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Abstract We introduce strong B-matrices and strong B-Nekrasov matrices, for which some
error bounds for linear complementarity problems are analyzed. In particular, it is proved
that the bounds of [5] and of [8] are asymptotically optimal for strong B-matrices and strong
B-Nekrasov matrices, respectively. Other comparisons with a bound of [11] are performed.
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1 Introduction
The linear complementarity problem (LCP(M, q)) looks for a vector x € R” such that
Mx+¢>0, x>0, xI'(Mx+q)=0, )
where M is an n X n real matrix and g € R".
It is well known that this problem has a unique solution if and only if M has positive

principal minors (i.e., M is a P-matrix). Important applications of this problem can be seen
in [2].
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Error bounds for LCP of P-matrices have been studied (cf., [1], [12]). For particular
subclasses of P-matrices, the bounds can be refined: see [1] and [6] for the subclass of H-
matrices with positive diagonal entries or [S] and [11] for the subclass of B-matrices. For
classes of matrices containing B-matrices, error bounds for the LCP have also been obtained
([41, 171, [8], [9]). Among these classes of matrices we can mention the B-Nekrasov matrices,
which will be also considered in this paper.

In some examples, the bound of [5] for B-matrices was improved by the bounds of [11].
We present and characterize in Section 2 a subclass of B-matrices called strong B-matrices,
for which the bound of [5] is linear and asymptotically optimal (see Theorem 1) and for
which the bound of [11] is worse than or equal to quadratic (see Theorem 3). At the end of
Section 2, we also include a family of matrices that are simultaneously strong B-matrices
and H-matrices and for which our bound is 1 and the bound of formula (2.4) of [1] (valid
for H-matrices with positive diagonal entries) is arbitrarily large. A final example in Section
3 shows that our bound of [5] can improve that of [11] even for B-matrices that are not
strong B-matrices. Finally, Section 4 introduces the class of strong B-Nekrasov matrices,
which contains strong B-matrices and is contained in the class of B-Nekrasov matrices. We
provide an error bound for the LCP of a strong B-Nekrasov matrix that is asymptotically
optimal.

2 A class of B-matrices with an asymptotically optimal bound

The class of B-matrices is a subclass of P-matrices presented in [13] and has been applied to
eigenvalues localization problems ([13], [14]) and to linear complementarity problems ([5],
[11]). We recall the definition of a B-matrix.

Definition 1 A square real matrix M = (m;;)1<; j<n is a B- matrix if it has positive row sums
and all its off-diagonal entries are bounded above by the corresponding row means, that is,
foreachi=1,...,n,

n

u 1
Zmij>0, and - Zm,’k > mjj V]?él
j=1 n\i=1
Given a matrix M = (m;;)1<; j<n, we define foreachi=1,...,n, r;" := max{0,m;;| j # i}
and we can decompose M into the form M = B™ + C, where

+ + + +
myy—ry s Mip—1y ry - g
Bt — : : dC = : : )
= and C = . (2)
mnl—r,fn-m,m—r;{ r,J[~ -r;f

Then by Proposition 2.1 of [5], M is a B-matrix if and only if B" =: (b;j) 1< j<x is a strictly
diagonally dominant matrix (|b;;| > ¥ |bij|,i = 1,...,n) with positive diagonal entries. In
this paper we introduce the following subclass of B-matrices by requiring a stronger diagonal
dominant property to B

Definition 2 Let M be a B-matrix and let us consider M = B™ + C as in (2). Given B* =:
(bij)1<i,j<n» we define, for each i = 1,...,n, B; := b;; — ¥, ;+;|bij|. Then we say that M is a
strong B-matrix if §; > 1 foralli=1,...,n.
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Given a complex matrix M = (m;;) 1<, j<n, its comparison matrix M= (Mij)1<i,j<n 18
given by i := —|my;| if i # j and f; := |my]| for i = 1 ..,n. Let us recall that M is an
H-matrix if M is a nonsingular M-matrix, that is, if M~! is nonnegative. Error bounds for
LCP with H-matrices cannot be applied to LCP with strong B-matrices because a strong
B-matrix is not necessarily an H-matrix, as the following example shows.

