2 can
be simplified to

σd̃`,k mod
N

2µ
<

N

2µM2
.

Hence, at most dN/(2µ+1M2)+1/2e−1 pairwise different odd integers σ in {1, . . . , N−
1} can exist such that (3.5) is satisfied.

Since we have M(M − 1)− 2ν(M − ν) even distances d`,k, it follows that at most

(M(M − 1)− 2ν(M − ν))

(⌈
N

4M2
+

1

2

⌉
− 1

)
odd integers σ in {1, . . . , N − 1} can exist, such that the condition (3.5) is satisfied
with an even distance d`,k. Observe that this upper bound can be only achieved if all
occurring even distances d`,k are pairwise different and of the form d`,k = 2d̃`,k with
some odd d̃`,k.

3. We now consider the following cases.

a) For N > 4M2, the number of odd σ satisfying (3.5) for at least one distance d`,k

12

is bounded by

2ν(M − ν)

(
N

2M2
+

1

2

)
+ (M(M − 1)− 2ν(M − ν))

(
N

4M2
+

1

2

)
= 2ν(M − ν)

N

4M2
+M(M − 1)

(
N

4M2
+

1

2

)
≤ M2

2

N

4M2
+
N

4
− N

4M
+
M2

2
− M

2

<
N

8
+
N

4
+
N

8
− N

4M
− M

2
<
N

2
,

where we have used that 2ν(M − ν) ≤ M2

2 for all ν ∈ {0, . . . ,M}. Hence, not
all values σ satisfy the condition (3.5) in this case.

b) For 3M2 < N ≤ 4M2, we have⌈
N

2M2
+

1

2

⌉
− 1 = 2,

⌈
N

4M2
+

1

2

⌉
− 1 = 1.

Thus, the number of odd integers σ satisfying (3.5) is bounded by

4ν(M − ν) +M(M − 1)− 2ν(M − ν) = 2ν(M − ν) +M(M − 1)

≤ M2

2
+M2 −M =

3M2

2
−M <

N

2
,

i.e., not all values σ satisfy (3.5) also in this case.

c) For 2M2 < N ≤ 3M2, it holds that⌈
N

2M2
+

1

2

⌉
− 1 = 1,

⌈
N

4M2
+

1

2

⌉
− 1 = 1,

and therefore the number of odd integers σ satisfying (3.5) is bounded by

2ν(M − ν) +M(M − 1)− 2ν(M − ν) = M(M − 1) < M2 <
N

2
.

Hence, also for 2M2 < N ≤ 3M2, not all values σ satisfy (3.5).

d) For M2 < N ≤ 2M2, we have⌈
N

2M2
+

1

2

⌉
− 1 = 1,

⌈
N

4M2
+

1

2

⌉
− 1 = 0.

and thus, the number of odd integers σ satisfying (3.5) is bounded by

2ν(M − ν) ≤ M2

2
<
N

2
,

i.e., also in this case, not all values σ satisfy (3.5).

e) For N ≤M2, no odd integer satisfies (3.5).

13

Thus, the number of odd integers σ for which there exists a dσ`,k ∈ D such that (3.5)
holds, is strictly smaller than N/2, i.e., there exists at least one odd σ ∈ {1, . . . , N−1}
with

σdσ`,k modN ≥ N

M2

for all d`,k ∈ D.

Remark 3.3 1. The lower bound d = N/M2 can be indeed achieved if N = 2J =
2αM2 for some α ∈ N0, and if all distances of the form

d`,k = 2α(2r + 1), r = 0, . . . ,
N

2α+2
− 1

occur. Choosing e.g. N = 16, M = 4, α = 0, and the four indices n1 = 0, n2 =
1, n3 = 3, n4 = 8, then

D := {d`,k : `, k = 1, . . . , 3; ` < k} = {1, 2, 3, 5, 7, 8}

contains all odd numbers in {0, . . . , N/2} and we find d = N/M2 = 1.
2. Observe that this case d = N/M2 is very rare. It occurs only for very special

choices of indices {nk}Mk=1 (as well as its shifts {nk + `}Mk=1, ` = 0, . . . , N − 1, and
shifted reflections {(N − nk) + `}Mk=1, ` = 0, . . . , N − 1. In the above case N = 16,

M = 4, there are
(
N
4

)
= 1820 possibilities to fix four (ordered) indices, where d =

N/M2 = 1 only occurs in 128 cases.

4 Efficient parameter computation

In this section we will derive a method to compute the optimal parameter σ̃ such that
the optimization problem

σ̃ = argmax
σ∈{1,...,N−1}

dσ (4.1)

with dσ in (3.1) is solved for a given index set

0 ≤ n1 < n2 < . . . < nM < N,

where N = 2j and M2 ≤ N . Our considerations will lead to an algorithm providing
a suboptimal σ̃ ensuring a large distance dσ̃. If two or more found values σ̃ satisfy
the distance criterion with the same distance dσ̃, then we will choose from the set of
these parameters the one which minimizes the value∣∣∣∣∣

M∑
k=1

ωσ̃nkN

∣∣∣∣∣
thereby enforcing a better distribution of the knots ωσ̃nkN on the unit circle.

