Skip to main content
Log in

Some iterative methods for the largest positive definite solution to a class of nonlinear matrix equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we propose some inversion-free iteration methods for finding the largest positive definite solution of a class of nonlinear matrix equation. Then, we consider the properties of the solution for this nonlinear matrix equation. Also, we establish Newton’s iteration method for finding the largest positive definite solution and prove its quadratic convergence. Furthermore, we derive the semi-local convergence of the Newton’s iteration method. Finally, some numerical examples are presented to illustrate the effectiveness of the theoretical results and the behavior of the considered methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, W.N., Morley, T.D., Trapp, G.E.: Positive solutions to X = AB X − 1 B . Linear Algebra Appl. 134, 53–62 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bini, D.A., Latouche, G., Meini, B.: Solving nonlinear matrix equations arising in tree-like stochastic processes. Linear Algebra Appl. 366, 39–64 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, J., Chen, G.L.: On the Hermitian positive definite solutions of nonlinear matrix equation X s + A X t A = Q. Appl. Math. Comput. 217, 117–123 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Duan, X., Li, C., Liao, A.: Solutions and perturbation analysis for the nonlinear matrix equation \(X+\sum \limits _{i = 1}^{m}A^{*}_{i}X^{-1}A_{i}=I\). Appl. Math. Comput. 218, 4458–4466 (2011)

    MathSciNet  MATH  Google Scholar 

  5. El-sayed, S.M.: Two iteration processes for computing positive definite solutions of the equation XA X n A = Q. Comput. Math. Appl. 41, 579–588 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. El-sayed, S.M., Al-Dbiban, A.M.: A new inversion free iteration for solving the equation X + A T X − 1 A = Q. J. Comput. Appl. Math. 181, 148–156 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Engwerda, J.C., Ran, A.C.M., Rijkeboer, A.L.: Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation X + A X − 1 A = Q. Linear Algebra Appl. 186, 255–275 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ferrante, A., Levy, B.C.: Hermitian solution of the equation X = Q + N X − 1 N . Linear Algebra Appl. 247, 359–373 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao, D.J.: On Hermitian positive definite solutions of the nonlinear matrix equation XA e X A = I. J. Appl. Math. Comput. 50, 109–116 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, C., Lancaster, P.: Iterative solution of two matrix equations. Math. Comp. 68, 1589–1603 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, C.H., Lin, W.W.: The matrix equation x + A T X − 1 A = Q and its application in nano research. SIAM J. Sci. Comput. 32, 3020–3038 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, C.H., Kuo, Y.C., Lin, W.W.: Complex symmetric stabilizing solution of the matrix equation X + A T X − 1 A = Q. Linear Algebra Appl. 435, 1187–1192 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo, C.H., Kuo, Y.C., Lin, W.W.: On a nonlinear matrix equation arising in nano research. SIAM J. Matrix Anal. Appl. 33, 235–262 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hasanov, V.I., Ivanov, I.G.: Solutions and perturbation estimates for the matrix equations X A X n A = Q. Appl. Math. Comput. 156, 513–525 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Hasanov, V.I.: Notes on two perturbation estimates of the extreme solutions to the equations X ± A X − 1 A = Q. Appl. Math. Comput. 216, 1355–1362 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Hasanov, V.I., Hakaev, S.: Newton’s method for a nonlinear matrix equation. Compt. Rend. Bulg Sci. 68, 973–982 (2015)

    MathSciNet  Google Scholar 

  17. Hasanov, V.I., Ali, A.A.: On convergence of three iterative methods for solving of the matrix equation X + A X − 1 A + B X − 1 B = Q. Comput. Appl. Math. 36, 79–87 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, Y.M., Long, J.H.: On the Hermitian positive definite solution of the nonlinear matrix equation \(X+\sum \limits _{i = 1}^{m}A^{*}_{i}X^{-1}A_{i}=I\). Appl. Math. Comput. 216, 3480–3485 (2010)

    MathSciNet  Google Scholar 

  19. Huang, X.D., Zeng, Z.G., Ma, Y.N.: The Theory and Method of Nonlinear Numerical Analysis. Wuhan University Press, Wuhan (2004)

    Google Scholar 

  20. Ivanov, I.G., Hasanov, V.I., Uhlig, F.: Improved methods and starting values to solve the matrix equations X ± A X − 1 A = I iteratively. Math. Comp. 74, 2633–278 (2005)

    MATH  Google Scholar 

  21. Ivanov, I.G., El-sayed, S.M.: Properties of positive definite solutions of the equation x + A X − 2 A = I. Linear Algebra Appl. 279, 303–316 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Konstantinov, M., Petkov, P., Popchev, I., Angelova, V.: Sensitivity of the matrix equation \(A_{0}+\sum \limits _{i = 1}^{k}\sigma _{i}A^{*}_{i}X^{p_{i}}A_{i}= 0 (\sigma _{i}=\pm 1)\). Appl. Comput. Math. 10, 409–427 (2011)

    MathSciNet  Google Scholar 

  23. Lancaster, P., Rodman, L.: Algebraic Riccati Equations. Oxford Science Publishers, Oxford (1995)

    MATH  Google Scholar 

  24. Levy, B.C., Zorzi, M.: A contraction analysis of the convergence of risk-sensitive filters. SIAM J. Optimization Control. 54, 2154–2173 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, J., Zhang, Y.: Sensitivity analysis of the matrix equation from interpolation problems. J. Appl. Math. 2013(518269), 8 (2013). https://doi.org/10.1155/2013/518269

