
Comments on "Anderson Acceleration, Mixing and
Extrapolation"

Citation
Anderson, Donald G.M. 2017. Comments on "Anderson Acceleration, Mixing and Extrapolation."
Numerical Algorithms 80 (1): 135-234.

Published Version
10.1007/s11075-018-0549-4

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:34773632

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:34773632
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Comments%20on%20%22Anderson%20Acceleration,%20Mixing%20and%20Extrapolation%22&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=9d27659404d5979527858e0bbca19c78&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Comments on “Anderson Acceleration, Mixing and Extrapolation”

Donald G.M. Anderson, Gordon McKay Professor of Applied Mathematics, Emeritus

Harvard John A. Paulson School of Engineering and Applied Sciences

In 1962, during the course of my doctoral dissertation research, I devised a

technique for accelerating the convergence of the Picard iteration associated with a fixed

point problem, which I called the Extrapolation Algorithm. More recently, versions of

this method have been labelled as Anderson Acceleration in the applied mathematics

community and Anderson Mixing in the computational quantum mechanics community.

It would never have occurred to me to use the term Anderson Extrapolation, thence the

quotation marks in the title.

I continued to work with the Extrapolation Algorithm, off and on, over the

better part of two decades, but until recently have not had occasion to do so since. Only

minimal records of this earlier work survive, so what follows is based on recollection and

reconstruction, plus some new ideas. I am inclined to retire the Extrapolation language

in favor of the Acceleration language, provided the purview of the latter is broadened to

include the version that I shall outline hereafter. I shall also argue that that purview

should be narrowed to focus on fixed point rather than root finding problems. Mixing is

a term of art in the computational quantum mechanics literature, with broader

connotations, so this terminology seems likely to predominate in that community. A

number of methods equivalent or related to versions of the Extrapolation Algorithm are

now extant. Some of the existing literature will be reviewed from conceptual and

implementation perspectives.

The technique was devised in a vastly different computational environment:

imagine running Moore’s Law backwards for forty or fifty years. Correspondingly, the

scale of the problems of interest is qualitatively as well as quantitatively different, and

1

the relevant questions asked profoundly so. Adapting to current and projected computer

capabilities is a task for a new generation.

The Extrapolation Algorithm

For g : RN → RN , consider the problem of finding a fixed point x̂ ∈ RN

such that g(x̂) = x̂ . We assume that a locally unique fixed point x̂ exists, and that g

has all requisite or convenient smoothness properties. We seek iterants x(`) → x̂ , for

` = 0, 1, · · · . The Picard iteration associated with this fixed point problem is

x(`+1) = g(x(`)) =: y(`) ,

for a given initial iterant x(0). The motivating assumption for the method is that the

Picard iteration converges, but too slowly to be useful, so we seek a more rapidly

converging sequence of iterants. We shall proceed on the basis of this assumption at the

outset, and reconsider it later together with other related issues.

For u, v, w ∈ RN , with w > 0 , define the positive definite diagonal matrix

W = Diag(w) ∈ RN×N , so w = diag(W). Define the inner product

< u|v > =
1

N
(Wu)∗(Wv) =

1

N
u∗W 2v ,

and corresponding norm

‖ u ‖ = {< u|u >}
1
2 =

1√
N
‖ Wu ‖2 .

Recall that the asterisk superscript denotes conjugate transposition for complex vectors

and matrices. For real vectors and matrices, this reduces simply to transposition; its use

in the real case usually leads naturally to the appropriate extension to the complex case.

The complex analogue of what follows is relevant, but we shall consider this extension

primarily implicitly via this and other notational devices. Most authors take W = I,

which would simplify the foregoing and subsequent expressions. I shall later wish to

2

consider W 6= I, so I will not make these simplifications here. Many authors also elide

the 1 / N factor, so < u|v > = u∗v and ‖ u ‖ = ‖ u ‖2 . For large and/or variable N, I

find that inclusion of the 1 /
√
N factor is often a more informative measure of size for

large vectors. Formal extensions to more general inner products and to the Hilbert

space context are straightforward.

For affine combination coefficients
{
θ
(`)
k

}m(`)

k=0
such that θ

(`)
k ∈ R,

m(`)∑
k=0

θ
(`)
k = 1 , θ

(`)
0 = 1−

m(`)∑
k=1

θ
(`)
k ,

define affine combinations

u(`) =
m(`)∑
k=0

θ
(`)
k x(`−k) = x(`) +

m(`)∑
k=1

θ
(`)
k (x(`−k) − x(`))

and

v(`) =
m(`)∑
k=0

θ
(`)
k y(`−k) = y(`) +

m(`)∑
k=1

θ
(`)
k (y(`−k) − y(`)) .

In outline form, the basic Extrapolation Algorithm proceeds as follows: Choose the

maximal m(`) such that there are well-determined θ̂
(`)
k , 0 ≤ k ≤ m(`), minimizing

‖ v(`) − u(`) ‖ , with 0 ≤ m(`) ≤ min(`,M)� N , and satisfying θ̂
(`)
0 > 0. Take

x(`+1) = β(`)v̂(`) + (1− β(`))û(`),

for β(`) > 0. This sketch must be elaborated before implementation is possible; but

there are more general issues to be addressed before doing so.

The minimizing coefficients θ̂
(`)
k , 0 ≤ k ≤ m(`), defining û(`) and v̂(`)

are of primary importance here; mathematically, unique θ̂
(`)
k must exist, and numerically,

they must be calculable sufficiently stably, accurately and efficiently for the generation

of a suitable x(`+1). The minimizer v̂(`) − û(`) is of secondary interest, though one can

write

x(`+1) = û(`) + β(`)(v̂(`) − û(`)) = v̂(`) − (1− β(`))(v̂(`) − û(`)) .

3

Most authors take a specified β(`) = β > 0; many authors take β = 1, thereby

simplifying the foregoing and subsequent expressions. I shall later wish to adaptively

vary β(`), to choose β, once its role is understood.

The constraints θ̂
(`)
0 > 0 and β(`) > 0 ensure that new information, from

y(`) = g(x(`)), is incorporated into x(`+1). They reflect the tacit assumption that the

underlying Picard iteration is converging, however, this may not be essential. For

m(`) > 0, from

v(`) − u(`) = (y(`) − x(`)) +
m(`)∑
k=1

θ
(`)
k [(y(`−k) + x(`))− (x(`−k) + y(`))]

we identify our task as that of finding the least squares solution of A(`)c(`) = b(`), where

b(`) = W (x(`) − y(`)), e∗kc(`) = θ
(`)
k , and A(`)ek = W [(y(`−k) + x(`))− (x(`−k) + y(`))],

for 1 ≤ k ≤ m(`). For m(`) = 0, we have θ̂
(`)
0 = 1, û(`) = x(`) and v̂(`) = y(`).

Clearly, the constraint θ̂
(`)
0 > 0 can be satisfied for some admissible m(`),

0 ≤ m(`) ≤ min(`,M), and the constraint β(`) > 0 is at our disposal.

To consider g : CN → CN , it is most straightforward to admit θ
(`)
k ∈ C

and proceed as before. Restricting θ
(`)
k ∈ R leads to a manageable, but different,

computational problem: consider real and imaginary parts. If θ
(`)
0 may not be real

for m(`) > 0, the constraint θ̂
(`)
0 > 0 should be replaced by | θ̂(`)0 | > 0, and

handled similarly. This constraint could also be used for g : RN → RN ; most

authors impose no constraint on θ̂
(`)
0 . We continue to assume that β(`) > 0 .

This basic approach was later extended by introducing scaling, pivoting and

regularization. We replace A(`)c(`) = b(`) by the scaled equation Ã(`)c̃(`) = b̃(`), where

c̃(`) = S(`)c(`), b̃(`) = (σ(`))−1b(`) and Ã(`) = A(`)(σ(`)S(`))−1. We then seek the least

squares solution of[
D(`)

Ã(`)P (`)

]
(P (`)∗c̃(`)) =

[
D(`)P (`)∗

Ã(`)

]
c̃(`) =

[
0

b̃(`)

]
.

4

The unitary permutation matrix P (`) and diagonal nonnegative definite regularization

matrix D(`) are chosen during the pivoting process. Scaling and permutations can be

carried out implicitly, to advantage for large N . We obtain c̃(`) = P (`)(P (`)∗c̃(`)) ,

c(`) = (S(`))−1c̃(`) = σ(`)(σ(`)S(`))−1c̃(`) and b(`) − A(`)c(`) = σ(`)[b̃(`) − Ã(`)c̃(`)]. I

suggest the choices σ(`) = ‖ b(`) ‖2 > 0, S(`) = Diag(s(`)), σ(`)S(`) = Diag(σ(`)s(`)),

where e∗ks
(`) = max{1, ‖ A(`)ek ‖2 / σ(`)}, 1 ≤ k ≤ m(`).

I used Householder matrix triangularization with modifications of the

standard pivoting strategy including right circular shifts rather than interchanges to

privilege age ordering. The row-oriented form of the modified Gram–Schmidt process,

with corresponding adjustments, could also be used. A key point here is that once the

construction has been done for a candidate m(`), say min(`,M), the requisite

quantities for smaller m(`), with the ordering chosen by the scaling and pivoting

strategy, are readily available using byproducts thereof. Further details, motivation and

rationale will be discussed after presentation of additional background material.

At this point, with some trepidation, I introduce the abbreviation r(`−k) =

y(`−k) − x(`−k), for 0 ≤ k ≤ m(`), assuming that y(`−k) 6= x(`−k), so r(`−k) 6= 0. The

reasons for my trepidation will emerge later. At this stage, I simply emphasize that, in

implementing the Extrapolation Algorithm, I always used x(`−k) and y(`−k), not

r(`−k), as previously indicated! This abbreviation is just an expository or typographical

convenience at times.

We have, using this abbreviation,

v(`) − u(`) =
m(`)∑
k=0

θ
(`)
k r(`−k) = r(`) +

m(`)∑
k=1

θ
(`)
k

[
r(`−k) − r(`)

]
.

For m(`) = 0, we have v̂(`) − û(`) = r(`). For m(`) > 0, the set of all affine

combinations of {r(`−k)}m(`)

k=0 constitute an affine subspace: a linear subspace translated

by a nonzero shift vector, here chosen as r(`). {r(`−k)}m(`)

k=0 is affinely independent or

5

dependent according as that (affine or linear) subspace has dimension equal to or less

than m(`), respectively. There will always be a unique v̂(`)− û(`) in the affine subspace

with minimal norm — closest to 0. There will be unique coefficients {θ̂(`)k }m
(`)

k=0

characterizing v̂(`) − û(`) if {r(`−k)}m(`)

k=0 is affinely independent, and nonunique ones if

it is affinely dependent. We see that the hypothesis or verification that {r(`−k)}m(`)

k=0 is

affinely independent is necessary for the Extrapolation Algorithm to be mathematically

well-defined; for the coefficients to be well-determined involves further considerations of

a numerical character. We see that {r(`−k) − r(`)}m(`)

k=1 spans the linear subspace

associated with the shift vector r(`), so we infer that {r(`−k)}m(`)

k=0 is affinely independent

or dependent according as {r(`−k) − r(`)}m(`)

k=1 is linearly independent or dependent. It is

easily shown that linear independence of {r(`−k)}m(`)

k=0 is a sufficient, but not a necessary,

condition for the affine independence thereof; and that linear dependence of {r(`−k)}m(`)

k=0

is a necessary, but not a sufficient, condition for 0 to be a member of the affine span

thereof, so v̂(`) − û(`) = 0.