As before, let d`,k := |n` − nk| for `, k = 1, . . .M , ` > k, and d̃`,k = N − d`,k =
−d`,k modN be the periodic distances modulo N . The set D contains all distinct
values d`,k and d̃`,k. Clearly, D has at most M(M − 1) elements and can be also
smaller since distances d`,k and d`′,k′ can coincide. Further, 0 /∈ D since d`,k 6= 0.

We use σD to denote the set that contains all the distances d ∈ D multiplied
by σ modulo N . For our problem, we look at σD (mod N). Our goal is to seek
σ ∈ Σ = {1, 2, . . . , N − 1} such that

14

either the minimum value of σD (minσD) is enlarged to a chosen value;

or the minimum value of σD (minσD) is maximized.

Our main idea is now to efficiently determine subsets Σ(L), L = 0, 1, 2, . . ., such
that minσD > L for all Σ(L), i.e., σd > L for all d ∈ D and all σ ∈ Σ(L) ⊂ Σ.

For this purpose, we consider the following disjoint subsets D(`) of D. Recalling
that N = 2j for some j > 0, each d ∈ D can be uniquely written in the form d = 2`d̄
with d̄ odd and ` ∈ {0, 1, . . . , 2j−1}. We write

D(`) := {d ∈ D : d = 2`d̄, d̄ odd}, ` = 0, . . . , j − 1, (4.2)

such that D = ∪j−1`=0D
(`). Obviously, each d ∈ D(`) possesses 2` − 1 nonzero divisors

modulo 2j , namely 2j−`r, r = 1, . . . , 2` − 1.

Construction of Σ(0). To obtain Σ(0), we remove all σ from Σ satisfying σd =
0 modN . This is done by fixing the largest index ` ≤ j−1 with D(`) 6= ∅ and removing
all multiples of 2j−` from Σ. For example, if D contains the distance d = N/2 = 2j−1,
then we have to remove all even integers from Σ in order to obtain Σ(0). By definition,
all remaining values σ ∈ Σ(0) ensure that the σnk are pairwise distinct such that the
corresponding Vandermonde matrix VM is invertible. We simply observe that all odd
integers σ ∈ {0, . . . , N − 1} are still in Σ(0).

Construction of Σ(1). To obtain Σ(1), we have to remove all σ ∈ Σ(0) satisfying
σd = 1 modN for some d ∈ D. By construction, we only need to consider d ∈ D(0)

here, since the d’s in D(`) with ` > 0 are even. Thus, we have to remove the inverse
of each d ∈ D(0) (modulo N) from Σ(0) to obtain Σ(1).

Construction of Σ(L). We can proceed with this idea to obtain the sets Σ(L), L > 1,
by increasing the lower bound of σD. For that purpose, we define the following subsets
of Σ(0),

T (0) = {σ ∈ Σ(0) : σ · d = 1 modN for a d ∈ D(0)},
T (1) = {σ ∈ Σ(0) : 2−1σ · d = 1 modN/2 for a d ∈ D(1)},

...
...

T (j−1) = {σ ∈ Σ(0) : 2−j+1σ · d = 1 modN/2j−1 for a d ∈ D(j−1)}.

We use the convention that kT (`) := {kσmodN : σ ∈ T (`)} for k ∈ {1, . . . , N − 1}.
Then, as already described before, we obtain

Σ(1) = Σ(0) − T (0)

enforcing that the minimal distance minσD is at least 2.
In order to obtain Σ(2), we have to remove 2T (0) and T (1) from Σ(1), since these sets

contain parameters σ satisfying σd = 2 modN for some d ∈ D(0) resp. D(1). Observe
that the distances in D(`) with ` > 1 need not to be checked since they contain the
factor 4 and can never produce a remainder 2. Thus, Σ(2) = Σ(1) − 2T (0) − T (1).

Generally, for L ∈ {1, . . . , bN/Mc} with L = 2rL̄ we get in a similar manner

Σ(L) = Σ(L−1) − LT (0) − L

2
T (1) − . . .− L

2r
T (r) (4.3)

= Σ(0) −
L⋃
k=1

kT (0) −
bL/2c⋃
k=1

kT (1) − . . .−
bL/2j−1c⋃
k=1

kT (j−1),

15

where the sets vanish if bL/2sc = 0 for s ∈ {0, . . . , j − 1}.

Example 4.1 We reconsider the example of Section 2. Let x ∈ C64 be 5-sparse with
xk = 1 for k ∈ I(6) := {1, 5, 6, 13, 59}. Assume that we have already computed x(4) ∈
C16 with I(4) = {1, 5, 6, 11, 13}, i.e., N = 16, M = 5 (disregarding that M2 > N in
this small example case). We find the set of distances D = D(0) ∪D(1) ∪D(2) ∪D(3)

with

D(0) = {1, 5, 7, 9, 11, 15}, D(1) = {2, 6, 10, 14}, D(2) = {4, 12}, D(3) = {8}.