Example 1 Let us consider the matrix

61.1 30 20 10
-20375 0 -16
0 —4051.5 —-10
50 50 100915

M =

The decomposition M = BT +C with B* and C given in (2) leads to

31,1 0—10 —20 30 30 30 30
20375 0-16 0000

+ _ _
BT = 0-40515-10| ™ €=| 900 0
0 0-40415 50 50 50 50

Observe that M is a B-matrix and even a strong B-matrix. However, M is not an H-matrix
because its comparison matrix M has an inverse with nonpositive entries.

The following result characterizes strong B-matrices.

Proposition 1 M := (m;j)1<i j<n is a strong B-matrix if and only if for eachi=1,...,n,
n l n
Zmij>1 and - Zmij—l > miy Vk#i. 3)
j=1 A=

Proof Let us assume first that M is a strong B-matrix. Then 3; = bj; — Y. j4; |bij| > 1, for all
i=1,...,n,and Bt = (b;;)1<; j<n Is given in (2). Taking into account that r; = max {0, m; ;| j #
i}, we have that rf > m;; for all j # i, and we derive from the previous formula

1<m,~,~7rl-+72 —m;j) Zml,fnr “
J#i
and so we conclude that ):;f:l mij > l—i—nr;r > 1. From (4) we also have ):;;l mijj—1>
nr;” > nmy, for all k # i and (3) holds.

Let us now assume that (3) holds. Clearly, (3) implies that M is a B-matrix. Since ri+ >
m;j for all j # 1,

ﬁ,-:mi,-—r;r—z —m;j) = Zm,j nri . @)
J#i
If ri” = 0, then by (5) and (3), i = Y_ymi; > 1. Finally, if ri” # 0, then there exists
k # i such that r;" = my > 0. Then, by (5) and (3) we obtain f; = Yho mij —nmy =
n(%Z?Zl mij — M) > n(%) =1 and M is a strong B-matrix.
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Example 2 Now we present some examples arising in practical applications. Given the tridi-
agonal n X n matrix

b—l—ocsin(%) c
ab+asin(%) ¢

n

.ot c
a b+ asin(1)

the LCP(M, q) with various ¢ in an interval vector arises from the finite difference method
for free boundary problems (cf. [15], [1]). Observe that, for b >3, a=c=—1, a =0, the
corresponding family is formed by strong B-matrices and also forb =3, a=c=—1, o > 0.
In fact, the decomposition (2) for these matrices is of the form M = B™ + 0 and B satisfies
the properties of Definition 2. Besides, for any ki, ..., k, > 0, we can form matrices

k- Ky

and M + C is again a strong B-matrix by Definition 2.

In this section we shall prove that the bound of Theorem 2.2 of [5] is asymptotically
optimal for the class of strong B-matrices. For this purpose, we consider the following family
of n x n strong B-matrices (n > 2),

m+k m -+ m
1 14k 1

My = ) (N
1 I - 1+k

where m is a positive integer and k > 1. Observe that, if k € (0, 1], then M,, is a B-matrix but
it is not a strong B-matrix.

First, we recall some notations for the linear complementarity problem (1). Its solution
x* is unique if and only if M is a P-matrix. In this case, by Theorem 2.3 of [1],

[l =2 loo < maxgepo 1o | (1 =D +DM) ™" |7 (x) o,

where [ is the identity matrix, D is the diagonal matrix diag(d;) with 0 < d; <1 for all

i=1,...,n,and r(x) := min(x, Mx+ q), where the min operator denotes the componentwise
minimum of two vectors. If M is a B-matrix and f3;, i = 1,...,n, are defined as in Definition
2, let us denote by
B :=minie(;  n {Bi}- ®)
Then, by Theorem 2.2 of [5],
1 n— 1
maxde[ojl]nH(I—D—l—DM) ||°o < — (9)

~ min{f,1}"
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Theorem 1 For strong B-matrices, the bound (9) is asymptotically optimal and it is equal
ton—1.