We can write

v(`) − u(`) = r(`) −
m(`)∑
k=1

θ
(`)
k

[
r(`) − r(`−k)

]
,

= r(`) −
m(`)∑
k=1

k∑
j=1

θ
(`)
k

[
r(`−j+1) − r(`−j)

]
,

= r(`) −
m(`)∑
j=1

m(`)∑
k=j

θ
(`)
k

[
r(`−j+1) − r(`−j)

]
,

= r(`) −
m(`)∑
j=1

ξ
(`)
j

[
r(`−j+1) − r(`−j)

]
,

with ξ
(`)
j =

∑m(`)

k=j θ
(`)
k , 1 ≤ j ≤ m(`). Setting ξ

(`)
j = 0 and 1 for j = m(`) + 1

and 0 , respectively, we have θ
(`)
j = ξ

(`)
j − ξ

(`)
j+1, for j = m(`), m(`) − 1, · · · , 0.

Many authors use this reparameterization of the affine subspace, with variations in

notation, sign and indexing conventions. Since the linear span of {r(`−j+1) − r(`−j)}m(`)

j=1

6

is equal to that of {r(`−k) − r(`)}m(`)

k=1 , both will be bases for the linear subspace

associated with the shift vector r(`) iff {r(`−k)}m(`)

k=0 is affinely independent. I shall call{
r(`−j+1) − r(`−j)

}m(`)

j=1
the difference basis, and

{
r(`−k) − r(`)

}m(`)

k=1
the deviation basis.

There are advantages, disadvantages and pitfalls in choosing to use this

reparameterization, rather than the original (and, I would argue, more natural)

parameterization, as we shall see hereafter.

For example, observe that the argument above for the equivalence of the

deviation and difference bases depends crucially on a telescoping sum and on an

interchange of summations, which both require inclusion of the full sets of basis vectors.

Deletion of the deviation basis vector (r(`−i) − r(`)), for 1 ≤ i ≤ m(`), yields a proper

subspace of the affine span of {r(`−k)}m(`)

k=0 which is just the affine span of this set with

r(`−i) deleted. For i = 1 or m(`), deletion of the difference basis vector (r(`−i+1) − r(`−i))

has the same consequence. For 1 < i < m(`), this is not the case; we do obtain a

proper subspace of the affine span of {r(`−k)}m(`)

k=0 , but one implicitly involving

r(`−k) , 0 ≤ k ≤ m(`). This has implications for prospective reductions of m(`).

At this stage, we shall introduce some useful terminology applicable to the

Extrapolation Algorithm and related techniques. We shall call the method stationary if

β(`) = β > 0 and m(`) is monotone nondecreasing. The method will be called

quasistationary for 0 < m(`) = ` ≤ M, and equistationary for 0 < m(`) = M < `.

The method will be called nonstationary if m(`) is allowed to decrease, though it might

incidentally fail to do so in a particular instance. The method is also nonstationary if

β(`) is allowed to vary adaptively. As envisioned above, the Extrapolation Algorithm is

nonstationary. Most of the methods studied and used in the recent literature are

ordinarily intended to be stationary, even quasistationary. This is one aspect of

Anderson Acceleration, as presented in the widely cited Walker/Ni paper, that I would

7

argue should be broadened. In fact, they do contemplate the possibility of decreasing

m(`) ; the matter will be discussed in more detail later.

A related issue is the following: If m(`) is reduced, is data permanently

discarded or just temporarily disregarded — in case it might prove useful in a

subsequent iteration? The Walker/Ni approach most naturally discards data, based on

age. In the Extrapolation Algorithm, it is most natural to disregard data by setting the

associated affine combination coefficient equal to zero. It may be useful to accomodate

zero coefficients when evaluating affine combinations. Data is discarded based strictly

on age as needed to maintain 0 ≤ m(`) ≤ M : see further below.

Next, I shall introduce some ephemeral terminology. The distinction involved

is of broader significance, but the terminology used is of narrower immediate concern

and implies no value judgment. I shall characterize a “mathematical” fixed point

problem as one for which the evaluation of g entails relative errors or uncertainties

comparable to some moderate multiple of the unit roundoff error involved. I shall

characterize a “scientific” fixed point problem as one for which the evaluation of g

entails relative errors or uncertainties much larger than those for a “mathematical”

problem, perhaps even providing only a small number of significant figures. Of course,

a computer sees only “mathematical” problems, but may perceive “scientific” problems

as lacking in smoothness.

Ideally, for large N and a reasonable initial iterant x(0), the cosine of the

angle between x(`) and y(`) = g(x(`)) will be close to unity for most `, or at least large

enough `, and their norms will be comparable. If the deviation or difference basis

vectors at the heart of the computation are, in effect, evaluated as

(r(`−k) − r(`)) = [(y(`−k) − x(`−k))− (y(`) − x(`))]

8

or

(r(`−j+1) − r(`−j)) = [(y(`−j+1) − x(`−j+1))− (y(`−j) − x(`−j))] ,

there are three potentially cancellative subtractions, one of these combining results from

the other two. If they are instead evaluated as

(r(`−k) − r(`)) = [(y(`−k) + x(`))− (x(`−k) + y(`))]

or

(r(`−j+1) − r(`−j)) = [(y(`−j+1) + x(`−j))− (x(`−j+1) + y(`−j))] ,

there are two potentially ameliorative additions and one potentially cancellative

subtraction, the third of these combining the results of the first two. For “mathematical”

problems the consequences may be negligible; but for “scientific” problems the former

may magnify relative uncertainties significantly, especially in the later stages of the

iteration when residuals are small. This is one reason to use x(`−k) and y(`−k) rather

than x(`−k) and r(`−k) as the input, when implementing the algorithm.

Our final informal preliminary remarks concern qualitative aspects of the

potential impact of anticipated ill-conditioning. At the outset, note that there are two

sets of such issues involved. The fixed point problem itself may be ill-conditioned, and

the least squares problems to be solved during the course of the iteration may be

ill-conditioned. We shall focus here on the latter, which will inform later brief comments

about the former. For our purposes, there are two distinguishable, but not separable,

sources of ill-conditioning of the least squares problem Ac = b. The first is

attributable to disparate sizes of the norms of the columns of A; or equivalently, the

scaling of the coordinate system in which c is described. The second is attributable to

near (or actual) linear dependence of the columns of A. For convenience, we shall

assume hereafter that A has maximal rank so there is a unique least squares solution ĉ

9

minimizing ‖ b− Ac ‖2, and that ĉ 6= 0 and ‖ b− Aĉ ‖2 > 0.

Correspondingly, there are two distinguishable, but not separable,

consequences of ill-conditioning of the least squares problem Ac = b. The first

consequence is sensitivity of ĉ to perturbations of A and/or b, thence also to errors

involved in solving the problem approximately. By sensitivity is meant that the

solution may suffer a disproportionately large change if the problem suffers a relatively

small perturbation. The interested reader is referred to the literature for extensive

quantitative discussion of sensitivity analysis for nonsingular linear equations and

maximal rank least squares problems : see, for example, Björck (1996) or Golub/Van

Loan (2013). A qualitative appreciation will suffice for our purposes. The second

consequence is ill-determination of ĉ. By ill-determination is meant that the residual

may suffer a disproportionately small change if the solution suffers a relatively large

perturbation. We shall establish later that, for č 6= ĉ,

0 ≤ [‖ b− Ač ‖2 − ‖ b− Aĉ ‖2]

‖ A ‖2 ‖ ĉ ‖2
≤ ‖ A(č− ĉ) ‖2
‖ A ‖2 ‖ ĉ ‖2

≤ ‖ č− ĉ ‖2
‖ ĉ ‖2

.

If č is close to ĉ then ‖ b−Ač ‖2 is close to ‖ b−Aĉ ‖2; ĉ is ill-determined if there are č

not close to and possibly far from ĉ such that ‖ b− Ač ‖2 is close to ‖ b− Aĉ ‖2 . This

occurs if ‖ A(č− ĉ) ‖2 � ‖ A ‖2‖ č− ĉ ‖2 : near (or actual) linear dependence of the

columns of A. Consequently, a ‖ b− Ač ‖2 close to the minimum value ‖ b− Aĉ ‖2 does

not entail that č is close to the minimizer ĉ, so it is difficult to assess a putative

approximate minimizer č . In the overall context of the problem, having ‖ b− Ač ‖2

nearly minimal may suffice for the intended purposes; but if the focus is on č as an

approximation to ĉ, there is an issue to be addressed. It seems intuitively plausible that

if ĉ is ill-determined then it may be sensitive to perturbations of A and/or b, with

relatively large changes in directions (č− ĉ) / ‖ č− ĉ ‖2 corresponding to

‖ A(č− ĉ) ‖2 � ‖ A ‖2 ‖ č− ĉ ‖2 .

10

Disparate sizes of the columns of A and reciprocal disparate sizes of the

corresponding elements of ĉ most directly influences sensitivity; this would have no

effect on actual linear dependence, but does detract from our ability to meaningfully

define and usefully detect near linear dependence, which most directly influences

ill-determination, but indirectly impacts sensitivity. These pairs of sources and

consequences are partially separable, and mitigated if we scale the columns of A to be

equal, or at least comparable, in norm. It is well known that this usually makes the

scaled problem less ill-conditioned, which facilitates detection of near linear dependence.

We can respond to diagnosed near linear dependence by redefining the problem to be

solved as needed to achieve well-determination of the corresponding solution. Scaling is

also essential to the efficacy of pivoting and regularization, as tools for accomplishing

this goal. This is the overall motivation for invocation of our scaling, pivoting and

regularization strategy.

We must be cognizant of the fact that finding θ̂
(`)
k , 0 ≤ k ≤ m(`), is a

means to an end, not an end in itself. The end is accelerating the convergence of an

iterative process to solve a fixed point problem.

Scaling, Pivoting and Regularization

Implementation details given hereafter are included mainly to elucidate their

intended consequences, which could be accomplished in other ways. Initially, as requisite

background, we shall review the Householder matrix triangularization approach to

solving the least squares problem A(`)c(`) = b(`), under the simplifying assumption that

A(`) has maximal rank. We shall then extend this approach to incorporate scaling and

pivoting; and finally, to accommodate near or actual rank deficiency, we shall

incorporate regularization. Many of the tools used are standard, but their combination

requires a special purpose algorithm and code.

11

We shall assume that the iterant data x(`−k) and y(`−k) = g(x(`−k)), for

0 ≤ k ≤ min(`,M), are stored and accessed as columns of N × (M + 1) arrays X and

Y, using a pointer evaluated as (`− k) modulo (M + 1), for ` = 0, 1, · · · .

Consequently, there is no need to realign the data as ` increases, which is desirable for

N � M ; and moreover, data is discarded for ` > M based strictly on age. The

augmented matrix [A(`) b(`)] is formed using X and Y, and stored in the first

min(`,M) + 1 columns of an N × (M + 1) array AB. Consequently, multiplication of

columns of A(`) by Householder matrices, as discussed hereafter, can readily be extended

to include multiplication of b(`).

Background

For convenience, we simplify the notation to A, b and c, and set

m = min(`,M) and n = N. We seek the QR decomposition of the n×m matrix A :

that is, we seek a unitary n× n matrix Q and a regularly upper triangular n×m matrix

R such that A = QR : that is, Q∗ = Q−1 and e∗iRej = 0, for i > j, with

e∗jRej 6= 0. Note that Q∗Q = QQ∗ = I so Q∗ is also unitary; and that

‖ Qx ‖22 = (Qx)∗(Qx) = x∗Q∗Qx = x∗x = ‖ x ‖22 ,

so ‖ Qx ‖2 = ‖ x ‖2 and ‖ · ‖2 is said to be unitarily invariant. We shall do so by

identifying unitary and Hermitian n× n Householder matrices Hk, k = 1, 2, · · · ,m ,

so H−1k = H∗k = Hk and thence Hk is self-inverse (or involutory), such that

Q =
∏m

k=1Hk, thence Q∗ =
∏1

k=mHk, yielding Q∗A = R, thence A = QR. If we

were to actually form Q and R, or at least Q̂, we could write

A = QR =
[
Q̂ Q̌

] [
R̂
0

]
= Q̂R̂ ,

where Q̂ and Q̌ are n×m and n× (n−m) column-rectangular orthonormal basis

matrices for R{A} and R{A}⊥ , respectively, so Q̂∗Q̂ = I and Q̌∗Q̌ = I, and

12

also Q̂∗Q̌ = 0 and Q̌∗Q̂ = 0; and R̂ is an m×m regularly upper triangular,

thence nonsingular (and conversely), matrix. Note that we have ‖ Q̂x̂ ‖2 = ‖ x̂ ‖2 and

‖ Q̌x̌ ‖2 = ‖ x̌ ‖2, orthonormal invariance of ‖ · ‖2; and also (Q̌x̌)∗(Q̂x̂) = 0. We

thereby obtain the QR factorization of A, A = Q̂R̂ . It will suffice for our purposes to

evaluate

d := Q∗b =

[
Q̂∗b
Q̌∗b

]
=:

[
d̂

ď

]
by using Q∗ =

∏1
k=mHk to calculate

Q∗ [A b] = [R d] .