Since 8 ∈ D all even values σ have to be removed from Σ = {1, 2, . . . , 15} and we
obtain Σ(0) = {1, 3, 5, 7, 9, 11, 13, 15}. Now, we compute

T (0) = {1, 3, 7, 9, 13, 15}, T (1) = T (2) = T (3) = {1, 3, 5, 7, 9, 11, 13, 15}.

Thus Σ(1) = Σ(0) − T (0) = {5, 11} and these are the only parameters ensuring the
distance dσ ≥ 2. Indeed, 5I(4) = {5, 7, 9, 1, 14} with d5 = 2. The corresponding
Vandermonde matrix V5(5) possesses the condition 3.02. Observe that σ = σ4 = 11 =
16− 5 gives the same result by “reflection”.

In step j = 5, having computed x(5) ∈ C32 with I(5) = {1, 5, 6, 13, 27}, i.e., N = 32,
M = 5, we find

D(0) = {1, 5, 7, 11, 21, 25, 27, 31}, D(1) = {6, 10, 14, 18, 22, 26},
D(2) = {4, 12, 20, 28}, D(3) = {8, 24}, D(4) = ∅.

To obtain Σ(0), we have to remove thus all multiples of 4 and get

Σ(0) = {1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31}.

Further, we find

T (0) = {1, 3, 9, 13, 19, 23, 29, 31}, T (1) = {3, 5, 7, 9, 11, 13, 19, 21, 23, 25, 27, 29},
T (2) = T (3) = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}.

Thus,

Σ(1) = Σ(0) − T (0) = {2, 5, 6, 7, 10, 11, 14, 15, 17, 18, 21, 22, 25, 26, 27, 30},
Σ(2) = Σ(1) − 2T (0) − T (1) = {10, 15, 17, 22},
Σ(3) = Σ(2) − 3T (0) = {10, 15, 17, 22},
Σ(4) = Σ(3) − 4T (0) − 2T (1) − T (2) = ∅.

Thus, σ5 = 10 and σ5 = 15 are the optimal parameters in this case achieving both
a distance dσ = 4 between neighboring knots, while 17 and 22 are the corresponding
“reflections”.

Application to the iterative procedure. In order to apply the above ideas for
constructing an optimal σ in the sparse FFT Algorithm 2.3, we simplify the procedure.
We distinguish the following two cases: Either the number Mj of nonzero values in x(j)

is the same as in the previous step, i.e., Mj = Mj−1, or it increases, i.e., Mj > Mj−1.

16

For the first case, we will show in the next theorem that, supposed that a suitable
parameter σj−1 has been found already in step j − 1, then σj = 2σj−1 will be a
suitable parameter in step j and moreover, the obtained Vandermonde matrices will
coincide. In the second case, we can simplify the above procedure since in this case
D(j−1) = {2j−1} will appear.

Theorem 4.2 Let σj−1 be the parameter that has been used in the iterative procedure

in order to obtain a well-conditioned Vandermonde matrix VMj−1 =
(
ω
σ(p−1)n(j−1)

r

2j−1

)Mj−1

p,r=1

in step j−1 of Algorithm 2.3 to compute x(j), where 0 < n
(j−1)
1 < . . . < n

(j−1)
Mj−1

< 2j−1

denotes the support of x(j−1). Then, if Mj = Mj−1, the parameter σj = 2σj−1 pro-
duces the same Vandermonde matrix in the iteration step j, i.e.,

VMj =

(
ω
2σj−1(p−1)n

(j)
r

2j

)Mj

p,r=1

= VMj−1 .

Proof. Since Mj = Mj−1, each support index n
(j)
r of x(j) is related to n

(j−1)
r by

n(j)r ∈ {n(j−1)r , n(j−1)r + 2j−1}.

Thus,
2σj−1(p− 1)n(j)r mod 2j = 2σj−1(p− 1)n(j−1)r mod 2j

and hence

ω
2σj−1(p−1)n

(j)
r

2j
= ω

2σj−1(p−1)n
(j−1)
r

2j
= ω

σj−1(p−1)n
(j)
r

2j−1 ,

i.e., the entries of VMj and VMj−1 coincide.

Reconsidering Example 4.1, for j = 4 and j = 5 we obtained the optimal param-
eters σ4 = 5 and σ5 = 10, respectively. In this case, we had M4 = M5 = 5. Thus, the
choice σj = 2σj−1 can be even optimal regarding the optimization problem (4.1).

Let us now consider the second case Mj > Mj−1. This case can only occur if (at

least) one support index n
(j−1)
k splits into two new support indices n

(j)
k = n

(j−1)
k and

n
(j)
k+s = n

(j−1)
k + 2j−1. Thus, D contains the distance 2j−1 and therefore D(j−1) 6= ∅

which means that the set Σ(0) contains only the odd integers in the range {1, . . . , N−1}
with N = 2j . Hence, all sets of the form 2kT (r), k ∈ N, r ∈ {0, . . . j − 1} are disjoint
from Σ(0) and the evaluation of Σ(L) with L = 2rL̄ in (4.3) simplifies to

Σ(L) = Σ(L−1) − L̄T (r)

= Σ(0) −
bL/2c⋃
k=1

(2k − 1)T (0) −
bL/4c⋃
k=1

(2k − 1)T (1) − . . .−
bL/2j−1c⋃
k=1

(2k − 1)T (j−2).