    MathSciNet  Google Scholar 

  26. Lin, W.W., Xu, S.F.: Convergence analysis of structure-preserving doubling algorithms for Riccati-type matrix equations. SIAM J. Matrix Anal. Appl. 29, 26–39 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, P.P., Zhang, S.G.: Newton’s method for solving a class of nonlinear matrix equations. J. Comput. Appl. Math. 256, 254–267 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, A.J., Chen, G.L.: On the Hermitian positive definite solutions of nonlinear matrix equation \(x^{s}+\sum \limits _{i = 1}^{m}A^{*}_{i}X^{-t_{i}}A_{i}=Q\). Appl. Math. Comput. 243, 950–959 (2014)

    MathSciNet  Google Scholar 

  29. Long, J., Hu, X., Zhang, L.: On the Hermitian positive definite solution of the matrix equation X + A X − 1 A + B X − 1 B = I. Bull. Braz. Math. Soc. 39, 371–386 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Meini, B.: Efficient computation of the extreme solutions of X + A X − 1 A = Q and XA X − 1 A = Q. Math. Comput. 71, 1189–1204 (2001)

    Article  MATH  Google Scholar 

  31. Monsalve, M., Raydan, M.: A new inversion-free method for a rational matrix equation. Linear Algebra Appl. 433, 64–71 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Popchev, I., Petkov, P., Konstantinov, M., Angelova, V.: Condition numbers for the matrix equation X + A X − 1 A + B X − 1 B = Q. C. R. Acad. Bulgare Sci. 64, 1679–1688 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Popchev, I., Petkov, P., Konstantinov, M., Angelova, V.: Perturbation bounds for the nonlinearmatrix equation X + A X − 1 A + B X − 1 B = I. Large-Scale Scientific Computing 7116, 155–162 (2012)

    Article  MATH  Google Scholar 

  34. Popchev, I., Konstantinov, M., Petkov, P., Angelova, V.: Norm-wise, mixed and component-wise condition numbers of matrix equation \(A_{0}+\sum \limits _{i = 1}^{k}\sigma _{i}A^{*}_{i}X^{p_{i}}A_{i}= 0 (\sigma _{i}=\pm 1)\). Appl. Comput. Math. 14, 18–30 (2014)

    Google Scholar 

  35. Ran, A.C.M., Reurings, M.C.B.: A fixed point theorem in partially ordered sets and some application to matrix equations. Proc. Amer. Math. Soc. 132, 1435–1443 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sun, W., Yuan, Y.: Optimization Theory and Methods. Springer Science and Business Media, LLC, New York (2006)

    MATH  Google Scholar 

  37. Sun, J.G., Xu, S.F.: Perturbation analysis of themaximal solution of the matrix equation X + A X − 1 A = P. Linear Algebra Appl. 362, 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Vaezzadeh, S., Vaezpour, S., Saadati, R., Park, C.: The iterative methods for solving nonlinear matrix equation X + A X − 1 A + B X − 1 B = Q. Adv. Difference Equ. 2013, 229 (2013)

    Article  MATH  Google Scholar 

  39. Xu, S.F.: Matrix Computation in Control Theory. Higher Education Press, Beijing (2011)

    Google Scholar 

  40. Yin, X., Wen, R., Fang, L.: On the nonlinear matrix equation \(X+\sum \limits _{i = 1}^{m}A^{*}_{i}X^{-q}A_{i}=Q (0 < q \le 1)\). Bull. Korean Math. Soc. 51, 739–763 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yin, X.Y., Liang, F.: Perturbation analysis for the positive definite solution of the nonlinear matrix equation \(X-\sum \limits _{i = 1}^{m}A^{*}_{i}X^{-1}A_{i}=Q\). J. Appl. Math. Comput. 43, 199–211 (2013)

    Article  MathSciNet  Google Scholar 

  42. Yin, X.Y., Liu, S.Y.: Positive definite solutions of the matrix equations X A X q A = Q(q ≥ 1). Comput. Math. Appl. 59, 3727–3739 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhan, X.: Computing the extremal positive definite solutions of a matrix equation. SIAM J. Sci. Comput. 17, 1167–1174 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhan, X., Xie, J.: On the matrix equation X + A T X − 1 A = I. Linear Algebra Appl. 247, 337–345 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, L.: An improved inversion-free method for solving the matrix equation X + A X α A = Q. J. Comput. Appl. Math. 253, 200–203 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zorzi, M.: Convergence analysis of a family of robust Kalman filters based on the contraction principle. arXiv:1705.05286 to appear in SIAM J. Optimization Control (2017)

  47. Zorzi, M.: Robust kalman filtering under model perturbations. IEEE Trans. Aut. Control. 62, 2902–2907 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Feng Ma.

Additional information

Supported by Fujian Natural Science Foundation (Grant No. 2016J01005) and Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB18010202).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, BH., Ma, CF. Some iterative methods for the largest positive definite solution to a class of nonlinear matrix equation. Numer Algor 79, 153–178 (2018). https://doi.org/10.1007/s11075-017-0432-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0432-8

Keywords

Navigation