Since ‖ · ‖2 is unitarily invariant and Q∗ is unitary, we see that

‖ b− Ac ‖22 = ‖ Q∗(b− Ac) ‖22 = ‖ d̂− R̂c ‖22 + ‖ ď ‖22 .

It follows that the least squares solution ĉ is obtained by solving R̂ĉ = d̂ and that

‖ b− Aĉ ‖2 = ‖ ď ‖2. There is no need to actually form Q, thence Q̂ and Q̌; or

Q∗, thence Q̂∗ and Q̌∗; R̂, d̂ and ď are at hand given [R d] . It will emerge that

there is also no need to actually form Hk, k = 1, 2, · · · , m. By hypothesis, we have

m � n, so this is highly advantageous.

We shall digress briefly at this point to make some observations useful later.

For notational convenience, we shall focus on the QR factorization A = Q̂R̂; but, as

previously noted, the same information can be obtained from the QR decomposition

A = QR.

Assume that m > 1 and choose any j such that 1 ≤ j < m. Partition

A and Q̂ after their jth column, ĉ and d̂ after their jth row, and R̂ after its jth

row and column, thence

[A1 A2] =
[
Q̂1 Q̂2

] [R̂11 R̂12

0 R̂22

]
.

13

Observe that A1 = Q̂1R̂11, so the QR factorization of A1 is embedded in that of

A. We also have [
d̂1
d̂2

]
=

[
Q̂∗1b

Q̂∗2b

]
and, provided R̂11 is nonsingular, we see that the least squares solution ĉ1 of

A1c1 = b can be obtained by solving R̂11ĉ1 = d̂1 . Moreover, we find that

‖ b− A1ĉ1 ‖22 = ‖ ď ‖22 + ‖ d̂2 ‖22 .

This is equivalent to finding the basic least squares solution of Ac = b obtained by

setting ĉ2 = 0, when A is rank deficient with rank j < m so we have R̂11

nonsingular and R̂22 = 0; and is often used when A is declared nearly rank deficient

because R̂22 is regarded as negligibly small, in some specified sense. Thus, using the

QR factorization or decomposition of A allows us to solve a family of embedded least

squares problems, and to find corresponding basic least squares solutions.

We shall also consider the task of finding the minimal solution of

[
R̂11 R̂12

] [ĉ1
ĉ2

]
= d̂1 .

This is equivalent to finding the minimal least squares solution of Ac = b, when A is

rank deficient with rank j < m so we have R̂22 = 0; and is often used when A is

nearly rank deficient with R̂11 nonsingular and R̂22 regarded as negligibly small.

Defining Z = (R̂11)
−1 R̂12, we obtain

[I Z]

[
ĉ1
ĉ2

]
= (R̂11)

−1 d̂1 ,

thence [
ĉ1
ĉ2

]
=

[
I
Z∗

]
(I + ZZ∗)−1 (R̂11)

−1d̂1 .

Since

[
−Z
I

]
is a standard basis matrix for the nullspace of [I Z] , we can write ĉ

14

as the sum of the counterpart basic solution and a member of the nullspace: to wit,[
ĉ1
ĉ2

]
=

[
(R̂11)

−1d̂1
0

]
+

[
−Z
I

]
ĉ2 .

Choosing ĉ2 to minimize ‖ ĉ ‖22, we obtain

ĉ2 = (I + Z∗Z)−1 Z∗(R̂11)
−1 d̂1

and

ĉ1 = (R̂11)
−1d̂1 − Zĉ2,

=
[
I − Z(I + Z∗Z)−1 Z∗

]
(R̂11)

−1 d̂1 .

Since Z is a j × (m− j) matrix, it would be more economical to find the Cholesky

factorization of (I + ZZ∗) when j ≤ (m− j) and of (I + Z∗Z) when

j > (m− j). The latter situation would be more likely in our context, for moderately

small M ; but the former situation could arise for moderately large M. Note that the

basic and minimal least squares solutions coincide iff R̂12 = 0, thence Z = 0. This

“normal equations” approach, via Cholesky factorization using the standard scaling and

pivoting strategy, will suffice for our purposes; but the more elegant approach via a QR

factorization of
[
R̂11 R̂12

]∗
might be preferable numerically.

We shall return now to the discussion of the Householder matrices

Hk, 1 ≤ k ≤ m. Construction of the QR decomposition of A and the resulting least

squares solution of Ac = b using Householder matrices is a standard topic in numerical

linear algebra, covered in detail in any number of monographs or texts: for example,

Björck (1996) or Golub/Van Loan (2013). Professionally implemented general purpose

codes for such algorithms are widely available, and should be availed of when applicable.

I shall focus here on those aspects requisite to understanding the modifications involved

in designing a special purpose algorithm and code adapted to our purposes.

15

We shall adopt a formulation which extends gracefully from the real to the

complex case. To this end, define sgn(z) = z/ | z | , for 0 6= z ∈ C, and

sgn(0) = 1. In particular, for x ∈ R, we have sgn(x) = 1 , x ≥ 0, and

sgn(x) = −1 , x < 0. It is easily verified that | sgn(z) | = 1 , sgn(z) = (sgn(z))−1

and z = | z | sgn(z).

Again, we shall adopt generic notation Ac = b, with A ∈ Rn×m, c ∈ Rm

and b ∈ Rn. We shall assume at the outset that n > m ≥ 1, and usually

n � m > 1; and that A has maximal rank, so A ∈ Rn×m
m . The rank deficient

situation and, more importantly, the nearly rank deficient situation will be considered

later. For 0 6= v ∈ Rn we shall call I − (2/v∗v)vv∗ an elementary reflector. It is

easily verified that this elementary reflector is unitary and Hermitian; and that it is

unaltered by replacing v by αv, for 0 6= α ∈ R, the canonical choice being

α = ‖ v ‖−12 . The term “ elementary” customarily designates a matrix differing from

the identity matrix by a matrix of rank one, representable by an outer product of two

vectors. Householder used the terms elementary Hermitian or elementary unitary

matrix, rather than elementary reflector (whose significance will be elucidated

momentarily). The terms Householder reflector, Householder transformation or

Householder matrix are commonly employed in the current literature. My custom is to

use the elementary reflector language at this level, and to attach the Householder name

to the most commonly applied instances thereof.

We shall be interested in choosing v such that(
I − 2

[
vv∗

v∗v

])
x = y ,

for given x 6= 0, and suitable y 6= x. Since the elementary reflector is unitary, we

must have ‖ y ‖2 = ‖ x ‖2 . Recall that
[
vv∗

v∗v

]
is the orthogonal projector onto the

16

span of v, spn(v), and [
vv∗

v∗v

]
x =

[
v∗x

v∗v

]
v

is the projection of x onto spn(v). Moreover, recall that
(
I −

[
vv∗

v∗v

])
is the

corresponding projector onto the orthogonal complement spn(v)⊥, and(
I −

[
vv∗

v∗v

])
x = x−

[
v∗x

v∗v

]
v

is the projection of x onto spn(v)⊥. We then identify

y =

(
I − 2

[
vv∗

v∗v

])
x = x− 2

[
v∗x

v∗v

]
v

as the reflection of x in spn(v)⊥, thence the elementary reflector terminology. We see

that

x− y = 2

[
v∗x

v∗v

]
v

is orthogonal to spn(v)⊥, and spn(v)⊥ (or the projection of x or y thereupon)

bisects the angle between x and y. We shall now argue that we can choose

v = x− y, which requires that v∗x = 1
2
v∗v. We have

(x− y)∗x = x∗x− y∗x

and

(x− y)∗(x− y) = x∗x+ y∗y − y∗x− x∗y ,

= 2 {x∗x+ y∗x} = 2(x− y)∗x ,

so v∗x = 1
2
v∗v = x∗v, since x∗x = y∗y and, for real vectors, y∗x = x∗y.

We also have

(x− y)∗y = x∗y − y∗y ,

so we find that −v∗y = 1
2
v∗v = −y∗v. To have a graceful extension to the

complex case, we must require not only that ‖ y ‖2 = ‖ x ‖2 but also that y∗x be

17

real, so y∗x = x∗y; this will implicitly be arranged in what follows. (Note that one

could then replace v = x− y by v = α(x− y), for any 0 6= α ∈ C.)

My custom is to use the term Householder reflector for the elementary

reflector H(x) ∈ Rn×n (or Cn×n) such that

H(x)x = −sgn(e∗1x) ‖ x ‖2 e1 =: y ,

for 0 6= x ∈ Rn (or Cn), with n ≥ 2. We see that y 6= x, ‖ y ‖2 = | e∗1y | = ‖ x ‖2

and y∗x = − ‖ x ‖2 | e∗1x | = x∗y. By the foregoing, we can write

H(x) = I − (2/v∗v) vv∗ ,

with

e∗1v = sgn(e∗1x) [| e∗1x | + ‖ x ‖2]

and

e∗i v = e∗ix , 2 ≤ i ≤ n .

We see that

1

2
v∗v = −y∗x = ‖ x ‖2 [| e∗1x | + ‖ x ‖2] ,

so

(2/v∗v) = { | e∗1y || e∗1v | }
−1 .

We could replace v by ṽ = v/e∗1v , so e∗1ṽ = 1, and write

H(x) = I − (2/ṽ∗ṽ)ṽṽ∗ ,

where

(2/ṽ∗ṽ) = [| e∗1x | + ‖ x ‖2] / ‖ x ‖2 .

We have 1 ≤ (2/ṽ∗ṽ) ≤ 2, thence 1 ≤ ṽ∗ṽ ≤ 2. For n � 1, we expect (2/ṽ∗ṽ) to

be near its lower bound. The reasons for considering ṽ will be explained below, but it

18

will emerge that using v is most appropriate for our purposes. For z 6= x we have

H(x)z = z − { (2/v∗v)(v∗z) } v .

Observe, for later purposes, that if v∗z = 0 then H(x)z = z, and that if e∗i v = 0

then e∗iH(x)z = e∗i z .

We seek [R d] = Q∗ [A b] , where Q∗ =
∏1

k=mHk. Defining[
R(0) d(0)

]
= [A b] , we shall use Householder reflectors to construct Householder

matrices Hk and [
R(k) d(k)

]
= Hk

[
R(k−1) d(k−1)

]
,

for k = 1, 2, · · · , m, such that
[
R(m) d(m)

]
= [R d] . Recall that, for any given

[A b] , once we have extracted R̂, d̂ and ď, from [R d] , all intermediate quantities

involved in their calculation are of no further interest for our purposes. We shall

consider a concise conceptual algorithm based on the foregoing, and reconsider certain

practical implementation issues related thereto.

