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Abstract

Superiorization reduces, not necessarily minimizes, the value of a target function while seeking 

constraints compatibility. This is done by taking a solely feasibility-seeking algorithm, analyzing 

its perturbation resilience, and proactively perturbing its iterates accordingly to steer them toward 

a feasible point with reduced value of the target function. When the perturbation steps are 

computationally efficient, this enables generation of a superior result with essentially the same 

computational cost as that of the original feasibility-seeking algorithm. In this work, we refine 

previous formulations of the superiorization method to create a more general framework, enabling 

target function reduction steps that do not require partial derivatives of the target function. In 

perturbations that use partial derivatives, the step-sizes in the perturbation phase of the 

superiorization method are chosen independently from the choice of the nonascent directions. This 

is no longer true when component-wise perturbations are employed. In that case, the step-sizes 

must be linked to the choice of the nonascent direction in every step. Besides presenting and 

validating these notions, we give a computational demonstration of superiorization with 

component-wise perturbations for a problem of computerized tomography image reconstruction.
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1 Introduction

In this introduction, we first describe briefly the superiorization methodology and mention 

some of the previous work on it. Then we describe in general terms the proposed approach 

of derivative-free component-wise perturbations and the computational demonstration that 

we report about here.
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The superiorization methodology

The superiorization methodology (SM) is an algorithmic scheme that can be considered to 

reside between feasibility-seeking and constrained minimization. Rather than attempting to 

solve a full-fledged minimization problem, the SM takes a feasibility-seeking algorithm and 

proactively steers its iterates to find a feasible point that is superior, though not necessarily 

optimal, with respect to the value of a target function, to the output obtained by the 

feasibility-seeking algorithm. This approach originates from the discovery that many 

feasibility-seeking algorithms are perturbation resilient in the sense that, even if certain 

kinds of changes are made at the end of each iterative step, the algorithms still produce 

constraints-compatible solutions [3, 7, 14, 28].

When the steps to compute perturbations of the iterates of a feasibility-seeking algorithm to 

reduce the target function value are computationally efficient, a superior result is obtained 

with essentially the same computational cost as that of the original feasibility-seeking 

algorithm. Thus, the SM is useful for constrained minimization problems where either an 

exact algorithm has not been discovered or existing exact algorithms are exceedingly time-

consuming or require too much computer space for realistically large problems to be solved 

on commonplace computers. In these cases, the SM enables efficient feasibility-seeking 

algorithms, which provide constraints-compatible solutions, to be turned into efficient 

algorithms that will be practically useful from the point of view of reducing the value of the 

underlying target function.

Previous work on superiorization

In the SM, the superiorized version of an iterative feasibility-seeking algorithm consists of 

two parts. The first part performs perturbations that aim to reduce the value of the target 

function. The other is a part where the operator for the feasibility-seeking algorithm is 

applied. As noted in [8], several works have made use of this idea with proposed algorithms 

for exact constrained minimization (e.g., see [2, 12, 13, 15, 21, 22, 29, 33, 34]). However, 

these approaches are unable to do what is accomplished by the superiorization approach, 

which is to automatically generate a heuristic constrained optimization algorithm from an 

iterative feasibility-seeking algorithm. The underlying idea of the SM is quite general and 

provides application in many areas. The mathematical principles of the SM over general 

consistent “problem structures” with the notion of bounded perturbation resilience were 

formulated in [7]. The framework of the SM was extended to the inconsistent case by using 

the notion of strong perturbation resilience in [5, 8]. In [8], the efficacy of the SM was also 

demonstrated by comparing it with the performance of the projected subgradient method for 

constrained minimization problems.

A comprehensive overview of the state of the art and current research on superiorization 

appears in our continuously updated bibliography Internet page which currently contains 76 

items [4]. Research works in this bibliography include a variety of reports ranging from new 

applications to new mathematical results of the foundation of superiorization. A special 

issue entitled “Superiorization: Theory and Applications” of the journal Inverse Problems 
has recently appeared [9].
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Derivative-free component-wise perturbations

In the SM, the perturbation part interlaces target function reduction steps into the feasibility-

seeking algorithm. Until now, generation of nonascent directions, used for target function 

reduction steps, was mostly based on theorems such as [24, Theorem 1] and its variants such 

as [16, Theorem 1] and [17, unnumbered Theorem on page 7]. All these theorems make the 

assumption on the constructed nonascent direction g whose existence is guaranteed by the 

theorem that “Let g ∈ ℝJ satisfy the property: For 1 ≤ j ≤ J, if the j th component gj of g is 

not zero, then the partial derivative ∂ϕ
∂x j

(x) of ϕ at x exists and its value is gj ”. Thus, ϕ must 

have at least one partial derivative (which is nonzero) at points in the domain of ϕ. 

Otherwise, these theorems would apply only to the zero vector, which is a useless 

nonascending vector because it renders the SM ineffective.

To summarize this point, the definition of nonascending vectors (see Definition 3 below) 

does not require differentiability but in almost all existing works ϕ must obey the condition 

to have at least one partial derivative (which is nonzero) at points in its domain. The paper 

[18] is a possible exception since no derivatives are used there, but it refers only to the 

specific ℓ1-norm and still does not answer the general question of how to implement the SM 

in cases when the abovementioned theorems do not apply due to total lack of partial 

derivatives. This question makes sense for cases in which only target function values can be 

calculated but nothing else about the function, such as, functions that are defined by tables 

of values. Many such derivative-free objective functions are available in the field of 

derivative-free optimization, see, e.g., [30].