Applying the above formula, we can iteratively determine the optimal parameter σ
by computing the sets Σ(0),Σ(1), . . . and choosing σ ∈ Σ(L′) such that Σ(L) = ∅ for all
L > L′. But as this means that we have to consider all odd integers in {1, . . . , N/2−1},
the computation of σ in this way is very expensive.

Therefore, we propose two different methods for a more efficient computation of
σ that we describe in the following. The first approach is based on the idea that we
can restrict our search to parameters σ which give “sufficiently good” distances. In

17

the second approach we restrict the number of regarded σ’s in advance in order to
reduce the computational effort.
First method. By Theorem 3.2, we already have N

M2 ≤ d ≤ N
M . Let us assume that

there exist odd distances in D, i.e., D(0) 6= ∅. Now, we fix the largest odd integer
being smaller than N/M ,

d̃ = 2

⌊
N

2M
+

1

2

⌋
− 1 <

N

M
,

since this would be the optimal distance “dσ̃” that we can hope for. We compute all
parameters σ satisfying σd = d̃modN for at least one distance d ∈ D. Since d̃ is odd,
we can restrict our search to the elements d ∈ D(0). For each distance d ∈ D(0) with
d < N/2 we apply the following procedure: We compute σ satisfying σd = d̃modN ,
i.e., σ = d̃d−1 modN , where d−1 has been already computed in T (0). For the obtained
σ’s we compute σI(j), order the values of this set by size and determine the minimal
distance dσ between neighboring values. In this computation we can neglect the
parameters σ ∈ T (0) if there is at least one parameter σ 6∈ T (0), see also Example 4.7.

Inspecting all distances dσ found in this way, we choose the parameter σ that
produces the largest minimal distance. If there is more than one σ achieving this

largest distance, we choose the σ for which the sum
∣∣∣∑M

k=1 ω
σnk
N

∣∣∣ is minimal. We only

have to consider distances in D(0) with d < N/2, as the remaining distances N − d
give “reflected” sets (n− σ)I(j) with the same minimal distances. Thus, the number
of relevant distances in D(0) is bounded by M2/4.

Let us first give an example illustrating the computation of σ as above. Afterwards,
we extend the procedure for the case when D(0) = ∅ and summarize the algorithm
for the computation of σ.

Example 4.3 Let us assume, we are given x(7) ∈ C128 with the set of nonzero indices
I(7) = {0, 5, 6, 64}. In this case, the sparsity changes in the last iteration step, and
we have M7 = 4 > M6. We obtain the sets D = D(0) ∪D(1) ∪D(6) with

D(0) = {1, 5, 59, 69, 123, 127}, D(1) = {6, 58, 70, 122}, D(6) = {64}.

Further, it follows that

T (0) = {1, 77, 115, 13, 51, 127}, T (1) = {43, 107, 53, 117, 11, 75, 21, 85},

where the order of the entries in T (0) and T (1) corresponds to that in D(0) resp. D(1),
i.e., we have e.g. 5−1 mod 128 = 77. We choose d̃ = 2

⌊
1
2

⌈
N
M

⌉⌋
− 1 = 31 as optimal

distance value. Considering the elements in D(0), we obtain the following cases:

a) d1 = 1: From 1σ = 31 mod 128, we get σ := 31 and 31I(7) = {0, 27, 58, 64}.
Thus, this set gives only a minimal distance 6.

b) d2 = 5: From 5σ = 31 mod 128, we get σ = 77 · 31 mod 128 = 83 mod 128 and
83I(7) = {0, 31, 114, 64}. Hence, σ = 83 leads to a minimal distance 14.

c) d3 = 59: From 59σ = 31 mod 128, we get σ = 115 · 31 mod 128 = 109 mod 128
and 109I(7) = {0, 33, 14, 64}. Thus, σ = 109 leads to the distance d = 14 as
well.

18

Comparing σ = 83 and σ = 109, we obtain in the first case |ω0
128 + ω31

128 + ω114
128 +

ω64
128| = 0.8992 while in the second case |ω0

128+ω33
128+ω14

128+ω64
128| = 1.7864. Therefore,

we prefer σ = 83. The corresponding (4 × 4)-Vandermonde matrix possesses the
condition 3.2199 for σ = 83.

The optimal parameter in this small example is σ = 59 with the corresponding
index set 59I(7) = {0, 39, 98, 64}. This yields the optimal distance dσ = 25 for which
the Vandermonde matrix achieves the condition 1.4535.