For k = 1, set H1 = H(R(0)e1) and R(1)e1 = H1R
(0)e1. Set R(1)ej =

H1R
(0)ej, for j = 2, 3, · · · , m; and set d(1) = H1d

(0). For 2 ≤ k ≤ m < n,

partition R(k−1)ek after row k − 1 as R(k−1)ek =

[
(R(k−1)ek)1
(R(k−1)ek)2

]
. Set

Hk =

[
I 0
0 H((R(k−1)ek)2)

]
and R(k)ek = HkR

(k−1)ek. Set R(k)ej = HkR
(k−1)ej, for j = 1, 2, · · · , k − 1 and

j = k+ 1, k+ 2, · · · , m; and set d(k) = Hkd
(k−1). Observe that R(k)ej = R(k−1)ej,

for 1 ≤ j ≤ k − 1; and that e∗iR
(k)ej = e∗iR

(k−1)ej, for 1 ≤ i ≤ k − 1 and

k ≤ j ≤ m. If
[
R(k) d(k)

]
overwrites

[
R(k−1) d(k−1)

]
in the AB array, for

k = 1, 2, · · · , m, we recognize that, for 2 ≤ k ≤ m, the elements in the first

k − 1 rows and columns are unaltered. Consequently, for 2 ≤ k ≤ m,

19

H
(

(R(k−1)ek)2
)

operates on the submatrix of the augmented matrix obtained by

deleting the first k − 1 rows and columns isomorphically to the way H(R(0)e1)

operates on the entire augmented matrix. It therefore suffices to discuss implementation

details for
[
R(1) d(1)

]
= H1

[
R(0) d(0)

]
.

For notational convenience, set x = R(0)e1 and adopt the counterpart v, y

and z notation from the foregoing. Form ‖ x ‖2 = | e∗1y | and

e∗1y = −sgn(e∗1x) ‖ x ‖2 . Form [| e∗1x | + ‖ x ‖2] = | e∗1v | and

e∗1v = sgn(e∗1x) [| e∗1x | + ‖ x ‖2] . Form

(2/v∗v) = { ‖ x ‖2 [| e∗1x | + ‖ x ‖2] }−1 .

Since e∗i v = e∗ix = e∗iR
(0)e1 , 2 ≤ i ≤ n, we can form v in the first column of AB

in place of R(0)e1 by simply replacing e∗1R
(0)e1 by e∗1v. We have characterized H(x)

since we now have v and (2/v∗v), and can form H(x)z for any designated z. Thus,

we can form R(1)ej = H(x)R(0)ej, for j = 2, 3, · · · , m, and d(1) = H(x)d(0).

Finally to form R(1)e1 = y, in the first column of AB, we can set e∗1R
(1)e1 = e∗1y

and e∗iR
(1)e1 = 0 , 2 ≤ i ≤ n. We recognize that e∗1R̂ = e∗1R = e∗1R

(1) and

e∗1d̂ = e∗1d = e∗1d
(1); and, in particular, that | e∗1R̂e1 | = | e∗1y | = ‖ x ‖2 = ‖ R(0)e1 ‖2 .

Observe that to extract R̂ from R, we really need only the significant elements of R̂

on and above the diagonal, since the zero elements below the diagonal can be supplied

automatically. Since we are interested only in R̂, there is no need to set e∗iR
(1)e1 = 0,

2 ≤ i ≤ n, provided we leave the first column of AB unaltered thereafter. Note

that if we save e∗1v separately and have e∗i v = e∗ix , 2 ≤ i ≤ n, below the

diagonal in the first column of AB, we can reconstruct H(x). This is the motivation for

replacing v by ṽ, since e∗1ṽ = 1 by construction and need not be saved separately,

at the price of calculating e∗i ṽ = e∗ix/e
∗
1v, 2 ≤ i ≤ n, in the first column of AB.

When Q =
∏m

k=1Hk or Q∗ =
∏1

k=mHk is needed in this factored form, for other

20

purposes, this encoding would be advantageous. We are interested only in R̂, d̂ and ď,

and have no further need for Q or Q∗, so using v is more advantageous, since

e∗i v = e∗ix = e∗iR
(0)e1 , 2 ≤ i ≤ n.

For 2 ≤ k ≤ m, we proceed to process the submatrix of the augmented

matrix obtained by deleting the first k − 1 rows and columns in isomorphic fashion,

leaving the first k − 1 rows and columns of AB unaltered.

In summary, the Householder matrix H1 is the Householder reflector

H(R(0)e1), a special kind of elementary reflector. For 2 ≤ k ≤ m, the Householder

matrix Hk is also a special kind of elementary reflector:

Hk = I − (2/v∗v)vv∗ .

Partitioning v after row k − 1 as

[
v1
v2

]
, we see that v1 = 0 and v2 is that

associated with H((R(k−1)ek)2), so Hk is derived from a Householder reflector.

Scaling and Pivoting

With this background at our disposal, we turn to the issues of scaling and

pivoting, and later regularization. Least squares codes intended for statistical

applications usually eschew scaling; because disparate character of the columns of A

makes the issue problem dependent, the matter is left in the hands of the user. For

codes intended for applications where the columns of A are of comparable character, a

standard scaling strategy is commonly invoked. The original problem Ac = b is

replaced by a scaled problem Ãc̃ = b̃, where Ã = AS−1 , c̃ = Sc and b̃ = b,

thence c = S−1c̃. It would be relatively harmless, though somewhat redundant, to

take b̃ = σ−1b, thence c = σ S−1c̃. The customary choices would be

S = Diag(s), where e∗ks = ‖ Aek ‖2, and σ = ‖ b ‖2 . I suggest instead taking

Ã = A(σS)−1, c̃ = Sc and b̃ = σ−1b, thence c = S−1c̃ = σ(σS)−1c̃ and

‖ b− Ac ‖2 = σ ‖ b̃− Ãc̃ ‖2 . My choice would be S = Diag(s) , σS = Diag(σs),

21

with σ = ‖ b ‖2 and e∗ks = max {1, ‖ Aek ‖2 / σ} ,

so e∗k(σs) = max {σ, ‖ Aek ‖2} . Observe that if ‖ Aek ‖2 ≥ ‖ b ‖2 , 1 ≤ k ≤ m,

we obtain the same Ã as with the standard scaling strategy, with ‖ Ãek ‖2 = 1. One

might prefer to take σ = max {σ̂, ‖ b ‖2} , for σ̂ > 0, in case ‖ b ‖2 is too small.

The motivation for this alternative to the standard scaling strategy will be discussed

below, once we have reviewed the standard pivoting strategy.

For convenience, we return to generic notation Ac = b in describing the

pivoting process, with A ∈ Rn×m
m , c ∈ Rm and b ∈ Rn. This will also facilitate

discussion of the interaction between scaling and pivoting. The standard pivoting

strategy generates a unitary permutation matrix P ∈ Rm×m, a unitary matrix

Q ∈ Rn×n, and a regularly upper triangular matrix R ∈ Rn×m
m such that

AP = QR, thence also Q∗AP = R, Q∗A = RP ∗ and A = QRP ∗. As before, Q

is obtained in factored form Q =
∏m

k=1Hk , as a product of Householder matrices,

thence Q∗ =
∏1

k=mHk. P will be encoded in a permutation vector p ∈ Rm, with

j = e∗i p signifying that Pei = ej, so e∗iP
∗ = e∗j . We see that

(AP)ei = A(Pei) = Aej.

P is chosen by the pivoting strategy so that

| e∗kRek | ≥ | e∗k+1Rek+1 | , 1 ≤ k < m ,

thence

| e∗kRek | ≥ | e∗jRej | , 1 ≤ k < j ≤ m .

As side effects, we will obtain

| e∗kRek | ≥

{
j∑

i=k

| e∗iRej |2
} 1

2

,

thence

| e∗kRek | ≥ | e∗kRej | ,

22

for 1 ≤ k < j ≤ m. We can usually expect, but cannot always guarantee, strict

inequalities in the foregoing. Under the maximal rank assumption A ∈ Rn×m
m , R is

regularly upper triangular, so | e∗kRek | > 0, 1 ≤ k ≤ m, thence | e∗kRek | > | e∗kRej |,

1 ≤ k < j ≤ m. For rank-deficient A ∈ Rn×m
r , 1 ≤ r < m, we will have

| e∗kRek | > 0, 1 ≤ k ≤ r, and | e∗kRek | = 0, r < k ≤ m, so we have

| e∗iRej | = 0, r < i ≤ j ≤ m. We can only assert that | e∗kRek | > | e∗kRej |,

k < j ≤ m, for 1 ≤ k < r; though it remains true (trivially for r < k < m)

that | e∗kRek | ≥ | e∗kRej |, for 1 ≤ k < j ≤ m.

To work with the augmented matrix [A b] , to construct [R d] , we use

instead

[A b]

[
P 0
0 1

]
= Q [R d]

thence also

Q∗ [A b]

[
P 0
0 1

]
= [R d] ,

Q∗ [A b] = [R d]

[
P ∗ 0
0 1

]
,

and

[A b] = Q [R d]

[
P ∗ 0
0 1

]
.

These reduce to

[AP b] = [QR Qd] ,

[Q∗AP Q∗b] = [R d] ,

[Q∗A Q∗b] = [RP ∗ d] ,

and

[A b] = [QRP ∗ Qd] .

Since Ac = (AP)(P ∗c), we can find the least squares solution ĉ of

Ac = b by finding the least squares solution (P ∗ĉ) of (AP)(P ∗c) = b and forming

23

ĉ = P (P ∗ĉ). This requires only extracting R̂, d̂ and ď from [R d], solving for

(P ∗ĉ) as before, and then recognizing that

e∗i (P
∗ĉ) = (e∗iP

∗)ĉ = e∗j ĉ

where j = e∗i p, 1 ≤ i ≤ m. Though multiplications by P or P ∗ appear in

mathematical expressions, their implementation requires only p, so they are never

actually formed.

For our later purposes, we now introduce notation for two special classes of

permutation matrices: Pk,i and Pk:i, 1 ≤ k ≤ i ≤ m. For later convenience, we

set Pk,k = Pk:k = I. For i > k, define

Pk,i = I − (ei − ek)(ei − ek)∗ ,

= I − (eie
∗
i + eke

∗
k) + (eie

∗
k + eke

∗
i) .

We see that (APk,i)ej = A(Pk,iej) = Aej , for j 6= i, k; that (APk,i)ek =

A(Pk,iek) = Aei ; and that (APk,i)ei = A(Pk,iei) = Aek. Thus multiplying A on

the right by Pk,i results in the interchange of the kth and ith columns. Examining

P ∗k,iA
∗ = Pk,iA

∗, we find that multiplying A∗ on the left by P ∗k,i = Pk,i results in

interchange of the kth and ith rows.

For i > k, define

Pk:i =
k∏

j=i−1

(I − (ej − ej+1)(ej − ej+1)
∗) =

k∏
j=i−1

Pj,j+1 ,

= I −
i−1∑
j=k

eje
∗
j + eie

∗
k +

i−1∑
j=k

eje
∗
j+1 .

It is easily verified that multiplying A on the right by Pk:i results in a right circular

shift of columns k thru i, an interchange for i = k + 1. Likewise, multiplying A∗

on the left by P ∗k:i results in a right circular shift of rows k thru i, an interchange for

24

i = k + 1. Since permutation matrices are unitary, so P ∗k:i = P−1k:i we see that

multiplying A on the right by P ∗k:i results in a left circular shift of columns k thru i,

an interchange for i = k + 1. Likewise, multiplying A∗ on the left by Pk:i results in

a left circular shift of rows k thru i, an interchange for i = k + 1.

To preserve the correspondence between Pk,i and Pk:i, we shall write P ∗k,i

rather than Pk,i when multiplying on the left, in what follows.

For algorithmic purposes, we extend our previous notation to include a

sequence of permutation matrices P (k), 0 ≤ k ≤ m, with P (0) = I and

P (m) = P. Correspondingly, we introduce a sequence of permutation vectors

p(k), 0 ≤ k ≤ m, with e∗i p
(0) = i and e∗i p

(m) = e∗i p, 1 ≤ i ≤ m. At this point,

we must choose between two alternative implementations. The more straightforward

conventional alternative, in effect, involves explicitly forming AP (k), 1 ≤ k ≤ m.

Choosing Q∗ =
∏1

k=mHk essentially as before, we ultimately obtain

Q∗ [AP b] = [Q∗AP Q∗b] = [R d] .