In this paper, we offer an approach how to handle target functions ϕ which do not obey the 

above condition of having at least one nonzero partial derivative or for which one is unable 

to verify it. Our main contribution is to propose the use of component-wise perturbations 
within the SM. When component-wise perturbations are employed, the classical notion of 

nonascent does not necessarily apply because if a point at a certain distance from a given 

point, along some coordinate, has a lower target function value, it does not guarantee that 

any other point in the neighborhood of the given point does so. In such a case, the step-sizes 

of the perturbations must be properly linked to the choice of the nonascent direction in every 

step, giving rise to a new notion of “local nonascent” of the target function (see Definition 4 

below). These notions of local nonascent and component-wise perturbations have not been 

used in superiorization until now and they have both theoretical and practical significance. 

Such formulation of superiorization is logically more generally applicable than previously 

studied superiorization methods since it allows a wider selection of target function reduction 

steps and enables the SM to be applied with target functions for which not even one partial 

derivative is available.

Computational demonstration

By considering component-wise perturbations, we generalize previous superiorization 

schemes to enable use of a wider selection of methods for step-wise reduction of the target 

function. As a first step in showing that component-wise perturbations in the SM work, we 

present a new superiorization scheme for reducing total variation (TV) during image 
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reconstruction, i.e., total variation superiorization (TVS). We decided to do component-wise 

perturbations on iterates to reduce the TV function although it has calculable partial 

derivatives. This way, we have something to compare our results with. Surprisingly, we 

found that, even for this sub-differentiable target function, component-wise perturbations 

can outperform negative gradient perturbations within the SM. This is not to say or claim 

that component-wise perturbations always outperform perturbations based on derivative 

information. On the contrary, it is expected that gradient-based perturbations will, in general, 

be more efficient in the SM. The true merit of component-wise perturbations is that it opens 

the door for derivative-free perturbations in the SM, e.g., by applying it to superiorization of 

biological merit functions in intensity-modulated radiation therapy (IMRT). Another 

computational demonstration of derivative-free perturbations in the SM, based on the ideas 

presented here that we communicated to the authors, appears in [19, Section 4.3].

What is in this paper

The remainder of this work is outlined as follows. In Section 2, we present the mathematical 

framework of the SM in the context of solving a convex feasibility problem, which is 

followed by our proposed scheme for TVS with component-wise perturbations in Section 3. 

Then Section 4 provides an example of the specific proposed scheme for TVS applied to 

image reconstruction, juxtaposing our approach with a negative gradient-based approach 

based on previous works (e.g., [8, 24]). Discussion and conclusions are provided, 

respectively, in Section 5 and Section 6.

2 Superiorization with local nonascent

2.1 The superiorization framework

In order to make the paper to some extent self-contained, we briefly review the SM 

framework as developed in earlier publications, see, e.g., [5, 7, 8, 10, 24]. Given a collection 

of closed convex subsets Ci ⊂ ℝL for i = 1, 2, . . . , m, in the L-dimensional Euclidean space, 

the convex feasibility problem (CFP) is to find a point x∗ ∈ ∩i = 1
m Ci. In the superiorization 

method, one seeks a solution to the CFP that is superior, although not necessarily optimal, 

with respect to some target function ϕ. A superior solution is here considered to be a better 

solution, with respect to the target function value, than that which would have been found by 

the given feasibility-seeking algorithm without superiorization steps. Suppose that we have a 

feasibility-seeking algorithmic operator  : ℝL → ℝL with which we define an iterative 

process for the solution of a CFP

xk + 1 = 𝒜(xk) for all k ≥ 0 with arbitrary x0 ∈ ℝL . (1)

This process is called “the basic algorithm” and the sequence of iterates it produces can be 

evaluated using a notion of proximity to the sets of the CFP. Let {Ci}i = 1
m  be a finite family 

of closed convex sets and suppose the existence of a nonempty subset Λ ⊂ ℝL such that Ci 

⊂ Λ for all i = 1, 2, . . . , m,. We denote this CFP by T and associate with it a proximity 
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function ProxT : Λ → ℝ+ that indicates how compatible an x ∈ Λ is with the constraints. 

Given any positive ε, any point x ∈ Λ for which ProxT (x) ≤ ε is called an ε-compatible 
solution of the CFP. Thus, the basic algorithm can be terminated when the proximity 

function gives a value less than some positive ε. We define this as the ε-output of a sequence 
of points generated by an iterative algorithmic operator, see [7, page 5].

Definition 1—Given a family of constraints sets {Ci}i = 1
m  of a CFP T, a proximity function 

ProxT : Λ → ℝ+, a sequence {xk}k = 0
∞ ⊂ Λ, and an ε > 0, an element xK of the sequence 

which has the properties:

i. ProxT (xK) ≤ ε, and

ii. ProxT (xk) > ε for all 0 ≤ k < K,

is called the ε-output of the sequence {xk}k = 0
∞

 with respect to the pair (T, ProxT).

The ε-output xK of a sequence is denoted by 𝒪 T , ε, {xk}k = 0
∞

. Such an output may not exist; 

however, when it does, it is unique. Furthermore, when the sequence {xk}k = 0
∞

 is generated 

by a basic algorithm for solving a CFP, the point 𝒪 T , ε, {xk}k = 0
∞

 gives the output of the 

basic algorithm when the stopping criterion is ε-compatibility.

The following version of the SM, presented in [24], is known as strong superiorization. (See 

[5] for a review of strong and weak superiorization.) Here the solution set C of the CFP T 
may be empty and solving the CFP is then understood to mean finding a point that is within 

a given proximity of the constraints. The “superiorized version of a basic algorithm” is 

created by taking advantage of the fact that successive iterates of the basic algorithm can, in 

some instances, be systematically perturbed without losing overall convergence of the 

iterates. Our problem at hand is stated as follows.

