Skip to main content
Log in

On the split feasibility problem and fixed point problem of quasi-ϕ-nonexpansive mapping in Banach spaces

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The purpose of this paper is to propose an algorithm to solve the split feasibility and fixed point problem of quasi-ϕ-nonexpansive mappings in Banach spaces. Without the assumption of semi-compactness on the mappings, it is proved that the sequence generated by the proposed iterative algorithm converges strongly to a common solution of the split feasibility and fixed point problems. As applications, the main results presented in this paper are used to study the convexly constrained linear inverse problem and split null point problem. Finally, a numerical example is given to support our results. The results presented in the paper are new and improve and extend some recent corresponding results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Censor, Y., Bortfeld, T., Martin, B., Trofimov, T.: A unified approach for inversion problem in intensity-modolated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

    Article  Google Scholar 

  2. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications. Inverse Probl. 21, 2071–2084 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Censor, Y., Motova, A., Segal, A.: Pertured projections and subgradient projections for the multiple-sets split feasibility problems. J. Math. Anal Appl. 327, 1244–1256 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Xu, H.K.: A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006)

    Article  MATH  Google Scholar 

  5. Lopez, G., Martin, V., Xu, H.K.: Iterative algorithms for the multiple-sets split feasibility problem. In: Censor, Y., Jiang, M., Wang, G. (eds.) Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning and inverse Problems, pp. 243–279. Medical Physics Publishing, Madison (2009)

  6. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projection in a product space. Numer. Algor. 8, 221–239 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Byrne, C.: Iterative oblique projection onto convex subsets and the split feasibility problems. Inverse Probl. 18, 441–453 (2002)

    Article  MATH  Google Scholar 

  8. Moudafi, A.: A note on the split common fixed-point problem for quasi-nonexpansive operators. Nonlinear Anal. 74, 4083–4087 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Moudafi, A.: The split common fixed point problem for demi-contractive mappings. Inverse Probl. 26, 055007 (2010). (6pp)

    Article  MATH  Google Scholar 

  10. Yao, Y., Postolache, M., Liou, Y.C.: Strong convergence of a self-adaptive method for the split feasibility problem. Fixed Point Theory Appl. Art No.201, 2013 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Kraikaew, R., Saejung, S.: On split common fixed point problems. J. Math. Anal. Appl. 415, 513–524 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Qu, B., Xiu, N.: A note on the CQ algorithm for the split feasibility problem. Inverse Probl. 21, 1655–1665 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yao, Y., Agarwal, R.P., Postolache, M., Liu, Y.C.: Algorithms with strong convergence for the split common solution of the feasibility problem and fixed point problem. Fixed Point Theory Appl. 2014, Art No. 183 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, X.F., Wang, L., Ma, Z.L., Qin, L.J.: The strong convergence theorems for split common fixed point problem of asymptotically nonexpansive mappings in Hilbert spaces. J. Inequal. Appl. 2015, 1 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Takahashi, W., Yao, J.C.: Strong convergence theorems by hybrid method for the split common null point problem in Banach spaces. Fixed Point Theory Appl. 2015, 87 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tang, J.F., Chang, S.S., Wang, L., Wang, X.R.: On the split common fixed point problem for strict pseudocontractive and asymptotically nonexpansive mappings in Banach spaces. J. Inequal. Appl. 2015, 305 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tian, X.J., Wang, L., Ma, Z.L.: On the split equality common fixed point problem for quasi-nonexpansive multi-valued mappings in Banach spaces. J. Nonlinear Sci. Appl. 9, 5536–5543 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma, Z.L., Wang, L.: On the split equality common fixed point problem for asymptotically nonexpansive semigroups in Banach spaces. J. Nonlinear Sci. Appl. 9, 4003–4015 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, J.Z., Hu, H.Y., Ceng, L.C.: Strong convergence of hybrid Bregman projection algorithm for split feasibility and fixed point problems in Banach spaces. J. Nonlinear Sci. Appl. 10, 192–204 (2017)

    Article  MathSciNet  Google Scholar 

  20. Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  21. Alber, Y.a.I.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, A. G. (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotonic Type, pp. 15–50. Marcel Dekker, New York (1996)

  22. Alber, Ya.I., Reich, S.: An iterative method for solving a class of nonlinear operator equations in Banach spaces. Panamer. Math. J. 4(2), 39–54 (1994)

    MathSciNet  MATH  Google Scholar 

  23. Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer Academic Publishers, Dordrecht (1990)

    Book  MATH  Google Scholar 

  24. Kamimura, S., Takahashi, W.: Strong convergence of a proximal-type algorithm in Banach space. SIAM. J. O ptim. 13, 938–945 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Reich, S.: A weak convergence theorem for the alternating method with Bregman distance. In: Kartsatos, A. G. (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotonic Type, pp. 313–318. Marcel Dekker, New York (1996)

  26. Matsushita, S., Takahashi, W.: A strong convergence theorem for relatively nonexpansive mappings in Banach spaces. J. Approx. Theory 134, 257–266 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chang, S.S., Joseph Lee, H.W., Chan, C.K., Yang, L.: Approximation theorems for total quasi-ϕ-asymptotically nonexpansive mappings with applications. Appl. Math. comput 218, 2921–2931 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Xu, H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. Theory Methods Appl. 16, 1127–1138 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Eicke, B.: Iteration methods for convexly constrained ill-posed problems in Hilbert space. Numer. Funct. Anal. Optim. 13, 413–429 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publishers Group, Dordrecht (1996)

    Book  MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 11361070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Wang, L. & Chang, Ss. On the split feasibility problem and fixed point problem of quasi-ϕ-nonexpansive mapping in Banach spaces. Numer Algor 80, 1203–1218 (2019). https://doi.org/10.1007/s11075-018-0523-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0523-1

Keywords

Mathematics Subject Classification (2010)

Navigation