The less straightforward unconventional alternative, in effect, involves implicitly forming

AP (k), 1 ≤ k ≤ m, by accessing (AP (k))ei = A(P (k)ei) = Aej, where

j = e∗i p
(k), 1 ≤ i ≤ m. In the end, we then obtain

Q∗ [A b] = [Q∗A Q∗b] = [RP ∗ d] ;

and we would need to find R = (RP ∗)P. More cogently, we recall that we just need

R̂ = (R̂P ∗)P, available by extracting (R̂P ∗) from (RP ∗) and using

R̂ei = (R̂P ∗)(Pei) = (R̂P ∗)ej ,

where j = e∗i p, 1 ≤ i ≤ m. This tacitly assumes that we actually form the zero

elements below the diagonal of R, thence R̂; but, as noted earlier, we can focus on the

25

nontrivial elements on and above the diagonal, and supply the zero elements of R̂ below

the diagonal as and if required. While the coding involved is somewhat more complex

for the unconventional alternative, by comparison with the conventional alternative, this

seems clearly to be a worthwhile investment of effort, since permuting m-vectors is much

cheaper than permuting n-vectors under our assumption that 2 ≤ m � n. We shall

therefore adopt the unconventional alternative in designing our algorithm, but will point

out relevant aspects of a version based on the conventional alternative. This will later

prove to have been an even more significant decision than now readily apparent.

We shall define R(k) and d(k), 0 ≤ k ≤ m, with R(0) = A ,

R(m) = RP ∗, d(0) = b and d(m) = d. Again, the first step, k = 1, is indicative.

The available candidates for | e∗1R(1)e1 | = | e∗1RP ∗e1 | are ‖ R(0)ej ‖2 , 1 ≤ j ≤ m.

Choose i as the smallest integer such that 1 ≤ i ≤ m and ‖ R(0)ei ‖2 ≥ ‖ R(0)ej ‖2 ,

for i < j ≤ m. Note that choosing the smallest i is the standard tie-breaking rule, to

make i unique. If the standard scaling strategy has been employed, so ‖ R(0)ej ‖2 = 1,

1 ≤ j ≤ m, the standard tie-breaking rule will yield i = k = 1; otherwise, we

could have i > k = 1. Set p(1) = P ∗1,ip
(0). For s = e∗1p

(1) = e∗i p
(0) = i, take

H1 = H(R(0)es) and set

[
R(1) d(1)

]
= H1

[
R(0) d(0)

]
.

For 2 ≤ k < m, the available candidates for | e∗kR(k)ek | = | e∗kRP ∗ek |

are ‖ (R(k−1)et)2 ‖2 , for t = e∗jp
(k−1), k ≤ j ≤ m. Choose i as the smallest

integer such that k ≤ i ≤ m and ‖ (R(k−1)es)2 ‖2 ≥ ‖ (R(k−1)et)2 ‖2, for

s = e∗i p
(k−1) and t = e∗jp

(k−1), i < j ≤ m. Set p(k) = P ∗k,ip
(k−1). For

26

s = e∗kp
(k) = e∗i p

(k−1), take

Hk =

[
I 0
0 H((R(k−1)es)2)

]
and set [

R(k) d(k)
]

= Hk

[
R(k−1) d(k−1)

]
.

For k = m, there is only one available candidate for

| e∗mR(m)em | = | e∗mRP ∗em | , namely ‖ (R(k−1)es)2 ‖2, for s = e∗mp
(m−1), and

p(m) = p(m−1). Identifying s = e∗i p
(0) = i and t = e∗jp

(0) = j, we can largely

combine the indicative case k = 1 with the subsequent cases 2 ≤ k ≤ m. Again, we

can focus attention, for 2 ≤ k ≤ m, on the submatrix of the augmented matrix

obtained by deleting the first k − 1 rows and the k − 1 columns designated by the first

k − 1 elements of p(k−1). We can also decide whether to form the zero elements below

the diagonal in R.

For 2 ≤ k < m, it will suffice to evaluate the candidates ‖ (R(k−1)et)2 ‖2,

for t = e∗jp
(k−1), k ≤ j ≤ m, using the following observations, which also can be

used to justify assertions about side effects and their consequences summarized above.

However, when applying H((R(k−1)es)2) thereafter, ‖ (R(k−1)es)2 ‖2 should be

calculated directly, because of potential cancellations in the indirect calculations. Since

Householder reflectors and matrices are unitary and ‖ · ‖2 is unitarily invariant, we see

that, for 1 ≤ k ≤ m and 1 ≤ j ≤ m,

‖ Aej ‖2 = ‖ R(0)ej ‖2 = ‖ R(k)ej ‖2 = ‖ RP ∗ej ‖2 .

Therefore, for 2 ≤ k < m and t = e∗jp
(k−1), k ≤ j ≤ m, we have

‖ Aet ‖22 = ‖ R(k−1)et ‖22 = ‖ (R(k−1)et)1 ‖22 + ‖ (R(k−1)et)2 ‖22 ,

27

thence

‖ (R(k−1)et)2 ‖2 =
{
‖ Aet ‖22 − ‖ (R(k−1)et)1 ‖22

} 1
2 ,

=
{[
‖ Aet ‖2 + ‖ (R(k−1)et)1 ‖2

] [
‖ Aet ‖2 − ‖ (R(k−1)et)1 ‖2

]} 1
2 .

We likewise have,

‖ (R(k−1)es)2 ‖2 = | e∗kR(k)es | = | e∗kRP ∗es | = | e∗kRek | .

We also observe more clearly the potential impact of scaling of A on the pivoting

process. As we shall see shortly, scaling will also impact regularization, especially when

conjoined with pivoting. For the class of problems of interest, I regard scaling as an

essential precursor to pivoting, with or without conjoined regularization.

For the conventional alternative, we need only identify s with i and t with j

throughout, and write

[R(k) d(k)] = Hk[R(k−1)Pk,i d(k−1)]

for k = 1, 2, . . . , m , with [A b] = [R(0) d(0)] and [R(m) d(m)] = [R d].

If we wish to use a tie-breaking rule that respects the age ordering of the columns of A,

we can accomplish this simply by replacing Pk,i with Pk:i throughout. This would be

prohibitively expensive for large n and the conventional alternative, but incurs

negligible incremental cost for the unconventional alternative. For this reason, we adopt

the unconventional alternative and use Pk:i, because privileging age ordering is a

relevant feature of the problems of interest. Of course, if the occasion to invoke a

tie-breaking rule does not arise, the same P will be obtained by using Pk,i or Pk:i;

and this is the likely outcome. At the potential price of giving up the monotone

nonincreasing (usually decreasing) character of the diagonal elements of R, one could

privilege age ordering further by not choosing the first candidate at least as large as the

28

subsequent ones but rather the first candidate for which no subsequent one is

significantly larger, according to some specified criterion. This may be more acceptable

when used in conjunction with regularization, as described hereafter.

Recall that when combined with the standard scaling strategy, the standard

pivoting strategy will always yield APe1 = Ae1, which is ideal from the age ordering

perspective, but may be problematic in other respects in the problems of interest.

Observed problem dependent features motivated the choice of the nonstandard scaling

strategy introduced above.

If the underlying Picard iteration is converging, and especially if the

accelerated iteration is reasonably rapidly converging, the residuals

r(`−k), 0 ≤ k ≤ m, and the errors x̂ − x(`−k), can be expected to increase in norm

significantly with increasing k : that is, increasing age. The same will be the case for

the deviation basis vectors r(`−k) − r(`); thence, the size of the columns of A can be

expected to increase with age, since Aek = W (r(`−k) − r(`)). Because b = −Wr(`),

it will usually be the case that the Aek will be larger than b; however, accidentally for

smaller ` and systematically for larger ` this may not be so for smaller k. Since

r(`) → 0, the r(`−k) will tend to be more nearly linearly dependent for larger `.

There may be more useful information for discerning the convergence pattern, whose

detection underlies the acceleration efficacy, in intermediate iterants than in the

youngest ones. However, for nonlinear problems, we can anticipate the need to rely

implicitly on local linearization in the neighborhood of x̂, so older iterant data may be

less representative and informative. These issues are accentuated for “scientific”, as

opposed to “mathematical”, problems, where uncertainties are more significant. The

nonstandard scaling strategy is designed to accommodate these observations, among

other things by allowing the pivoting strategy to choose other than the youngest iterant

29

data as APe1. However, the nonstandard scaling strategy will essentially reduce to the

standard scaling strategy in most instances where younger iterant data is most relevant.

As discussed earlier, the combined scaling and pivoting strategies are intended to

reorder based on redundancy, while privileging younger over older data where

appropriate. Some authors prefer to prioritize age ordering, to the exclusion of scaling

and/or pivoting — as I did myself at the outset: see further below.

Regularization

We turn now to a third mollifying device for assigning a generalized solution

to Ac = b when A is actually or nearly rank deficient: that is, the deviation basis

vectors r(`−k) − r(`), 1 ≤ k ≤ m, are actually or nearly linearly dependent, thence

the residuals r(`−k), 0 ≤ k ≤ m, are actually or nearly affinely dependent. In this

situation, the minimizer of ‖ b− Ac ‖22 is ill-defined or ill-determined. We therefore

alter the minimization problem posed to determine ĉ by a small change in the objective

function sufficient to yield a sufficiently well-defined and well-determined ĉ.

As mentioned earlier, we seek instead the least squares solution of[
DP ∗

A

]
ĉ =

[
D
AP

]
(P ∗ĉ) =

[
0
b

]
,

using scaling and pivoting as previously described. D is a small diagonal nonnegative

definite matrix chosen, together with P, as part of the pivoting strategy. Provided the

nullspaces or near nullspaces of DP ∗ and A, or equivalently of D and AP, have trivial

intersection,

[
DP ∗

A

]
and

[
D
AP

]
will have maximal rank, and D can be chosen so

that they are not nearly rank deficient according to some specified criterion: see

further below. This then corresponds to minimizing ‖ DP ∗c ‖22 + ‖ b− Ac ‖22; the

small penalty term ‖ DP ∗c ‖22 serves to resolve the ill-defined or ill-determined nature

of the minimizer of ‖ b− Ac ‖22, without significantly altering the import of choosing ĉ

in the originating context of the problem.

30

We shall consider three approaches to choosing the regularization matrix D,

which I characterize as broad, narrow and dual regularization, the third being a

combination of the first two. While any of these could be applied without scaling and

pivoting, they are more sensible and effective if so conjoined; in particular, a smaller D

may suffice. We shall proceed to modify the Householder matrix triangularization

algorithm detailed above, incorporating the dual approach (which contains the broad

and narrow approaches as special cases). Note that it is known (see Björck) that doing

so with D = 0 is mathematically and numerically equivalent to using the modified

Gram–Schmidt process to find the least squares solution of Ac = b, for maximal rank

A. This is the basis for connecting the error analysis of the modified Gram–Schmidt

process to that for the Householder matrix triangularization approach. (Strictly

speaking, it would not be equivalent to the version of the modified Gram–Schmidt

process reviewed below unless an extra Householder matrix was used to actually

triangularize the augmented matrix; but this would serve only to calculate ‖ ď ‖2,

which can be done more efficiently directly.)

In the broad regularization approach, we take D = µI, with µ > 0. There

is a literature on choosing the regularization parameter µ, which we shall not pursue

here. (I first encountered this in the Levenberg-Marquardt circle of ideas, but it would

today usually be thought of in terms of Tikhonov regularization, ridge regression or trust

region methods.) In practice, µ is often chosen for a class of problems by experimenting

with representative examples, though there are systematic methods in various contexts.

The “broad” label connotes that all elements of c are treated alike in the penalty term.

In the narrow regularization approach, one takes e∗kDek as the smallest

nonnegative quantity which will yield | e∗kRek | ≥ τ | e∗1Re1 |, for 0 < τ � 1. In

the dual regularization approach, one takes e∗kDek as the smallest nonnegative quantity

31

greater than or equal to µ ≥ 0 which will yield | e∗kRek | ≥ τ | e∗1Re1 |, for

0 ≤ τ � 1. (We recover the broad approach for µ > 0 and τ = 0, and the

narrow approach for µ = 0 and τ > 0.) The “narrow” label connotes that all

elements of c are not treated alike in the penalty term. The “dual” label has an obvious

significance. An advantage of the dual approach, as we shall see shortly, is that it can

provide an adaptive way to choose µ, for a given τ ; including the possibility of taking

D = 0 if that will suffice. One can also choose τ adaptively.