Problem 1—Let {Ci}i = 1
m  be a family of closed convex sets of a CFP T, Ci ⊆ Λ ⊆ ℝL for all 

i, let ϕ : ℝL → ℝ be a given target function and let  : Λ → ℝL be an iterative algorithmic 

operator defining a basic algorithm for solving the associated CFP. The function reduction 
problem is to use a superiorized version of the basic algorithm to find a point x* that is ε-

compatible with C and has a lesser value of the function ϕ than that of another ε-compatible 

point that would have been obtained by applying the basic algorithm alone.

Strong perturbation resilience is a property that describes the ability of a basic algorithm to 

be perturbed and not lose its ability to yield an ε-compatible solution of the CFP. This notion 

was termed “bounded perturbation resilience” in [24, Subsection II.C] and is defined as 

follows.

Definition 2—Assume we are given family of constraints {Ci}i = 1
m  of a CFP T, a proximity 

function ProxT, an algorithmic operator , and an x0 ∈ Λ. We use {xk}k = 0
∞

 to denote the 
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sequence generated by the basic algorithm when it is initialized at x0. The basic algorithm is 

said to be strongly perturbation resilient if the following hold:

i. there exist an ε > 0 such that the ε-output 𝒪 T , ε, {xk}k = 0
∞

 exists for every x0 ∈ 

Λ; and

ii. for every ε > 0, for which the ε-output 𝒪 T , ε, {xk}k = 0
∞

 exists for every x0 ∈ Λ, 

the ε′-output 𝒪 T , ε′, {yk}k = 0
∞

 also exists for every ε′ > ε and for every 

sequence {yk}k = 0
∞

 generated by

yk + 1: = 𝒜 yk + βkvk , for all k ≥ 0, (2)

where the vector sequence {vk}k = 0
∞

 is bounded and the scalars {βk}
k = 0
∞  are such 

that βk ≥ 0 for all k ≥ 0 and the βk are summable, i.e.,

∑
k = 0

∞
βk < ∞ . (3)

Sufficient conditions for strong perturbation resilience of a basic algorithm were proven in 

[24, Theorem 1].

2.2 Locally nonascending directions

The chief motivation to perturb iterates of a basic algorithm by sequences {βk}
k = 0
∞  and 

{vk}k = 0
∞

 is to reduce the values of the target function ϕ by employing directions of 

nonascent. Below we present the definition of nonascent that is in use in all works on the 

SM, see [8, Subsection II.D].

Definition 3—Given a function ϕ : ℝL → ℝ and a point y ∈ ℝL, we say that a vector d ∈ 
ℝL is nonascending for ϕ at y iff ||d|| ≤ 1 (||·|| denotes the Euclidean norm) and there is a δ > 

0 such that

for all μ ∈ [0, δ] we have ϕ (y + μd) ≤ ϕ (y) . (4)

This definition asserts that the nonascent inequality in (4) holds throughout the interval [0, 
δ]. Under such circumstances, one can dictate the step-sizes in the perturbation phase of the 

SM independently of the choice of the nonascent vector. However, in order to employ 

component-wise perturbations or other perturbations which do not assume the availability of 

any partial derivative of the target function ϕ at y, we need to use a different definition of 

nonascent directions. We wish to allow the user to look in a neighborhood of the current 
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point y for a point where the target function value is lower without assuming that it is lower 

in an interval around the current point (this could be the case, e.g., with nonconvex target 

functions). To do this, the choice of nonascent direction and the perturbation step-size must 

be linked together to guarantee the reduced target function value. Therefore, we relax the 

above definition of nonascending vectors so that we may use a wider class of perturbations 

such as, in particular, component-wise perturbations.

Definition 4—Given a target function ϕ : Δ → ℝ where Δ ⊂ ℝL, a point y ∈ Δ, and a 

positive δ ∈ ℝ, we say that d ∈ ℝL is a nonascending δ-bound direction for ϕ at y if ||d|| ≤ δ 
and ϕ(y + d) ≤ ϕ (y). The collection of all such vectors is called a nonascending δ-ball and is 

denoted by ℬδ,ϕ (y), i.e.,

ℬδ, ϕ(y): = {d ∈ ℝL ∣ ‖d‖ ≤ δ, ϕ(y + d) ≤ ϕ(y)} . (5)

The zero vector is contained in each nonascending δ-ball, i.e., 0 ∈ ℬδ,ϕ (y) for each δ > 0 and 

y ∈ Δ. This definition will allow us to use as a nonascent direction any vector d ∈ ℝL at 

which ϕ(y +d) ≤ ϕ(y) holds, which might be detected by only function value calculations. 

This will be useful even when ϕ is not convex, or if we do component-wise search for a 

point with reduced target function value. Even functions defined by tabular representations 

are valid candidates for this nonascending δ-bound directions. We refer to this kind of 

nonascent as “local nonascent”.