Proof First observe that for strong B-matrices the bound (9) is equivalent to
maxge(o, s [|(1 =D+ DM) |l <n—1, (10)

because of (8) and B > 1. Let us consider the family of matrices M,, given by (7), with
m a positive integer and k > 1, and the particular choice in the left side of (9) given by

d=(1,..., l)T, which corresponds to the diagonal matrix D = I. So, with this choice, we
have the following inequality
maxge o1 | (1= D+DMyp) |l > | M, oo- (amn

Observe that M,, can be written in the form (2) as M,, = K + ue” where

kO---0 m 1
Ok---0 1 1
PO EREEE e . e .
00--- k 1 1
Then we have
Mm:K(]-|—K71ueT):K(I—l-ukeT)7 (12)

where ;. := (m/k,1/k,...,1/k)T. Then, since e’ u; # —1, by the Sherman-Morrison for-
mula (see formula (2.1.5) of page 65 of [10]), we obtain from (12)

ukeT 1

M = +ue”) 'K = (1 - ———
m ( + uge ) ( l—i—eTuk)

and so
_ m —m ee. o —m__
m+{l+k71 m+n+kf1 m+n+1k71

m+n+k—1 - mn+k—1 " mfnth—1

-1 -1 U 1
m+n+k—1 m+n+k—1 m+n+k—1
m + (n=)m__ n+(k=1)+(n—1)m
m4n+k—1 " m+n+k—1 — m+n+k—1

limy, o[ M, | =1 — 1. (13)

Then [|M,, || =1— and we derive

By (11) and (13), limy,;—;eomax zeo, 1} | (I—D+DM,,)""||.o =n—1 and (10) is asymptotically
optimal.

Let us illustrate the asymptotic optimality of the previous result with some particular
values of n,k,m for the n X n matrix My, of (7). A lower bound for max,ejo, 1 I(I-D+
DM,;,) Y|« is ||M,, || by (11) and in the line previous to (13) we have seen that ||M,,!||. =

— et m(f; +11)<T1 = HU;;QLEZ}”'". For n = 10 and k = 2, we obtain that this lower
bound is % form=1, % form =10, % for m = 100 and % for m = 1000, which shows
the approximation to our upper bound n — 1 =9 of (10).

We now present a family of 2 x 2 matrices of Example 2 that are simultaneously strong

B-matrices and H-matrices. For these matrices our bound (10) is 1 and the bound of formula

(2.4) of [1] (valid for H-matrices with positive diagonal entries) is arbitrarily large.
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Example 3 Let us consider 2 x 2 matrices of Example 2 withb=4,a=c=—1, o =0 and
k1 = kp = k > 1. So our matrices are of the form

4+kk—1
M= ( k—14+k ) '
These strong B-matrices are also H-matrices because the comparison matrix
- [ 4+k —k+1
M= ( k1 44k )

Ak k=1
-1 _ [ 53120 33120
M= N Tak |-

has nonnegative inverse

5(3+2k) 5(3+2k)
Our bound (10) is n — 1 = 1. Let us now consider the bound of (2.4) of [1]:

maxge(o,i)s[|(1 = D+DM) ™" oo < M~ max(A, 1)l

where A is the diagonal part of M (A := diag(m;;)) and max (A, ) := diag(max{m;;, 1},..., max{my,, 1}).
For our matrices M, max ¢(o 1 ||(I — D +DM) 7| = % + %, which is greater than 1 and
can be arbitrarily large.

3 Comparisons with another recent bound

In [11] the authors provided for a B-matrix M an upper bound for maxeo,1}2[|(/ — D +
DM) | different from (9) and they showed some examples where this bound (presented
in Theorem 4 of [11]) improves (9). We are now going to prove that for strong B-matrices
the bound (9) (or its equivalent form (10) as shown in Theorem 1) is better than the bound
of Theorem 4 of [11] . We shall prove in Theorem 2 that the bound of Theorem 4 of [11] is
worse than or equal to quadratic n(n — 1), in contrast with our linear bound n — 1 of (10).
Previously we recall Theorem 4 of [11].

Theorem 2 Let M = (mjj)1<i j<n be a B- matrix with the form M = B" +C, where B* :=
(bij)1<i,j<n and C are given in (2). Then

maxgeio o | (=D+DM) o€ —" 21 ¥ "L st ¥ b=t
Xdefo,1) | — oS T = T = ik|) = Dn,
<o min{B;,1} S min{B;, 1} ;=1 Bj S ! !
(14)

where for eachi=1,...,n,

_ n 1 n

ﬁ,‘ 5:bii_li(B+) Z ‘b”‘ and l,~(B+)::max,-§k§n{b— Z |bkj‘}

j=itl i =i, j#k

Let us now provide a lower bound for the bound of Theorem 2 in the case of strong
B-matrices.