If A is actually rank deficient, A ∈ Rn×m
r , for 1 ≤ r < m, it is well

known that the minimal least squares solution is the limit as µ → 0 of the broad

regularization solution for µ > 0, so the latter approximates the former for small

positive µ, though this is not the most effective way to find the minimal solution.

Clearly, the basic least squares solution is the limit as τ → 0 of the narrow

regularization solution, and coincides with it for τ < | e∗rRer | / | e∗1Re1 | . In my final

implementation, these limiting cases were included as available options, but calculated

directly as discussed above. For the more common (and important) nearly rank deficient

case, I customarily used the adaptive dual regularization approach described hereafter.

To modify the foregoing algorithm to incorporate dual regularization, we work

with an (m+ n) × (m+ 1) augmented matrix. We initialize by setting the elements of

the first m rows of the augmented matrix equal to zero, choosing e∗kDek and modifying

the kth row, for k = 1, 2, · · · , m, as part of the pivoting process. Two observations,

for 1 ≤ k ≤ m, are crucial. First, the choice of p(k), thence P (k), can be based on

‖ (R(k−1)et)2 ‖2 with t = e∗jp
(k−1), k ≤ j ≤ m, obtained by partitioning R(k−1)et

after the mth row. As noted previously, it will suffice, for 1 < k < m, to calculate

‖ (R(k−1)et)2 ‖2 indirectly, but ‖ (R(k−1)es)2 ‖2, with s = e∗i p
(k−1) = e∗kp

(k) should

then be calculated directly. Second, for 1 < k < m, recall that the first k − 1 rows

32

and the columns corresponding to e∗jp
(k−1) = e∗jp

(k), 1 ≤ j < k, are unaltered; and

note that while row k and rows m+ 1 thru m+ n of the remaining columns will be

altered, rows k + 1 thru m will not be altered because the corresponding elements of

(R(k−1)es), will be zero. This allows us to choose e∗kR
(k−1)es = e∗kDP

∗es = e∗kDek so

that | e∗kR(k)es | = | e∗kRP ∗es | = | e∗kRek | ≥ τ | e∗1Re1 |, for 2 ≤ k ≤ m, as

intended and explained hereafter.

For k = 1, choose e∗1R
(0)es = µ = e∗1De1, so we will obtain

| e∗1R(1)es | =
{
‖ (R(0))es)2 ‖22 + | e∗1R(0)es |2

} 1
2 = | e∗1Re1 | . Set δ1 = 0. For

2 ≤ k ≤ m, proceed as follows: If ‖ (R(k−1)es)2 ‖2 ≥ τ | e∗1Re1 |, set δk = 0. If

‖ (R(k−1)es)2 ‖2 < τ | e∗1Re1 |, find δk such that

‖ (R(k−1)es)2 ‖22 +(µ+ δk)2 = (τ | e∗1Re1 |)2 ,

thence µ+ δk > 0 and

µ+ δk =
{

(τ | e∗1Re1 |)2 − ‖ (R(k−1)es)2 ‖22
} 1

2 ,

=
{[

τ | e∗1Re1 | + ‖ (R(k−1)es)2 ‖2
] [

τ | e∗1Re1 | − ‖ (R(k−1)es)2 ‖2
]} 1

2 .

Choose

e∗kR
(k−1)es = µ+ max(0, δk) = e∗kDek ,

so we will obtain

| e∗kR(k)ek | =
{
‖ (R(k−1)es)2 ‖22 + | e∗kR(k−1)es |2

} 1
2 = | e∗kRek | .

By construction, we then have | e∗kRek | ≥ τ | e∗1Re1 |, as intended.

Observe that we obtain broad regularization for µ > 0 and τ = 0, narrow

regularization for µ = 0 and τ > 0, and dual regularization for µ > 0 and τ > 0.

We can extend the foregoing to vary µ adaptively as follows: Define δ̂ = min
k

δk

and δ̌ = max
k

δk. Take µ ≥ 0 and τ > 0. Since δ1 = 0 , we have δ̂ ≤ 0 ,

33

and δ̌ ≥ 0; for µ = 0 , we have δ̂ = 0 , and for µ > 0, δ̂ > −µ. Using the

standard pivoting strategy and tie-breaking rule, so ‖ (R(k−1)es)2 ‖2 is monotone

nonincreasing (usually decreasing) as k increases, we see that if δk is ever nonzero

then it is monotone nondecreasing (usually increasing) thereafter. If δ̌ > 0, take µ

at the next iteration as µ+ 1
2
δ̌. If δ̌ = 0, take µ at the next iteration as µ+ 1

2
δ̂.

The 1
2

factor in the adjustment of µ is a tuning parameter, and different values in

(0, 1] could be taken for increases than for decreases. If we start with µ = 0 and

find that δ̂ = δ̌ = 0, we will have D = 0 and will take µ = 0 at the next

iteration; thus, if no regularization is ever required, none is employed, but it is available

when needed. Of course, setting µ = τ = 0 would suppress regularization entirely.

In choosing to adopt the unconventional alternative in implementing the

pivoting and regularization processes, we have — in effect — avoided manipulations of

n-vectors, for large n, by carrying out permutations implicitly by manipulations of and

with permutation vectors p(k), 0 ≤ k ≤ m � n, instead of and with the

corresponding permutation matrices P (k). We could also carry out scaling implicitly

by using a floating vector formalism for the relevant n-vectors. We can associate with

each unscaled n-vector a nonzero scale factor by which it should be multiplied, initially

one. While scale factors are usually envisioned as real and positive, this is not essential

for our purposes. Observe that most of the manipulations of n-vectors we are concerned

with here involve evaluation of norms, inner products and linear combinations. These

operations can easily be adjusted to accommodate the scale factors while manipulating

the unscaled vectors. The ideas involved are simple enough to envision. We forbear

from introducing the notation necessary to pursue the matter in more detail.

34

Choosing m(`)

Several preliminary remarks are in order. First, we proceed on the

assumption that the R̂, d̂ and ‖ ď ‖2 quantities generated by the scaling, pivoting and

regularization strategies detailed in the previous section are at hand. We note, however,

that some of the calculations discussed hereafter could be integrated into the earlier

algorithms so their results are generated as byproducts thereof.

Second, we reiterate the premises that 1 < M � N, and also that the cost

of the `th iteration is dominated by that involved in the evaluation of y(`) = g(x(`)) and

in the subsequent manipulation of N -vectors. By comparison, incremental costs

involved in manipulating M ×M matrices and M -vectors are relatively insignificant.

Third, we exploit the structure of R̂ and d̂ incident upon their mode of

generation. Moreover, we recognize that computations that would rightly be regarded

as prohibitively expensive in the context of solving a general nonsingular M ×M linear

system may be practical and productive for larger purposes within the context of the

overall problem of interest. In particular, as discussed previously, we are interested not

only in the generic linear equation R̂ĉ = d̂, with R̂ ∈ Rm×m, ĉ ∈ Rm and

d̂ ∈ Rm, but also in a family of related linear equations associated with[
R̂11 R̂12

0 R̂22

] [
ĉ1
ĉ2

]
=

[
d̂1
d̂2

]
,

where ĉ and d̂ are partitioned after the (k − 1)th row and R̂ is partitioned after the

(k− 1)th row and column, for 2 ≤ k ≤ m. In the first instance, we shall assume that

R̂ is regularly upper triangular, thence nonsingular, so R̂11 and R̂22 have the same

properties. We shall subsequently focus on the situation where R̂ is nearly (or

actually) singular.

It is easily verified that the diagonal elements of the inverse of a regularly

upper triangular matrix are the reciprocals of the corresponding diagonal elements of

35

the matrix. Because R̂, as partitioned, is block upper triangular, it is also easily

verified that [
R̂11 R̂12

0 R̂22

]−1
=

[
R̂−111 − R̂−111 R̂12R̂

−1
22

0 R̂−122

]
,

so [
ĉ1
ĉ2

]
=

[
R̂−111 d̂1 − (R̂−111 R̂12)(R̂

−1
22 d̂2)

R̂−122 d̂2

]
.

Observe that R̂−111 is embedded in R̂−1, as is R̂−122 ; and that d̂2 = 0 implies

ĉ2 = 0 and ĉ1 = R̂−111 d̂1. The inverse could be calculated by recursion on k, see

below, but it is equivalent and usually more straightforward to proceed

column-by-column, solving upper triangular linear equations and exploiting the upper

triangular character of the inverse.

As noted above, the initial candidate for m(`) is min(`,M) � N, which is

chosen if acceptable. Four factors may play a role in the acceptability of this initial

candidate, or subsequent smaller candidates. The first factor is straightforward: the

constraint θ̂
(`)
0 > 0 must be satisfied. More concretely, we require that θ̌ ≤ θ

(`)
0 , for

a specified θ̌ such that 0 < θ̌ < 1
2
. If this constraint is not satisfied, the next smaller

candidate for m(`) is considered. However, if the iterant data to be disregarded or

discarded is the youngest available, and 2 ≤ m(`) = `, decrease m(`) by two instead

of one, to assure that some older data has been disregarded or discarded. We know that

the constraint must be satisfied for some nonnegative candidate. If the largest

admissible candidate is 0 or 1, the constraint is dispositive; otherwise, other factors

may motivate, or dictate, further reduction, as discussed hereafter.

Choice of M

Before proceeding, we shall pause briefly to consider the impact of the choice

of M. I favor modest values of M. In nonlinear problems, inclusion of unrepresentative

older iterant data may be deliterious; and large m(`) may engender numerical

36

difficulties. In the early days of the Extrapolation Algorithm (1960s), computational

limitations restricted attention to N ∼ 102 and M ∼ 3, with relatively inexpensive

g evaluations. It sufficed to solve the normal equations using Cholesky factorization,

occasionally reducing m(`) based strictly on age as needed to keep the pivot elements

retained large enough: see further below. Subsequently, with larger N ∼ 103 and

M ∼ 5 the standard scaling and pivoting strategies, and broad regularization, were

incorporated; these have equivalent counterparts for the normal equations. Later

(1970s), available computational resources allowed N ∼ 104 and M ∼ 10; QR

decomposition using Householder matrices was then employed, on numerical grounds:

potential ill-conditioning.

In the early days of Anderson Mixing (1980s), and related methods for

electronic structure calculations, storage limitations and costly g evaluations involving

large N initially dictated M ∼ 2. In recent years and a broad range of contexts,

N ∼ 105 − 108 and M ∼ 20− 50 have been considered by various authors. The

normal equations and comparable approaches (see below) are still commonly employed,

unfortunately.

Empirically, it is commonly observed that convergence acceleration

performance initially increases with M, but tends to plateau for small to moderate

values thereof, and may even decrease for larger values. The point of diminishing

returns is problem dependent; and is perhaps best chosen by preliminary

experimentation for a given class of problems, if computational considerations do not

intervene. Typical values observed range from 2 to 12, but may be larger in some cases.

I prefer even values to better accommodate simple oscillatory, rather than monotone,

convergence behavior. Larger M may be required if there are many significant

oscillatory components with disparate periods. The acceleration process must be able to

37

detect relevant patterns in the convergence of the iterants.

Triad

The plateauing behavior with increasing M is consistent with increasing

influence of the triad of factors discussed hereafter, and the need to control m(`). The

choices of m(`) determined by them may be indicative of an appropriate choice of M

for a particular class of problems. The three factors in the triad are distinguishable, but

not separable, and the relationships among them are important for our purposes.