If D(0) = ∅, then we consider D(1). As mentioned before, all distances d ∈ D(1)

are of the form d = 2 · d̄ for some odd d̄ ∈ {1, 3, . . . , N/2− 1}. Therefore, we choose

d̃ = 4

⌊
N

4M
+

1

2

⌋
− 2,

being the largest even integer smaller than N
M that is divisible by 2 but not by 4.

Then we compute for each distance d ∈ D(1) the parameter σ which achieves d̃, i.e.,

σ =
d̃

2

(
d

2

)−1
mod

N

2
.

As above, from the obtained set of σ’s we choose the σ for which the minimal distance
between neighboring values in the ordered set σI(j) is maximal and, if there are several

possibilities, the one for which the sum
∣∣∣∑M

k=1 ω
σnk
N

∣∣∣ is minimal. Here again, we can

safe computation time, since if not all found σ’s are in T (1), we can restrict the
computation of these ordered sets σI(j) to σ 6∈ T (1).

If D(0) = D(1) = ∅, but D(2) 6= ∅, we proceed similarly choosing the optimal
distance

d̃ = 8

⌊
N

8M
+

1

2

⌋
− 4

and computing the parameters σ by

σ =
d̃

4

(
d

4

)−1
mod

N

4

for all d ∈ D(2), etc.
We summarize our first method to find a parameter σ where we try to achieve an

optimal distance.

Algorithm 4.4 (Computation of σ if Mj > Mj−1, choosing “optimal” d̃)

Input: N = 2j

Index set I(j) containing M indices 0 ≤ n1 < n2 < · · · < nM < N .
Output: σ = σj such that σD contains at least once the “optimal distance” d̃.

1. Compute the pairwise distances between all n1, . . . , nM and form D. Form the
subsets D(0), . . . , D(j−1) according to (4.2). Fix the smallest integer ` such that
D(`) 6= ∅. Compute the set T (`).

2. Compute d̃ := 2`+1
⌊

N
2`+1M

+ 1
2

⌋
− 2` as “optimal” distance value.

3. Set Σ := ∅.
For all elements d ∈ D(`) with d < N/2 do

19

• Compute

σ =
d̃

2`

(
d

2`

)−1
modN/2`.

• Form Σ = Σ ∪ {σ}.
4. If Σ− T (`) 6= ∅ then set Σ = Σ− T (`).

5. For all σ ∈ Σ do

• Form σI(j). Order the elements of σI(j) by size and compute the smallest
distance L′ between neighboring values in σI(j).

6. Choose the σ ∈ Σ that leads to the largest minimal distance L′ of neighboring
values. If there are several parameters σ achieving the same distance, choose

the σ which minimizes the sum
∣∣∣∑M

k=1 ω
σnk
N

∣∣∣.
The computational effort to find σ using this algorithm is at most O(M2). The

set D contains at most M(M −1) entries. Using a distance matrix, where the (`, k)th
entry is n` − nk modN , we can exploit the computations from the previous iteration
steps and only have to change (or add) single rows and corresponding columns if one

entry n
(j−1)
k shifts to n

(j)
k = n

(j−1)
k +N/2 or if Mj > Mj−1 and entries n

(j−1)
k split into

n
(j)
k = n

(j−1)
k and n

(j)
k+1 = n

(j−1)
k +N/2. The computation of T (`) also iteratively uses

the values found in the previous step, where we exploit that for nk · n′k = 1 modN it
follows that either nk · n′k = 1 mod 2N or nk · (n′k +N) = 1 mod 2N .

Second method. We present a second idea for determining a suitable parameter
σ. This time we limit the set of possible parameters σ in advance. As already seen,
only odd parameters σ have to be considered when Mj > Mj−1. Additionally, our
numerical experiments indicate that prime numbers might be a good choice. Hence,
the second idea for choosing a suitable σ is to restrict the search to prime numbers.
In order to limit the computational effort, we propose here to choose σ among the M
larges primes being smaller than N/2 which has achieved good results in practice.

We summarize the second algorithm using prime numbers.

Algorithm 4.5 (Computation of σ if Mj > Mj−1, using prime numbers)

Input: N = 2j, set Σ of M largest prime numbers smaller than N/2,
Index set I(j) containing M indices 0 ≤ n1 < n2 < · · · < nM < N .

Output: σ = σj prime.

1. For all σ ∈ Σ do

(a) Compute the set σI(j).

(b) Order the elements of σI(j) by size and compute the smallest distance L′

between neighboring values.

2. Choose the σ ∈ Σ that leads to the largest minimal distance L′ of neighboring
values. If there are several parameters σ achieving the same distance, choose

the σ which minimizes the sum
∣∣∣∑M

k=1 ω
σnk
N

∣∣∣.
Remark 4.6 If the largest maximal distance L′ is too small compared to the optimal
distance N/M , we recommend to extend the matrix VM,M to V2M,M by taking just

20

more rows. Keep in mind that taking all N rows would even lead to the optimal
condition 1. Observe that the QR decomposition of this rectangular Vandermonde
matrix has still a complexity of O(M2), see [4].

We finish the section by presenting a larger example.