2.3 Superiorized version of a basic algorithm with locally nonascending directions

The superiorized version of the basic algorithm presented here in Algorithm 1 assumes that 

we have a summable sequence {nℓ}ℓ = 0
∞  of positive real numbers generated by ηℓ := aℓ where 

a ∈ (0, 1), called kernel in [6], is user-chosen. This summable sequence is used to perturb 

iterates with the goal to reduce the value of the target function ϕ while maintaining 

convergence of the iterates to a solution of the original CFP. Each ηℓ is used to generate a 

nonascending ηℓ-ball for ϕ about iterates produced by applying the basic algorithmic 

operator . Points chosen from each of these ηℓ-balls generate sequences {vk}k = 0
∞

 and 

{βk}
k = 0
∞ , corresponding to the sequences in Definition 2. These sequences aim to steer the 

sequence to a lesser value of ϕ. This superiorized version of the basic algorithm also depends 

on a chosen initial point ȳ and a sequence {Nk}
k = 0
∞  of positive integers bounded by some 

positive integer N. With this, the superiorized version of the basic algorithm is presented in 

Algorithm 1 by its pseudo-code.
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Algorithm 1

Superiorized version using local nonascent of a strongly perturbation resilient basic 

algorithm

1 k ← 0

2 yk ← ȳ

3 ℓ ← 0

4 while stopping criterion not met

5  yk,0 ← yk

6  for n = 0 to (Nk – 1) do

7    Let vk,n ∈ ℬηℓ,ϕ (y
k,n) (see Definition 4)

8    yk,n+1 ← yk,n + vk,n

9    ℓ ← ℓ + 1

10   end for

11   yk+1 ←  (yk,Nk)

12   k ← k + 1

13 end while

The behavior of this superiorized version of a basic algorithm is analyzed here according to 

how well it achieves feasibility and according to how well it reduces the target function 

values. For the feasibility question, we have the following lemma, which resembles the 

arguments in [24, Subection II.E] but differs in the use of local nonascending directions.

Lemma 1—Assume that a basic algorithm represented by the algorithmic operator  is 
strongly perturbation resilient and produces an ε-compatible output for some ε > 0. If 

{ηℓ}ℓ = 0
∞  is a summable sequence of positive real numbers, then the superiorized version of 

the basic algorithm using local nonascent, given by Algorithm 1, produces an ε′-compatible 
output for each ε′ > ε.

Proof: We have to show that if 𝒪 T , ε, {yk}k = 0
∞

 is defined for each y0 ∈ ℝL, then for any ε′ 

> ε, Algorithm 1 produces an ε′-compatible output. The strong perturbation resilience of 

guarantees this if there exist a summable sequence {βk}
k = 0
∞  of nonnegative real numbers 

and a bounded sequence {vk}k = 0
∞

 of vectors in ℝL such that

yk + 1 = 𝒜(yk + βkvk), for all k ≥ 0. (6)

Indeed, define
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βk: = max {‖vk, n‖ ∣ 0 ≤ n ≤ Nk − 1} (7)

and

vk: = ∑n = 0
Nk − 1 1

βk
vk, n, if βk > 0,

0, otherwise.
(8)

Since yk,0 = yk, it follows from steps 5–10 that these definitions result in yk,Nk = yk + βkvk. 

From step 7, it follows that {βk}
k = 0
∞  is a subsequence of {ηℓ}ℓ = 0

∞  and, hence, it is a 

summable sequence of nonnegative real numbers. Because the sequence {ηℓ}ℓ = 0
∞  is 

summable and each ||vk,n|| ≤ ηℓ, for appropriate ℓ, it follows that {vk}k = 0
∞

 is bounded. Hence, 

the superiorized version using local nonascent, given by Algorithm 1, produces an ε′-

compatible output for each ε′ > ε.

Algorithm 1. works as follows. Initially, the iteration number k is set to 0 and y0 is set to its 

initial value ȳ. The index ℓ for picking the next term of the sequence {ηℓ}ℓ = 0
∞  is initialized 

to ℓ = 0 and is repeatedly incremented by step 9. Steps 4–13 do a full iterative step, from yk 

to yk+1, and repetitions of these steps generate the sequence {yk}k = 0
∞

. During one iterative 

step, there is one application of the operator , in step 11, but there are Nk steering steps 

aimed at reducing the value of ϕ; the latter are done by steps 6–10. These steps produce a 

sequence of inner loop points yk,n, where 0 ≤ n ≤ Nk with yk,0 = yk and yk,n ∈ ℝL.

To our knowledge, except for [10], no proof has been published to date asserting the precise 

behavior of a superiorized version of an algorithm regarding the target function values. 

However, here we claim that Algorithm 1 systematically reduces target function values 

within the inner loops of perturbations, similarly to the analysis in [24, Subection II.E].

Theorem 1—Under the conditions of Lemma 1, sequences of inner loop points yk,n, 
generated by Algorithm 1, where 0 ≤ n ≤ Nk with yk,0 = yk and yk,n ∈ ℝL, have the property 
that for all k = 0, 1, 2, . . . ,and all 0 ≤ n ≤ Nk,

ϕ (yk, n) ≤ ϕ (yk) . (9)

Proof: The proof is by induction. Fix an integer k ≥ 0. For n = 0, we have yk,0 = yk and so 

ϕ(yk,0) = ϕ (yk). Now assume, for any 0 ≤ n < Nk, that ϕ (yk,n) ≤ ϕ (yk). Next, we show that 

steps 6–10 lead from yk,n to yk,n+1 that gives ϕ (yk,n+1) ≤ ϕ (yk). The vector vn,k in step 7 is 
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chosen, by Definition 4, such that ϕ (yk,n + vk,n) ≤ ϕ (yk,n). But, in step 8, yk,n+1 = yk,n + vk,n 

and, by the induction hypothesis, ϕ (yk,n) ≤ ϕ (yk). Thus,

ϕ (yk, n + 1) = ϕ (yk, n + vk, n) ≤ ϕ (yk, n) ≤ ϕ (yk) . (10)

Therefore, we conclude that ϕ(yk,n) ≤ ϕ(yk) for all 0 ≤ n ≤ Nk.