The first factor in the triad is redundancy, which is operationally defined by

the scaling, pivoting and regularization strategies, as implemented in the previous

section: see further below. The outcome is to arrange the columns of ÃP in order of

increasing redundancy, rather than increasing age as in Ã. We have tacitly already used

this redundancy ordering in considering successive candidates for m(`) to satisfy the

θ̂
(`)
0 > 0 constraint; we shall continue to do so as additional criteria for choosing m(`)

are invoked.

The second factor in the triad is relevance. The elements of d̂ are the

Fourier coefficients of b̃ with respect to the ordered orthonormal basis for the range of

ÃP, R{ÃP} = R{Ã}, consisting of the columns of Q̂ from the ÃP = Q̂R̂

factorization. We can regard | e∗kd̂ |2 / ‖ d̂ ‖22 , 1 ≤ k ≤ m, as a measure of the

incremental relevance of the iterant data associated with ÃPek, in approximating b̃ by

a member of the range of ÃP, given that the contributions of previous columns of ÃP

have already been incorporated. Recall that ‖ d̂ ‖2 = ‖ Ãc̃ ‖2 , ‖ ď ‖2 = ‖ b̃− Ãc̃ ‖2

and ‖ d̂ ‖22 + ‖ ď ‖22 = ‖ b̃ ‖22 , reflecting the fact that b̃− Ãc̃ ⊥ R{Ã}. We can

regard

‖ d̂ ‖22 / ‖ b̃ ‖22 = 1 − ‖ ď ‖22 / ‖ b̃ ‖22

as a measure of the collective relevance of the iterant data embodied in the columns of

38

ÃP in approximating b̃. The smaller the residual, the larger the collective relevance of

the iterant data. The incremental relevance is then the fraction of the collective

relevance contributed by each column, net of the prior contributions of the previous

columns.

We would normally anticipate that data judged to be more redundant would

be less relevant and that judged to be less redundant would be more relevant. However,

anomalies are possible, for special b̃, with nonredundant data being irrelevant, or (less

likely) redundant data being relevant. Note that redundance is a property of ÃP, while

relevance is a property of ÃP and b̃; and that scaling plays a role in redundancy and

relevance, through the pivoting process. It is possible to use a nonstandard pivoting

strategy to arrange for decreasing relevance, increasing irrelevance, rather than

increasing redundance. However, this would respond to a desire to minimize rather than

maximize m(`), for a given Ã and b̃. On the other hand, irrelevance is of interest if

‖ d̂2 ‖2 � ‖ d̂1 ‖2, since we then would normally expect that

‖ (P ∗c̃)2 ‖2 � ‖ (P ∗c̃)1 ‖2: recall that if R̂22 is nonsingular, then d̂2 = 0 implies that

(P ∗c̃)2 = 0. Relevance can easily be monitored.

The third factor in the triad is conditioning — in particular, ill-conditioning.

Since aspects of this are defined and quantified in terms of norms and condition numbers

of matrices, we shall review — but basically take for granted — well known facts about

familiar examples: see Horn/Johnson (1985), Björck (1996) or Golub/Van Loan (2013),

et cetera. We take the occasion to amplify remarks made earlier, for later purposes.

Norms

Consider α, β ∈ C, x, y ∈ Cn and A,B ∈ Cn×n : square matrices. A

vector norm defined on Cn induces a subordinate matrix norm defined on Cn×n by

‖ A ‖ = max
x 6= 0

(‖ Ax ‖ / ‖ x ‖) ,

39

or equivalently,

‖ A ‖ = max
‖x‖=1

‖ Ax ‖ .

It follows that the matrix norm inherits the positive definiteness, homogeneity and

subadditivity properties characterizing the vector norm:

(1) ‖ A ‖ ≥ 0 and ‖ A ‖ = 0 ⇐⇒ A = 0

(2) ‖ αA ‖ = | α | ‖ A ‖

(3) ‖ A+B ‖ ≤ ‖ A ‖ + ‖ B ‖ .

Consequently, the matrix norm defines a norm on the linear vector space Cn×n. It also

follows that the subordinate matrix norm has the submultiplicativity property

(4) ‖ BA ‖ ≤ ‖ B ‖‖ A ‖

so the matrix norm defines a norm on the linear algebra Cn×n. The subadditivity

property is often called the triangle inequality; and the submultiplicativity property is

often called the consistency condition — the matrix norm being termed consistent.

Clearly, the vector and induced matrix norms satisfy the compatibility condition

(5) ‖ Ax ‖ ≤ ‖ A ‖‖ x ‖ , ∀ x ∈ Cn

for any given A — the two norms being termed compatible. Moreover, for every A, the

compatibility inequality is sharp (satisfied as an equality for some x), which

characterizes a subordinate matrix norm induced by a compatible vector norm. We

shall later encounter compatible vector and matrix norms satisfying (1) - (5) for which

(5) may be sharp for some A, but not all A, so the matrix norm is not induced by and

subordinate to the vector norm. Finally, we observe the normalization property of a

subordinate matrix norm

40

(6) ‖ I ‖ = 1 .

Any matrix norm not satisfying (6) cannot be a subordinate matrix norm; however, (6)

can be satisfied for matrix norms which are not subordinate.

For compatible vector and matrix norms, if λ is an eigenvalue of B and

x 6= 0 is an associated eigenvector, we have

| λ | ‖ x ‖ = ‖ λ x ‖ = ‖ Bx ‖ ≤ ‖ B ‖‖ x ‖ ,

so | λ | ≤ ‖ B ‖ . The spectral radius ρ(B) is the maximum of the magnitudes of the

eigenvalues of B, so ρ(B) ≤ ‖ B ‖ . Ordinarily, this inequality is strict, and ‖ B ‖ may

be substantially larger than ρ(B). For special B and/or ‖ B ‖ , ‖ B ‖ may equal or

closely approximate ρ(B).

We shall be primarily concerned with three vector norms, for which formulae

can be given for their induced matrix norms:

‖ x ‖1 =
∑
k

| e∗kx | ,

‖ x ‖∞ = max
k
| e∗kx | ,

and

‖ x ‖2 =

{∑
k

| e∗kx |2
} 1

2

.

By establishing that, for every A, the compatibility inequality is satisfied and is sharp,

it can be shown that

‖ A ‖1 = max
j
‖ Aej ‖1 ,

‖ A ‖∞ = max
i
‖ A∗ei ‖1 ,

and

‖ A ‖2 =
√
ρ(A∗A) .

41

We see that ‖ A ‖∞ = ‖ A∗ ‖1 , thence ‖ A∗ ‖∞ = ‖ A ‖1; and we observe that both

‖ A ‖1 and ‖ A ‖∞ are readily computable. We have

‖ A∗ ‖2 =
√
ρ(AA∗) .

We shall outline a proof of this formula for ‖ A ‖2 because related results are useful for

our later purposes. In particular, we shall argue below that A∗A and AA∗ are

Hermitian and nonnegative definite, and they share the same nonzero, thence positive,

eigenvalues. Therefore, we infer that ρ(A∗A) = ρ(AA∗), thence ‖ A∗ ‖2 = ‖ A ‖2;

and we observe that ‖ A ‖2 can be computed by an efficient iterative process, but not

readily. Consequently, readily computable bounds on ‖ A ‖2 are of interest. From

ρ(A∗A) ≤ ‖ A∗A ‖1 = ‖ A∗A ‖∞ , we obtain using submultiplicativity and the

foregoing

ρ(A∗A) ≤ ‖ A ‖1‖ A ‖∞ ,

thence

‖ A ‖2 ≤
√
‖ A ‖1‖ A ‖∞ .

We shall later study other readily computable upper bounds, and also counterpart lower

bounds.

Recall that if B ∈ Cn×n is Hermitian, B∗ = B, the eigenvalues of B are

real and can be labelled so that λ1 ≥ λ2 ≥ · · · ≥ λn. Moreover, there is an

orthonormal basis for Cn consisting of associated eigenvectors: Bvk = λkvk ,

v∗i vj = δij, 1 ≤ i, j, k ≤ n. Consequently, for any x ∈ Cn, we have

x =
∑n

k=1 ξkvk, with ξk = v∗kx. It is easily shown that ∀ x 6= 0, we have

λ1 ≥ x∗Bx / x∗x =
n∑

k=1

λk | ξk |2 /

n∑
`=1

| ξ` |2 ≥ λn .

These bounds are sharp (satisfied as equalities for the corresponding eigenvectors), so we

42

obtain

λ1 = max
x 6=0
{x∗Bx / x∗x}

and

λn = min
x 6=0
{x∗Bx / x∗x}

This is the basic form of the Rayleigh Principle, characterizing the extreme eigenvalues

λ1 and λn. We shall also be interested in the extended Rayleigh Principle, which

follows similarly, characterizing the intermediate eigenvalues λk, 1 < k < n. Define

Sk = spn {v1, v2, · · · , vk} = spn {vk+1, vk+2, · · · , vn}⊥

and

Tk = spn {vk, vk+1, · · · , vn} = spn {v1, v2, · · · , vk−1}⊥ .

The orthogonal complement specification of Sk and Tk is most useful in applications

of the results to follow; but their proofs flow most naturally from the other specification.

We then obtain

λk = min
06=x∈Sk

{x∗Bx / x∗x}

and

λk = max
06=x∈Tk

{x∗Bx / x∗x}

The first characterization is most interesting for λk > λk+1, and the second for

λk < λk−1. Clearly, we also have

λ1 = max
0 6=x∈Sk

{x∗Bx / x∗x}

and

λn = min
06=x∈Tk

{x∗Bx / x∗x} .

43

We shall focus hereafter on A∗A, omitting the parallel arguments for AA∗.

Since (A∗A)∗ = A∗A, we may set B = A∗A in the foregoing, so ∀ x 6= 0 we have

λ1 ≥ x∗(A∗A)x / x∗x = ‖ Ax ‖22 / ‖ x ‖22 ≥ λn ≥ 0 ,

and conclude that A∗A, is nonnegative definite. If A is nonsingular, then

x 6= 0 ⇒ Ax 6= 0, so we see that λn > 0 and A∗A is positive definite. If A is

singular, there are x 6= 0 such that Ax = 0, including vn, so we see that λn = 0

and A∗A is positive semidefinite. Consequently, we obtain

max
x 6=0

{
‖ Ax ‖22 / ‖ x ‖22

}
= λ1 = ρ(A∗A) ,

thence

‖ A ‖2 = max
x 6=0

{
‖ Ax ‖2
‖ x ‖2

}
=

[
max
x 6=0

{
‖ Ax ‖22
‖ x ‖22

}] 1
2

=
√
λ1 =

√
ρ(A∗A) ,

as previously asserted.

In addition, we also obtain

min
x 6=0

{
‖ Ax ‖2
‖ x ‖2

}
=

[
min
x 6=0

{
‖ Ax ‖22
‖ x ‖22

}] 1
2

=
√
λn ≥ 0 .

The minimum value is zero for singular A and greater than zero for nonsingular A. If

A is nonsingular, then A∗A is positive definite, thence nonsingular; the eigenvalues of

(A∗A)−1 are λ−1k , 1 ≤ k ≤ n. We see that λ−1n = ρ((A∗A)−1), thence

λn = ρ((A∗A)−1)−1 and
√
λn = ρ((A∗A)−1)−

1
2 . Furthermore, we find that

(A∗A)−1 = A−1(A∗)−1 = A−1(A−1)∗ , and conclude that

min
x 6=0

{
‖ Ax ‖2
‖ x ‖2

}
= ρ(A−1(A−1)∗)−

1
2 = ‖ A−1 ‖−12 ,

using results anticipated above, that will now be established.

What remains to be shown is that A∗A and AA∗ share the same nonzero,

thence positive, eigenvalues. If λ 6= 0 is an eigenvalue of A∗A and v 6= 0 is an

44

associated eigenvector, we have (A∗A)v = λv 6= 0, and see that

(AA∗)(Av) = λ(Av). Since Av = 0 would imply that A∗Av = 0, which would

contradict the fact that λv 6= 0, we infer that Av 6= 0. We then identify λ as a

nonzero eigenvalue of AA∗ with Av as an associated eigenvector. Thus, all nonzero,

thence positive, eigenvalues of A∗A are also eigenvalues of AA∗. The parallel

argument for AA∗, which is omitted, then shows that A∗A and AA∗ share the same

positive eigenvalues, thence ρ(A∗A) = ρ(AA∗) and ‖ A ‖2 = ‖ A∗ ‖2, as asserted

above. In this square matrix case, A∗A and AA∗ will also share their zero

eigenvalues if A, thence A∗, is singular: see further below.