Example 4.7 Let N = 214 = 16384, and let

I = I(14) := {6, 7, 8, 9, 10, 11, 12, 13, 56, 57, 58, 79, 80, 81, 345, 1234, 1235}

be the set of nonzero indices, such that xk = 1 for k ∈ I(14) and xk = 0 for k 6∈ I(14).
Assume that x̂ ∈ C16384 is given.

We apply Algorithm 2.3 to recover x. We summarize our findings at each level in
Table 1.

j 2j Mj method obtained new index set I(j+1)

0 1 1 FFT(1) {0, 1}
1 2 2 FFT(2) {0, 1, 2, 3}
2 4 4 FFT(4) {0, 1, 2, 3, 4, 5, 6, 7}
3 8 8 FFT(8) {0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 15}
4 16 13 FFT(16) {6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 24, 25, 26}
5 32 16 FFT(32) {6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 25, 56, 57, 58}
6 64 17 FFT(64) {6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 25, 56, 57, 58}
7 128 17 FFT(128) {6, 7, 8, 9, 10, 11, 12, 13, 56, 57, 58, 79, 80, 81, 82, 83, 89}
8 256 17 FFT(256) {6, 7, 8, 9, 10, 11, 12, 13, 56, 57, 58, 79, 80, 81, 210, 211, 345}
9 512 17 σ = 88 {6, 7, 8, 9, 10, 11, 12, 13, 56, 57, 58, 79, 80, 81, 210, 211, 345}
10 1024 17 σ = 176 {6, 7, 8, 9, 10, 11, 12, 13, 56, 57, 58, 79, 80, 81, 345, 1234, 1235}
11 2048 17 σ = 352 {6, 7, 8, 9, 10, 11, 12, 13, 56, 57, 58, 79, 80, 81, 345, 1234, 1235}
12 4096 17 σ = 704 {6, 7, 8, 9, 10, 11, 12, 13, 56, 57, 58, 79, 80, 81, 345, 1234, 1235}
13 8192 17 σ = 1408 {6, 7, 8, 9, 10, 11, 12, 13, 56, 57, 58, 79, 80, 81, 345, 1234, 1235}

Table 1: Sparsity Mj and obtained index sets at each level for Example 4.7.

For j = 0, . . . , 8, the FFT is applied since 2j < M2
j . We obtain x(9) ∈ C512

with sparsity M9 = 17. Since M2
9 = 289 < 512, we apply for j = 9 the special

reconstruction step using the Vandermonde system. Since the number of nonzero
entries has not changed since step j = 6, we may go back there to find σ. In that case,
M = 17, and N = 26 = 64, we cannot achieve a distance better than bN/Mc = 3. By
previous observations, each odd σ already provides a distance 1. We find

D(0) ={1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 31, 33, 37, 39, 41, 43, 45, 47,

49, 51, 53, 55, 57, 59, 61, 63}.

Hence, D(0) contains all odd numbers up to 29 and 35. Therefore, only σ with 29σ =
1 mod 64 or with 35σ = 1 mod 64 need to be considered since all other odd σ’s are in
T (0) and therefore cannot be in Σ(1). We obtain Σ(1) = {11, 53}. With σ = 11 we find

11I(6) = {2, 4, 6, 13, 15, 17, 19, 24, 35, 37, 40, 46, 48, 51, 57, 59, 62}.

such that d = 2. The second parameter σ = 53 = 64 − 11 provides a “reflected” set
modulo 64. Algorithm 4.4 gives us σ = 53 here, and Algorithm 4.5 gives the result

21

σ = 11, since we have to check up to 17 primes smaller than 32 including 11. Having
found σ6 = 11, we can choose σ9 = 8σ6 = 88 by Theorem 4.2. We obtain in this case
the condition 97.37 of the corresponding Vandermonde matrix, compared to 6.37 ·1015

for taking just σ = 1. Solving the equation system yields x(10).
Since the number M of nonzero entries is already achieved, we can just take σ10 =
2σ9 = 176, σ11 = 2σ10 = 352, etc. The (17 × 17)-Vandermonde matrix applied to
reconstruct x(j) for j ≥ 10 exactly coincides with the Vandermonde matrix for j = 9.
Therefore, we can use the QR decomposition that has already been computed in the
previous iteration step, thereby further reducing the numerical effort. Summarizing the
arithmetical complexity in this case, we observe that we need O(29 log 29) operations
to compute x(9) and afterwards one QR decomposition of the Vandermonde matrix
with effort O(M2). Finding σ and solving the Vandermonde system for the last four
steps then only requires a matrix multiplication and a back substitution with effort
O(M2). Since 29 < 2M2, the complete effort is here O(M2 log N

M2).

5 Numerical experiments

First, we present some numerical experiments showing that the two proposed
Algorithms 4.4 and 4.5 work well in practice. For different values of N and sparsity
M , we consider randomly chosen sets of M indices, compute the minimal distance
in the set of distances D as well as the minimal distances in σD for σ achieved in
Algorithm 4.4 resp. 4.5. For each fixed pair (N,M) we have computed these distances
for 100 randomly chosen index sets of size M in {0, . . . , N−1}. The obtained average
distances are presented in Table 2.