Theorem 3 Let M = (mj;)1<i j<n be a strong B-matrix. Then the bound b, of (14) satisfies

b, >nn—1) (15)
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Proof With the notations of Theorem 2, let us observe that for eachi =1,...,n, ;(B") < 1
(see (11) of [11]). Therefore fB; > f;, for each i=1,...,n. Since M is a strong B-matrix,
for i =1,...,n, B; > 1, which implies that f; > 1 and so, min{f;, 1} = 1. Then, since

i—1 n
1
I I (l+- Z |bjk) > 1, we can deduce that b, >n—1+Y} ,(n—1).1 =n(n—1).
j=1 J k=j+1

Although theorems 1 and 3 only hold for strong B-matrices, the bound (9) can be sharp
and even better than (14), also for B-matrices that are not strong B-matrices. In the following
example we consider a B-matrix that is not strong and we shall compare the bound (9) with
(14). Let us consider the matrix

60.5 3020 10

—20 40 0 -16
M= 0 —4051 —-10
50 5010 91

The decomposition M = B™ +C with B* and C given in (2) leads to

305 0 —10 —20 30 30 30 30
20 40 0—16 0000

+ —
BT = 0-40 si—10]| ™ C=| 900 0
0 0-40 41 50 50 50 50

Observe that M is a B-matrix (because B is strictly diagonally dominant with positive
diagonal entries) and that it is not a strong B-matrix (because 8 = §; = 0.5). One can check
that the bound of Theorem 4 of [11] (that is, the bound b,, of (14)) is in this case

max o 1| (I = D+DM) ™|l < by = 445.321.

Let us now compute our bound (9). Taking into account thatn =4 and 8, =0.5, B, =4, B3 =
Ba =1, (and so, B = 0.5 by (8)), we deduce that (9) is now 3/0.5 = 6.

4 Strong B-Nekrasov matrices and asymptotically optimal bounds

Let us recall the definition of a Nekrasov matrix. For this purpose, we need some notations.
If M = (m;j)1<i,j<n is a complex matrix with m;; # 0 forall i = 1,...,n, let us define

v, M) ¢ .
hl(M) = Z|m1j|, h,(M) ::Z\m,ﬂ + Z \m,-j|, i=2,...,n (16)
j#l j=1 mjjl Jj=i+1

Then M is a Nekrasov matrix if |m;;| > h;(M) for alli = 1,...,n (cf. [16]). It is well-known
that Nekrasov matrices are nonsingular matrices.

The following definition recalls the concept of B-Nekrasov matrix, which was intro-
duced in [8], and introduces the new definition of strong B-Nekrasov matrices.

Definition 3 A real matrix M is a B-Nekrasov matrix if M = BT +C, where B™ and C are
given in (2) and B" is a Nekrasov Z-matrix with all diagonal entries positive. If BT — I
is a Nekrasov Z-matrix with all diagonal entries positive, then we say that M is a strong
B-Nekrasov matrix.
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By Remark 1 of [8], B-matrices are B-Nekrasov matrices and, by Proposition 1 of [8], B-
Nekrasov matrices are P-matrices. Since a strong B-matrix M can be written M = B* +C as
in (2) and satisfies that B* — I is a strictly diagonally dominant matrix with positive diagonal
entries, we can deduce that a strong B-matrix is a strong B-Nekrasov matrix.

The following result shows that a strong B-Nekrasov matrix is also a B-Nekrasov matrix.

Proposition 2 [f M is a strong B-Nekrasov matrix, then M is also B-Nekrasov.

Proof It is sufficient to prove that if BT —I is a Nekrasov Z-matrix with positive diagonal
entries, then BT = (b; j)1§i7 j<n is a Nekrasov Z-matrix with positive diagonal entries. So, we
assume that

bi—1>h(BT=1), i=1,...,n, (17)

and let us prove that
bii >hi(BY), i=1,...,n. (18)

Since b;; > bjj— 1 foralli=1,...,n, in order to prove (18) from (17), we shall prove that
(BT —1)>h(BY), i=1,...,n (19)
Let us prove (19) by induction on i. Since hy (B* —I) = ¥.; 4 |b1;| = hi(B*), (19) holds for

i = 1. Let us now assume that (19) holds for all j < i and let us prove it for i. Then

hi(BY —1) = Z\b,,l ) Z |bijl.

Jj=i+l1

Taking into account the induction hypothesis and that b;; — 1 < b;;, we obtain

+12i

and the induction holds.