After going through the inner loop Nk times, step 11 is executed to produce yk+1. Then, 

increasing the value of k allows us to move to the next iterative step. Infinitely many 

repetitions of such steps produce the sequence of points {yk}k = 0
∞

. Due to the repeated 

steering, by steps 6–10, toward reducing the value of the target function ϕ, we can expect 

that the output of the superiorized version using local nonascent will be superior, from the 

point of view of ϕ, to the output that would have been obtained, with everything else being 

equal by the basic algorithm. This “expected” outcome has been observed in all published 

experimental reports to date, see, e.g., the many papers mentioned in [4], but has not been 

yet mathematically proven. On this theoretical side, there is, as far as we know, only the 

result of [10].

3 Total variation superiorization with component-wise perturbations

3.1 The application, the approach, and the numerical demonstration

Total variation (TV) superiorization (TVS) has been used before in image reconstruction 

from projections with very good experimental performance, as can be seen in several of the 

papers posted on [4]. Since TV has everywhere a subgradient, all previous work on TVS 

used negative subgradients of TV as nonascent directions for the perturbations in the 

superiorized version of the basic feasibility-seeking algorithm.

In situations of superiorization in the SM with respect to other target functions for which 

there is no guarantee to have at least one nonzero partial derivative at points in the domain of 

the function, the notion of δ-bound nonascending perturbations, developed above, plays an 

important role. As mentioned before, such situations will arise when attempting to apply the 

SM to target functions ϕ which are not convex, or to functions defined by tabular 

representations.

The purpose of the numerical demonstration presented in the sequel is to show that 

superiorization with component-wise perturbations works at all. We do not present a full-

fledged methodological numerical investigation and, therefore, the findings do not allow to 

draw general conclusions yet. It would be interesting to see future results when using a 

larger sample of datasets (e.g., randomized variations of the phantom) and get more 

statistical information about how superiorization with component-wise perturbations fares in 

comparison with gradient-based perturbations in the SM.

To explore the numerical behavior of the SM with component-wise perturbations, we wish 

to have something to compare it with. Therefore, we apply it to TVS without resorting to 
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calculations of its subgradients and compare the results with those obtained from TVS with 

negative subgradients as directions of nonasecent.

Our computational work surprisingly shows that even in this case in which the target 

function lends itself to gradient or subgradient calculations, such as TV, component-wise 

perturbations may be advantageous. Obviously, we do not make any general claim to this 

effect since more work is needed to investigate the numerical behavior of component-wise 

perturbations in the SM.

3.2 Image representation

Series expansion methods in image reconstruction from projections, see, e.g., [23], assume 

that a two-dimensional (2D) image can be represented using a linear combination of a set of 

fixed basis functions. Let f : ℝ2 → ℝ be a 2D image. Then a digital approximation of f is 

defined at each point r ∈ ℝ2 by

f (r) ≈ ∑
ℓ = 1

L
uℓ · bℓ(r), (11)

where bℓ denotes the ℓth basis function of some finite set {bℓ}ℓ = 1
L  of appropriately chosen 

basis functions and each component uℓ of the vector u ∈ ℝL gives a weighting factor for the 

contribution of bℓ. For a given set of basis functions, the image estimate in (11) is uniquely 

determined by u, which is called the image vector.

Pixels form the set of basis functions used in this work. These are picture elements that 

cover the entire image. Each pixel has the support of a square and is defined by

bℓ(r): = 1, if r is inside the ℓth pixel,
0, otherwise. (12)

When using pixel basis functions, each uℓ in (11) gives the average value of the image f 
inside the ℓth pixel. Hereafter, we denote the image approximation in (11) simply by u and 

use double-indexing ui,j for i, j = 1, 2, . . . , J, to denote the value of the digital approximation 

in (11) at the pixel location (i, j) where the support of u is composed of L = J 2 pixels.

3.3 Total variation in imaging

The introduction of noise in reconstructed images is inevitable in practice. However, as 

introduced in [31], image restoration based on total variation has proven quite effective for a 

wide range of applications, including inpainting [32], super-resolution [25], image 

restoration [1, 11, 35], and medical imaging [27, 34, 36]. TV is formally defined as follows.

Definition 5—Let u : ℝ2 → ℝ be a smooth image. Then the total variation of u is defined 

by
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TV(u): = ∫ ‖∇u‖, (13)

where ∇u denotes the gradient1 of u, so that ‖∇u‖: = (Dxu)2 + (Dyu)2 where Dx and Dy 

denote the horizontal and vertical partial derivative operators.

In the discrete case, the integral in (13) is replaced by a summation over the extent of the 

pixels of the digital approximation u, so that

TV(u) = ∑
i, j

Dxui, j
2 + Dyui, j

2, (14)

where the discrete differential operators are given by

Dxui, j: =
ui + 1, j − ui, j, if 1 ≤ i < J,
0, otherwise,

(15)

and

Dyui, j: =
ui, j + 1 − ui, j, if 1 ≤ j < J,
0, otherwise.