N M
minimal minimal distance in σD, minimal distance in σD,

distance in D σ from Algorithm 4.4 σ from Algorithm 4.5

27 = 128 4 8.65 16.66 16.61
210 = 1024 4 73.54 138.88 139.09
210 = 1024 20 2.96 12.09 9.16

215 = 32 768 4 2124.21 4389.99 4181.90
215 = 32 768 20 72.34 372.96 285.23
215 = 32 768 50 14.93 88.42 57.59

Table 2: Average of largest minimal distances achieved by Algorithm 4.4 resp. 4.5 for
different values of N and M and 100 randomly chosen index sets.

The findings indicate that the proposed algorithms in any case strongly improve
the minimal distance and hence also the matrix condition when they are applied in
our reconstruction algorithm. Algorithm 4.4 which aims at achieving a least once
an “optimal” distance d̃ performs slightly better than Algorithm 4.5. In return,
Algorithm 4.5, which only considers M different primes for σ, provides a very simple
and efficient possibility to determine a suitable σ.

Finally, we consider the arithmetical complexity of our new Algorithm 2.3 in
more detail and compare the runtime of the algorithm with the FFT in Matlab.
In Algorithm 2.3, we compute x(j+1) from x(j) for j = 0, . . . , J − 1. As long as
the found sparsity Mj ≤ M satisfies M2

j > 2j , we employ the FFT of length 2j to

22

compute x(j+1). Thus, for the iteration steps j = 0, . . . , L with L = 2blog2Mc, we
need at each step one DFT(2j) and 2j+1 further operations. Using the Sande-Tukey
algorithm with 3

2N log2N operations for a DFT(N), we require

L∑
j=0

(
3

2
j2j + 2j+1

)
= 3(2LL+ 1) + 2L+2 = 2L(3L+ 4) + 3 ≤M2(6 log2M + 4) + 3

operations, where we disregard the needed comparisons. In particular, for M2 > N ,
the arithmetical complexity of the algorithm is still comparable with the usual FFT
algorithm. For the remaining iteration steps, j = L + 1, . . . , J − 1, we have to build
the partial Fourier matrix A(j+1). We assume that the powers of ωN are predefined
as for the usual FFT. The evaluation of σ using Algorithm 4.5 requires 2M2 +O(M)
operations and M sortings of vectors of length M . We keep in mind that σ needs not
to be computed, if the sparsity does not change any longer during the iteration. The
QR factorization of Demeure [4] possesses computational costs of 8.5M2+O(M) such
that the equation system in (2.8) can be solved using 12.5M2 + O(M) operations,
where the computation of σ is included for each second step. Summing up, we obtain

12.5M2((log2N)− 1− L) +O(M) ≤ 12.5M2((log2N)− 2(log2M)) +O(M)

operations for the remaining iteration steps, disregarding comparisons and sorting.
Together, we have a complexity of M2(12.5 log2N−19 log2M+4)+O(M) for M2 < N
and N(3 log2N + 4) +O(N) for M2 ≥ N disregarding comparisons and sorting. The
following Table 3 gives a comparison of these complexities for sparse signals with
M = 5, 10, 20.

J DFT(2J) M = 5 M = 10 M = 20

10 15360 2122 6588 18753
11 33792 2435 7838 23753
12 73728 2747 9088 28753
13 1590744 3060 10338 33753
14 344064 3372 11588 38753
15 737280 3685 12838 43753
16 1572864 3997 14088 48753
17 3342336 4310 15338 53753
18 7077888 4622 16588 58753
19 14942208 4935 17838 63753
20 31457280 5247 19088 68753

Table 3: Complexity of the FFT of length N = 2j in comparison to Algorithm 2.3 with
sparsity M = 5, 10, 20, where sorting and comparison is not taken into account.

A primitive Matlab implementation of all algorithms in this paper can be found at
http://na.math.uni-goettingen.de/index.php?section=gruppe&subsection=software.
Our current implementation is less efficient than the arithmetical complexity suggests
but can still improve the Matlab FFT algorithm for strong sparsity. In Figure 1
we compare the runtime of the FFT of length 2j with our algorithm, with different
sparsities M . Here we have used a slight modification of Algorithm 2.3, where M is
known in advance such that the first L = 2blog2Mc steps of Algorithm 2.3 can be
replaced by one FFT of length 2L+1. The runtimes in Figure 1 have been obtained

23

12 14 16 18 20 22
10

−4

10
−3

10
−2

10
−1

10
0

Figure 1: Runtime comparison (in seconds) of the FFT (blue line) and our algorithm with
M = 5 (red line), M = 10 (black dotted line), M = 20 (cyan dash-dots line) and M = 30

(green dashed line) for length N = 2j with j = 12, . . . , 22.

by computing the average runtime for 10 tests with randomly chosen sparse vectors
with sparsities M = 5, 10, 20, 30.