)+ Z |bij| = hi(B™)

Jj=i+1

The converse of the previous proposition does not hold as the following example shows.

Any matrix
kK —k+1
= >
My (—k—i—l k ) k22,

is B-Nekrasov because M} = BZ’ +C, with Bf = M; and C, = 0 and it can be checked that
By = M, is Nekrasov. However, M, is not strong B-Nekrasov because

o, [ k=1 —k+1
Be—1I= (—k+1 k—1 )

is singular and so, B;r — I can not be Nekrasov.

It is well-known that a complex matrix A is an H-matrix if there exists a diagonal matrix
W =diag(w;) such that AW is strictly diagonal dominant. Observe that the diagonal matrix
W can be taken with positive diagonal entries (it is sufficient using diag(|w;|)). It is known
that a Nekrasov matrix is an H-matrix (see [16] and p. 5021 of [3]). So, given a B-Nekrasov
matrix M, there exists a diagonal matrix W with positive diagonal entries such that B*W

is a strictly diagonally dominant Z-matrix (where B is given by (2)). Then this holds, in
particular, for strong B-Nekrasov matrices. Since a strong B-matrix satisfies that BT — I is
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a strictly diagonally dominant matrix with positive diagonal entries, we can deduce that a
strong B-matrix is a strong B-Nekrasov matrix.

In Theorem 2 of [8], we obtained an error bound for the LCP of a B-Nekrasov matrix
A = B" +C satisfying certain hypotheses that allowed us to construct a particular diagonal
matrix W such that B*W is a strictly diagonally dominant Z-matrix. As we have recalled
in the previous paragraph, for any B-Nekrasov matrix A(= B + C), there exists a diagonal
matrix W with positive diagonal entries such that BTW is a strictly diagonally dominant
Z-matrix. The same proof of Theorem 2 of [8] can be used to prove the following result,
which does not require any additional hypothesis on the B-Nekrasov matrices.

Theorem 4 Let M = (mjj)1<i,j<n be a B-Nekrasov matrix, let B* be the matrix of (2) and let
W = diag(w;) be the diagonal matrix with positive diagonal entries such that B := B*W =
(bij)1<i j<n is a strictly diagonally dominant Z-matrix. Let B := b;; — Yt |bij| and &; := %
fori=1,...,nand 6§ = min;{8;}. Then

n— 1)max;{w;
maxde[oﬁl]n”(I—Dﬁ-DM)_l H°° < ( ) { } (20)

~ min{1, 8 }min;{w;}"
Now, we shall provide an error bound for the LCP of a strong B-Nekrasov matrix M.

Theorem 5 Let M = (m;j)1<i j<n be a strong B-Nekrasov matrix, let Bt be the matrix of
(2) and let W = diag(w;) be the diagonal matrix with positive diagonal entries such that
(BT — D)W is a strictly diagonally dominant Z-matrix. Then

(n — l)maxi{w,-} )

maXdE[O,l]"||(I_D+DM)71 H°° < mln{w}
i\Wi

2n

Moreover, the bound (21) is asymptotically optimal.

Proof Since M is a strong B-matrix, B* — I is a Nekrasov matrix and so it is an H-matrix.
Therefore there exists a diagonal matrix W with positive diagonal entries such that (B —
D)W is a strictly diagonally dominant Z-matrix. Then BTW is also a strictly diagonally dom-
inant Z-matrix and, since a strong B-Nekrasov matrix is a B-Nekrasov matrix, we can apply
Theorem 4 with B := BTW and (20) holds. Since (BT —I)W = B—W is also a strictly di-
agonally dominant Z-matrix, §; —w; > 0 for all i = 1,...,n. This implies that J; := 5—” >1
foralli=1,...,n. If § = min;{5;}, then min{1,6} = 1 and so (20) becomes (21).

Now, let us consider the family of strong B-Nekrasov matrices M,, given by (7) with
m a positive integer and k > 1, and the particular choice in the left side of (21) given by
d = (1,...,1)T, which corresponds to the diagonal matrix D = I. So, with this choice we
have (11). Observe that if we write M = B +C as in (2), then B* is the diagonal matrix
whose diagonal entries are equal to k. So, BT — I is a strictly diagonally dominant Z-matrix
and we can choose the matrix W = I to obtain the formula (21). In this case the right side of
(21) is n— 1. Finally, since (11) and (13) hold, we see that (21) is asymptotically optimal.
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