(16)

3.4 TVS with component-wise perturbations

For TVS, we propose a new algorithm inspired by the framework presented in the previous 

sections. Our algorithm computes each nonascent vector vk,n for the target function ϕ = TV, 

in step 7 of Algorithm 1, in a specific manner applicable to TVS. Our approach proposes 

reducing TV by smoothing out local extrema, i.e., reducing their relative magnitude, through 

a type of averaging. This is accomplished using a first-order approximation of nearby points 

in an image u. Recall that for points r, h ∈ ℝ2

u(r) ≈ u(r + h) − 〈∇u(r + h), h〉 (17)

1This is not to be confused with the notion of gradient of a function. The meaning of ∇ will always be understood according to what it 
operates on.
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gives a first-order approximation where 〈·, ·〉 denotes the scalar product. Smoothing can be 

accomplished by using averaged first-order approximations in opposite directions from each 

point, i.e., by the approximation of the average given by

1
2[u(r + h) + u(r − h)] ≈ u(r) + 1

2[〈∇u(r + h), h〉 − 〈∇u(r − h), h〉] . (18)

The corresponding perturbation of the image u, denoted by w, is defined, for each r ∈ ℝ2, so 

that

w(r) = 1
2(〈∇u(r + h), h〉 − 〈∇u(r − h), h〉) . (19)

By construction, this perturbation w(r) yields an image u(r) + w(r) with lower TV than u(r) 
for sufficiently small h since, for each r ∈ ℝ2, u(r)+w(r) will have a value between the values 

of local extrema of u in proximity of r. In the actual computations, we compute step 7 of 

Algorithm 1 in a way that assigns a zero perturbation if the vector obtained was ascending, 

see (26) below. In the discrete case, when h is taken to be a unit vector along the x axis, the 

value wi,j of the perturbation w at the pixel location (i, j) is defined so that

wi, j = 1
2 Dxui, j − Dxui − 1, j , (20)

and when h is taken to be a unit vector along the y axis

wi, j = 1
2 Dyui, j − Dyui, j − 1 . (21)

Note that, due to the indexing of the discrete differential operators in (15) and (16), the 

derivatives Dx ui,j and Dy ui,j are used above instead of Dx ui+1,j and Dy ui,j +1, respectively.

In order to use w to perturb an image u within the SM, we must bound the magnitude of w. 

This can be done by bounding the contribution of each derivative used in the definition of w 
to compute a perturbation w*, which is thereby bounded component-wise. For θ > 0, define 

the operator ⌊ · ⌋ θ : ℝ → ℝ by

⌊α⌋θ: = min {θ, ∣ α ∣ } · sgn (α), (22)
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where |·| denotes absolute value and sgn denotes the signum function. When h is a unit 

vector along the x axis and θ > 0 is given, the value wi, j
∗  of the perturbation vector w* at the 

pixel location (i, j) is defined to be

wi, j
∗ : = 1

2 ⌊Dxui, j⌋θ
− ⌊Dxui − 1, j⌋θ

. (23)

Otherwise, when h gives a unit vector along the y axis, we let

wi, j
∗ : = 1

2 ⌊Dxui, j⌋θ
− ⌊Dxui, j − 1⌋

θ
(24)

This formulation of w* enables smoothing an image with control of the magnitude of the 

perturbation by bounding it component-wise. Each vk,n in step 7 of Algorithm 1 can use w* 

with θ = ηℓ/ L. We formalize this with the following proposition.

Proposition 1—Let δ > 0 be given. If we define θ: = δ/ L, then the vector w*obtained by 
(23) and/or (24) is such that ||w*|| ≤ δ.

Proof—Let δ > 0 be given. Whether h is a unit vector along either the x or y axis, the above 

definitions allow each wi, j
∗  to equal wi,j while |wi,j| ≤ θ . Otherwise, the signs of the terms 

composing wi, j
∗  will match those of wi,j, but with a reduced magnitude so that the relation 

∣ wi, j
∗ ∣ ≤ θ always holds. Arranging the pixel values lexicographically to write w* as an 

image vector, it then follows that

‖w∗‖ ≤ θ2 + ⋯ + θ2

L terms
= θ · L . (25)

Thus, by choice of θ, ||w*|| ≤ δ.

The new concept of the perturbation vector for TVS defined above allows us to use w* as a 

δ-bound nonascending vector for ϕ at u provided that ϕ (u + w*) ≤ ϕ (u) holds. To ensure 

this, we compute vk,n in step 7 of Algorithm 1 by choosing

vk, n: = w∗, if ϕ (yk, n + w∗) ≤ ϕ (yk, n),
0, otherwise.

(26)

In (26), we compute w* using either (23) or (24).
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4 TVS with component-wise perturbations applied to image reconstruction

4.1 Image reconstruction problem

The discretized model in the series expansion approach to the image reconstruction problem 

of computerized tomography (CT) is described as follows. Some physical entities (e.g., x-

rays) are systematically passed through an object to be scanned. Measurements are made of 

some physical property of these entities (e.g., attenuation). The goal of image 

reconstructions is to use measurements to reconstruct an image that represents the object 

scanned as faithfully as possible. Discretizing the object into pixels or voxels and the outer 

x-rays field into rays, the modeling of CT yields a matrix A called the system matrix and a 

corresponding measurement vector y. For a complete description, see, e.g., [23]. Each 

measurement ym, which is the mth component of the vector y, can be approximated by

ym ≈ ∑
ℓ = 1

L
uℓ · aℓ

m, (27)

where aℓ
m denotes entry of A in the mth row and ℓth column and each uℓ represents the 

contribution of the ℓth pixel basis function bℓ. One commonly used approach to solving the 

system Au = y is to use a feasibility-seeking projection method, such as an algebraic 

reconstruction technique (ART) described in the next subsection.

4.2 Algebraic reconstruction techniques

The basic algorithmic operator  that we used to solve the image reconstruction problem is 

the algebraic reconstruction technique (ART) (see [23, Chapter 11]). For each row m of the 

system matrix, denoted by am, we define the operator Tm : ℝL → ℝL by

Tm(u): = u + λ
ym − 〈am, u〉

‖am‖2 am, (28)

where λ ∈ (0, 2) is a relaxation parameter. The basic algorithmic operator  : ℝL → ℝL is 

then given by

𝒜(u): = TM⋯T2T1(u), (29)

where M denotes the number of rows in the system matrix. From previous works (e.g., [8]), 

it is known that the basic algorithmic operator  for ART, defined as above, is strongly 

perturbation resilient.
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4.3 Target function reducing steps

Two methods were compared in this work: the new component-wise perturbation method for 

TVS (CW-TVS) and a method using negative gradients for TVS (NG-TVS) based on [8, pp. 