Let us finish this section with some final remarks. There are several issues still
open according to the considered approach that particularly regard a more efficient
implementation and a further improvement of the sparse FFT algorithm. As the
numerical experiments show, the proposed parameter selection provides sufficiently
small condition numbers of the Vandermonde matrix in most of the cases. However,
particularly for larger M , the condition number gets too large, such that the algorithm
cannot process noisy data in a suitable way. Fortunately, the Algorithms 4.4 and 4.5
for parameter selection give us an essential hint about the condition number of the
Vandermonde matrix in the next iteration step, since the largest minimal distance
L′ of neighboring knots is computed. This knowledge could be used to decide to
apply rectangular Vandermonde matrices with more rows at single levels (and more
corresponding Fourier values).

Possible improvements in runtime of the algorithm regard for example the case
when the sparsity does not change from one level to the next. Then we can use
the same Vandermonde matrix as at the previous level and just directly take the
corresponding QR-decomposition again for solving the new equation system.

Acknowledgment

The authors thank the anonymous referee for valuable suggestions to improve this
manuscript. This work is supported by the Deutsche Forschungsgemeinschaft (DFG)
in the project PL 170/16-1 and in the framework of the RTG 2088.

References

[1] A. Akavia, Deterministic sparse Fourier approximation via approximating arith-
metic progressions, IEEE Trans. Inform. Theory 60(3) (2014), 1733–1741.

[2] S. Bittens, Sparse FFT for functions with short frequency support, Dolomites
Res. Notes Approx. 10 (2017), 43–55.

24

[3] L. Berman and A. Feuer, On perfect conditioning of Vandermonde matrices on
the unit circle, Electronic Journal of Linear Algebra 16 (2007), 157–161.

[4] C.J. Demeure, Fast QR factorization of Vandermonde matrices, Linear Algebra
and its Applications 122–124 (1989), 165–194.

[5] M. Giesbrecht, G. Labahn, and W.-S. Lee, Symbolic-numeric sparse interpolation
of multivariate polynomials, J. Symbolic Comput. 44(8) (2009), 943–959.

[6] M. Giesbrecht and D.S. Roche, Diversification improves interpolation, In A.
Leykin (ed.), Proceedings of the 2011 International Symposium on Symbolic
and Algebraic Computation ISSAC 2011, ACM, pp. 123130.

[7] A. Gilbert, P. Indyk, M.A. Iwen, and L. Schmidt, Recent developments in the
sparse Fourier transform, IEEE Signal Processing Magazine 31(5) (2014), 91–
100.

[8] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, Simple and practical algorithm
for sparse Fourier transform, Proc. 23th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’12), 2012, pp. 1183–1194.

[9] H. Hassanieh, F. Adib, D. Katabi, and P. Indyk, Faster GPS via the sparse
Fourier transform, Proceeding Mobicom 2012, Proceedings of the 18th annual
international conference on Mobile computing and networking, 2012, pp. 353–
364.

[10] M.A. Iwen, Combinatorial sublinear-time Fourier algorithms, Found. Comput.
Math. 10 (2010), 303–338.

[11] M.A. Iwen, Improved approximation guarantees for sublinear-time Fourier algo-
rithms, Appl. Comput. Harmon. Anal. 34 (2013), 57–82.

[12] N.T. Janakiraman, A. Vem, K.R. Narayanan, J.-F. Chamberland, Sub-
string/pattern matching in sub-linear time using a sparse Fourier transform ap-
proach, preprint, arXiv:1704.07852v1.

[13] A. Moitra, Super-resolution, extremal functions and the condition number of
Vandermonde matrices, STOC ’15 Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, 2015, pp. 821–830.

[14] H.L. Montgomery and R.C. Vaughan, Hilbert’s inequality, J. London Math. Soc.
(2), 8 (1974), 73–82.

[15] D. Lawlor, Y. Wang, and A. Christlieb, Adaptive sub-linear time Fourier algo-
rithms, Advances in Adaptive Data Analysis 5(1) (2013), 1350003.

[16] S. Pawar and K. Ramchandran, Computing a k-sparse n-length discrete Fourier
transform using at most 4k samples and O(k log k) complexity, IEEE Interna-
tional Symposium on Information Theory (2013), pp. 464–468.

[17] D. Potts, M. Tasche, T. Volkmer, Efficient spectral estimation by MUSIC and
ESPRIT with application to sparse FFT, Frontiers in Applied Mathematics and
Statistics 2 (2016).

[18] G. Plonka and K. Wannenwetsch, A deterministic sparse FFT algorithm for
vectors with small support, Numer. Algorithms, 71(4) (2016), 889-905.

[19] G. Plonka and K. Wannenwetsch, A sparse Fast Fourier algorithm for real non-
negative vectors, J. Comput. Appl. Math. 321 (2017), 532–539.

25

[20] B. Segal and M.A. Iwen, Improved sparse Fourier approximation results: faster
implementations and stronger guarantees, Numer. Algorithms 63(2) (2013), 239–
263.

26