737–738]. The target function used in this example was total variation ϕ = TV. During each 

perturbation step of the first method, an iterate yk,n was perturbed component-wise using 

(23) and then (24) using the perturbation size 1
2ηℓ for each. This process was repeated for 

each perturbation vector vk,n to reduce the value of the target function. The second method 

that we used was the TVS algorithm called “superiorized version of the basic algorithm” on 

pages 737–738 in [8]. That is, we set

vk, n: = − ηℓ ·
∇ϕ yk, n

∇ϕ yk, n if TV yk, n − ηℓ ·
∇ϕ yk, n

∇ϕ yk, n ≤ TV yk, n , (30)

and if this statement did not hold, then ℓ was incremented until the above statement did hold. 

The computation of the gradient ∇ϕ (y) of the target function ϕ has up to three fraction 

terms. In the denominator of each fraction is a term of the form

Dx(y)i, j
2 + Dy(y)i, j

2
(31)

at pixel location (i, j). To maintain numerical stability when the expression (31) becomes 

small, we replace the denominator term (31) with

γtol + Dx(y)i, j
2 + Dy(y)i, j

2, (32)

where γtol := 10−12.

4.4 Computational details

The computations reported here were done with Matlab [26] on a single machine using a 

single CPU, a quad core Intel i5-3317U at 1.70 GHz with 4.00 GB RAM. The AIR tools 

package [20] was used to generate the simulated data. All reconstructions were done in the 

Matlab environment. Differences in reported reconstruction times are, thus, not due to 

different algorithms implemented in different environments.

Figure 1 shows the phantom used in our study, which is a 256 × 256 digitized version of the 

Shepp-Logan phantom whose calculated TV is 1461. We used this phantom as created by 

the AIR tools package [20]. It is represented by an image vector with 65,536 components. 

The values of the components in the Shepp-Logan phantom range from 0 to 1. For our 

displays, we use the range [0,1]. Any value below 0 is shown as black and any value above 1 
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is shown as white and a linear mapping is used in between. This display window was used 

for all images presented here.

Two sets of experiments were conducted. One had 2% Gaussian noise added to the 

measurement data and the other was noise-free. Projection data were collected by 

approximating line integrals through the digitized phantom in Fig. 1 using a fan beam, which 

consists of lines diverging from a single source point.The fan beam was rotated in 15 degree 

increments about the phantom (24 positions in total) for the noise-free data and in 9 degree 

increments for the noisy data (40 positions in total). Each line integral gives rise to a linear 

equation. The phantom itself lies in the intersection of all the solutions of the linear 

equations associated with these lines. The total number of linear equations generated was 

12,288 for the noise-free data and 20,480 for the noisy data, thereby creating an 

underdetermined problem since there were 2562 = 65, 536 unknowns. The stopping criterion 

used for each image reconstruction was when the proximity function

ProxT(u): = ‖Au − y‖ (33)

yielded a value less than or equal to ε = 1 for the noise-free data and ε = 70 for the noisy 

data. The initial iterate for each reconstruction was the zero vector, for which ProxT (0) = 3, 
497 in the noise-free case. The specific choice made when running the superiorized version 

of the basic algorithm for our comparative study were ηℓ = 0.2 × 0.995ℓ and Nk = 10 for each 

k. The initial size η0 = 0.2 appeared to give the best results for the NG-TVS method when 

using a kernel a = 0.995. The choice of relaxation parameter λ when applying ART was λ = 

1.0 for the noise-free data and λ = 0.2 for the noisy data.

4.5 Computational results

The image reconstruction results are shown in Table 1 and samples are visualized in Fig. 2. 

Filtered back projection (FBP) images were also generated with AIR tools and are provided 

in Fig. 2 for reference to this traditional method using the noise-free and noisy data. Plots of 

TVS versus time and log(||Axk – b||) versus time are shown in Figs. 3 and 4, respectively, for 

the noise-free data and Figs. 5 and 6, respectively, for the noisy data. Our computational 

example indicates a speedup with the CW-TVS method over the NG-TVS method in the 

noise-free case. As shown in Table 1, for the noise-free experiment, the TV output of the 

component-wise approach (1500) was noticeably superior to the negative gradient approach 

(1833), which required over four times more computation time. As seen in Fig. 2a, the 

component-wise method yielded a faithful reconstruction with negligible artifacts. The NG-

TVS reconstruction with noise-free data had more blurred features (specifically around the 

white phantom border) and several artifacts outside the phantom. Note also that although the 

CW-TVS method was notably faster for the noise-free data, it required more iterations of 

ART than the NG-TVS method (124 versus 108). In Fig. 3, we see the CW-TVS method TV 

function values appear to converge to the optimal TV value and at a much quicker rate than 

the NG-TVS method.
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In the experiment with 2% Gaussian noise added to the measurements, the component-wise 

approach still had superior TV output (2032 versus 2941). In the noisy data case, the NG-

TVS method was faster on average. For the CW-TVS reconstruction, artifacts may be seen 

in the corners of the image along with some blurring of edges, especially for the three small 

ellipses inside the phantom. The NG-TVS method displays more notable artifacts outside the 

phantom, faintly reminiscent of the streaks in the filtered back projection reconstructions. 

There are also blurring artifacts in the NG-TVS reconstruction. Lastly, in Fig. 5, we see the 

TV values increase over time.

Remark 1—The SM parameters such as Nk and the number a with which the parameters ηℓ 
were generated, as well as the parameters associated with the feasibility-seeking ART were 

chosen as well as we could based on earlier published experiences and on some preliminary 

runs that we did with various values. The main point to observe in this regard is that they 

were identical in the runs with component-wise perturbations and the runs with negative 

subgradients as directions of nonascent. Therefore, it is reasonable to assume that, since they 

were equal, they did not affect the comparative outcomes of the runs. Future methodological 

numerical investigations should address the choice of parameters systematically.

5 Discussion

Relative computational costs

Analysis of the difference in the computational cost of each TVS method is as follows. The 

negative gradient approach given in Section 4.3 requires the computation of up to three 

fractions for every component of the perturbation vector. In the denominator of each of these 

fractions is a square root term along with two multiplications and multiple additions/

subtractions. On the other hand, the component-wise perturbation method given in Section 

3.4 requires only additions/subtractions, direct comparisons of floating point numbers with a 

minimum function, multiplication by the signum function, and division by 2. Hence, we may 

expect the component-wise TVS method to be less computationally expensive per iteration. 

This is consistent with the results in Table 1.

Differences in output TV values

Inference of the difference in the output TV values from each method is as follows. With the 

CW-TVS method, the value of the perturbation to each pixel is bounded individually. This 

causes each component in a perturbation vector to be relatively equally weighted, thereby 

enabling a Gaussian distribution of entries. On the other hand, with NG-TVS, the partial 

derivative is computed with respect to each pixel and then the vector is scaled as a whole. 

And, the partial derivative of TV at pixels along any sharp edge in the image has far greater 

magnitude than at the majority of pixels. This is the case with the piecewise-constant Shepp-

Logan phantom. This implies that the distribution of values in the perturbation vector for 

NG-TVS in our reconstructions should consist mostly of near-zero values and a few large 

nonzero values. Indeed, this is consistent with our observations. Also, due to these few 

pixels having large perturbations, it was observed in our reconstructions that the parameter ℓ 
often incremented several times between steps before perturbations had sufficiently small 

magnitude to reduce the TV. After several loops through the superiorization algorithm, this 
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caused the ηℓ bound to be so small that the perturbations to reduce TV became negligible. 

Thus, we assume that the chief advantage of the new TVS method with respect to TV value 

output is due to the component-wise bounding of perturbations.

Connection to previous formulations of the SM

Previous works (e.g., [24]) made note that convexity of the target function does not need to 

be assumed for superiorization. However, when the target function ϕ is not convex, there 

may exist a nonascent point ηℓd for which d is not a nonascending vector. Additionally, if 

such a nonascent point is found, we do not need to be concerned whether there exists δ > 0 

such that, for all λ ∈ [0, δ], the quantity λd gives a nonascent valued point. Hence, the 

notion of a nonascending δ-ball may be understood to be less restrictive and allow for a 

wider class of target function value reducing steps.

6 Conclusions

The superiorization methodology (SM) allows the conversion of a feasibility-seeking 

algorithm into a superiorized version of the feasibility-seeking algorithm that, in addition to 

finding an ε-compatible solution of the constraints, steers iterates toward a reduced target 

function value. The superiorized version of the basic algorithm accomplishes this by 

interlacing target function nonascent steps into the original algorithm in an automatic 

fashion. This work has extended the scope of the SM by introducing the notion of 

nonascending δ-balls for the nonascent steps. Using this notion, perturbation steps of the 

superiorized version of a basic algorithm can now be chosen from a wider class of target 

function value reducing steps, namely, functions that do not have any partial derivatives or 

whose partial derivatives cannot be calculated. Future investigations may also apply this 

formulation of the SM to problems where the target functions may not be convex (e.g., as 

often occurs in the field of intensity-modulated radiation therapy (IMRT) treatment 

planning) and to functions that are given only by tabular presentations.

We have presented an example that shows that our CW-TVS (component-wise total variation 

superiorization) method works well. As a byproduct, we discovered that it finds a better 

solution than an NG-TVS (negative-gradient TVS) approach, and in less computation time 

in the noise-free case. Due to the limited scope of our numerical work, we do not make any 

general claims. However, this finding is understandable in view of the simplicity of the 

component-wise perturbations with their averaging nature and the fact that the components 

of these perturbations are weighted relatively equally, which allows for a larger portion of an 

image to be smoothed with each perturbation than with the negative gradient approach. 

While the negative gradient approach directly attempts to reduce the target function of total 

variation, it is limited in its ability to remove artifacts from the image. We demonstrated this 

experimentally on a large-sized image reconstruction application that was modeled and set 

up as a constrained superiorization problem.
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Fig. 1. 
Original 256 × 256 pixel Shepp-Logan phantom with TV = 1461
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Fig. 2. 
A noise-free reconstruction with component-wise TVS method in a and the negative 

gradient TVS method in b. A reconstruction with 2% Gaussian noise with component-wise 

TVS method in c and the negative gradient TVS method in d. FBP reconstructions are 

provided for noise-free and noisy reconstructions in e and f, respectively
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Fig. 3. 
Plots of TV from a noise-free data trial used to create the images in Fig. 2a and b
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Fig. 4. 
Plots of proximity from a noise-free data trial used to create the images in Fig. 2a and b
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Fig. 5. 
Plots of TV from a noisy data trial used to create the images in Fig. 2c and d
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Fig. 6. 
Plots of proximity from a noisy data trial used to create the images in Fig. 2c and d
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