If U is a unitary matrix, U∗ = U−1, we have (as above)

‖ Ux ‖22 = (Ux)∗(Ux) = x∗(U∗U)x = x∗x = ‖ x ‖22 ,

so the ‖ · ‖2 vector norm is unitarily invariant, with respect to left multiplication by a

unitary matrix. It follows from ‖ UAx ‖2 = ‖ Ax ‖2 that ‖ UA ‖2 = ‖ A ‖2 . For

every y ∈ Cn, there is a unique x ∈ Cn, namely x = U∗y, such that Ux = y

and ‖ x ‖2 = ‖ y ‖2. Conversely, for every x ∈ Cn, there is a unique y ∈ Cn,

namely y = Ux, such that U∗y = x and ‖ y ‖2 = ‖ x ‖2. It follows that we have

‖ AU ‖2 = max
x 6=0

{
‖ AUx ‖2
‖ x ‖2

}
= max

y 6=0

{
‖ Ay ‖2
‖ y ‖2

}
= ‖ A ‖2 .

Therefore, the ‖ · ‖2 matrix norm is unitarily invariant, with respect to left or right

multiplication by a unitary matrix. This motivates use of ‖ · ‖2 in some theoretical

contexts; but also motivates attention to more readily computable approximations to

‖ A ‖2 in practical contexts. These are themes to be explored further hereafter.

By definition of the subordinate matrix norm induced by a vector norm, for

A ∈ Cn×n, and x ∈ Cn, we have

max
x 6=0

{
‖ Ax ‖
‖ x ‖

}
= ‖ A ‖ = max

‖x‖=1
‖ Ax ‖ .

45

In particular, for the ‖ · ‖2 norms, this becomes

max
x6=0

{
‖ Ax ‖2
‖ x ‖2

}
= ‖ A ‖2 = max

‖x‖2=1
‖ Ax ‖2 .

We have shown above that, for nonsingular A ∈ Cn×n
n and x ∈ Cn, we also have

min
x 6=0

{
‖ Ax ‖2
‖ x ‖2

}
= ‖ A−1 ‖−12 = min

‖x‖2=1
‖ Ax ‖2 .

Therefore, for x 6= 0 we can write

‖ A−1 ‖−12 ≤ ‖ Ax ‖2 / ‖ x ‖2 ≤ ‖ A ‖2 ;

and, for ‖ x ‖2 = 1 ,

‖ A−1 ‖−12 ≤ ‖ Ax ‖2 ≤ ‖ A ‖2 .

These bounds are sharp. The upper bound is just the compatibility condition for the

vector and matrix norms. At this point, we wish to extend the lower bound for any

vector norm and the subordinate matrix norm. The purpose in doing so is to highlight

a crucial step in the argument, for our later purposes.

Because A is square and nonsingular, for every y ∈ Cn, there is a unique

x ∈ Cn, namely x = A−1y, such that Ax = y. Conversely, for every x ∈ Cn,

there is a unique y ∈ Cn, namely y = Ax, such that A−1y = x. It follows that

y 6= 0 ⇔ x 6= 0 and

‖ A−1 ‖ = max
y 6=0

{
‖ A−1y ‖
‖ y ‖

}
= max

x 6=0

{
‖ x ‖
‖ Ax ‖

}
=

[
min
x 6=0

{
‖ Ax ‖
‖ x ‖

}]−1
,

thence

min
x 6=0

{
‖ Ax ‖
‖ x ‖

}
= ‖ A−1 ‖−1 .

The key steps here are the recognition that Ax = 0 ⇔ x = 0 and that

quantification over y 6= 0 and over x 6= 0 are equivalent because

R {A} = R {A−1} = Cn. Therefore, for x 6= 0, we can write the sharp bounds

‖ A−1 ‖−1 ≤ ‖ Ax ‖ / ‖ x ‖ ≤ ‖ A ‖ ;

46

and, for ‖ x ‖ = 1 ,

‖ A−1 ‖−1 ≤ ‖ Ax ‖ ≤ ‖ A ‖ .

For any compatible vector and matrix norms, we have ‖ Ax ‖ ≤ ‖ A ‖ ‖ x ‖

and also ‖ x ‖ = ‖ A−1Ax ‖ ≤ ‖ A−1 ‖ ‖ Ax ‖ . Therefore, the foregoing bounds are

valid, but are not sharp for all A unless the matrix norm is subordinate to the vector

norm. For the lower bounds, the essential hypothesis is that A is square and

nonsingular.

We now wish to extend the foregoing from square to rectangular matrices.

For A ∈ Cn×m, with m 6= n, and x ∈ Cm, we have Ax ∈ Cn, so there are two

linear vector spaces and two vector norms involved. We restrict attention to companion

norms in Cm and Cn differing only in the number of elements in the vectors, which

allows notational simplifications through reliance upon implicit reference to the nature

of the arguments involved to resolve any apparent ambiguities in expressions involving

vector and matrix norms. We may then define the subordinate matrix norm induced by

the pair of ‖ · ‖ vector norms by

‖ A ‖ = max
x 6=0

(‖ Ax ‖ / ‖ x ‖) ,

or equivalently,

‖ A ‖ = max
‖x‖ = 1

‖ Ax ‖ .

The extensions to Cn×m, m 6= n, of (1)− (3) and (5) follow immediately. Since

Cn×m, m 6= n, is a linear vector space but not a linear algebra, because products are

not defined, the submultiplicativity property or consistency condition (4) is not

meaningful if we focus on particular m 6= n. It is more productive to consider all m

and n in N together, including square (m = n), column rectangular (m < n) and row

rectangular (m > n) matrices simultaneously. Then ‖ BA ‖ ≤ ‖ B ‖‖ A ‖ is

47

meaningful for A ∈ Cn×m and B ∈ C`×n so BA ∈ C`×m is well-defined. There

is one vector norm involved if ` = m = n; there are two vector norms involved if any

two of ` , m and n are equal and distinct from the third; there are three vector

norms involved if ` , m and n are distinct from one another. There may be one, two

or three matrix norms involved. In this sense, the extended submultiplicativity

property or consistency condition (4) again follows. Since we include square matrices,

(6) also holds: see further below.

Condition Numbers

The formulae discussed above for ‖ · ‖1 , ‖ · ‖∞ and ‖ · ‖2 in the square

matrix context extend straightforwardly to the rectangular matrix context, including

the derivations associated with the latter. Index sets for summations and

maximizations are simply adjusted in obvious ways. We shall be concerned primarily

with nonsingular square matrices and maximal-rank column-rectangular matrices, but

with a focus on nearly singular and nearly rank deficient such matrices, which reflects

near linear dependence of the columns thereof. Nonsingular square matrices A and

maximal-rank column-rectangular matrices A have trivial nullspaces, N {A} = {0} so

Ax = 0 ⇐⇒ x = 0. Singular square matrices, rank-deficient column-rectangular

matrices and row-rectangular matrices have nontrivial nullspaces, so there are nonzero x

such that Ax = 0. Initially, we employ the ‖ · ‖2 vector and matrix norms, for

reasons which will emerge shortly. Many, but not all, aspects of the discussion extend

naturally to other norms.

The subset Cn×n
n of nonsingular matrices is open and dense in Cn×n; and

the subset of singular matrices Cn×n − Cn×n
n consists of surfaces within the

n2-dimensional normed linear vector space (and linear algebra). Define the condition

48

number of A ∈ Cn×n
n , for the ‖ · ‖2 matrix norm, by

κ2(A) = ‖ A ‖2‖ A−1 ‖2 .

It is common to elide the subscript on κ if only the ‖ · ‖2 matrix norm is involved,

but this is not the case here so we retain it. Omission of subscripts will signify a generic

norm, usually a subordinate matrix norm induced by a vector norm. Observe that

κ2(A
−1) = κ2(A) and that κ2(αA) = κ2(A) , for α 6= 0. Observe also that

1 = ‖ I ‖2 = ‖ A−1A ‖2 ≤ ‖ A−1 ‖2‖ A ‖2 = κ2(A).

From ‖ A ‖2 ≤
√
‖ A ‖1‖ A ‖∞ and ‖ A−1 ‖2 ≤

√
‖ A−1 ‖1‖ A−1 ‖∞, we obtain

κ2(A) ≤
√
κ1(A)κ∞(A) .

It is easily shown that ‖ A∗A ‖2 = ‖ A ‖22, thence

κ2(A
∗A) = κ2(A)2 = κ2(A

∗)2 = κ2(AA
∗) .

From earlier results, we identify

κ2(A) = ‖ A ‖2‖ A−1 ‖2 = max
x 6=0

{
‖ Ax ‖2
‖ x ‖2

}
/ min

x 6=0

{
‖ Ax ‖2
‖ x ‖2

}
.

For our later purposes, it is most illuminating to rewrite this in the form

min
x 6=0

{
‖ Ax ‖2
‖ A ‖2‖ x ‖2

}
= κ2(A)−1 = min

‖x‖2=1

{
‖ Ax ‖2
‖ A ‖2

}
.

By earlier results, a corresponding relationship is valid for any vector norm and the

induced subordinate matrix norm, for square nonsingular matrices A. This means that

the reciprocal of the condition number (usually abbreviated as the reciprocal condition

number) is a scale-invariant (but not scaling-invariant!) measure of near linear

dependence of the columns of A, for κ2(A) � 1. By scale-invariant I mean invariant

49

if A is replaced by αA, for α 6= 0; by not scaling-invariant I mean not ordinarily

invariant if A is replaced by AS−1, for S 6= α−1I. We have anticipated previously

that for a suitable S we may have κ2(AS
−1) � κ2(A) if the norms of the columns of

A are of disparate sizes.

The reciprocal condition number is also the relative distance between A and

the nearest singular matrix B : that is,

‖ A−B ‖2 / ‖ A ‖2 = κ2(A)−1 .

If A → B, we see that κ2(A) → ∞. A is said to be ill-conditioned if κ2(A) � 1;

otherwise, well-conditioned — the precise characterization being problem dependent.

The nonsingular linear equation Ac = b is well-posed, with unique solution

ĉ = A−1b. κ2(A) is a measure of the sensitivity of A−1 to perturbations of A, and of

ĉ to perturbations of A and/or b. Ill-conditioning of A, and by extension Ac = b,

corresponds to near singularity and to sensitivity to small perturbations, be they errors

or uncertainties. The singular linear equation Bc = b is ill-posed, with no solution

unless b is in the range of B , R{B}; in which case, there is an affine subspace of

solutions parallel to the nullspace of B , N{B}. In this context, it is customary to

regard κ2(B) as undefined: see further below. Similar considerations apply for κ1(A)

and κ∞(A).

To extend the foregoing to rectangular and singular matrices, the inverse A−1

is replaced by the Moore-Penrose pseudoinverse A+. For

A ∈ Cn×m
r , 1 ≤ r ≤ min(m,n), A+ is the unique X ∈ Cm×n

r satisfying the

Moore-Penrose conditions

(1) AXA = A ,

(2) XAX = X ,

50

(3) (AX)∗ = AX ,

(4) (XA)∗ = XA .

It is easily verified that (A∗)+ = (A+)∗, and (A+)+ = A; and, for A square and

nonsingular, A+ = A−1. More to the point, A+ is the unique member of Cm×n
r such

that, for all b ∈ Cn, ĉ = A+b is the unique minimizer of ‖ č ‖2 over the set of all

minimizers č of ‖ b−Ac ‖2: a single point for N{A} = {0}, and N{A} or an affine

subspace parallel to N{A} for N{A} 6= {0}. Since A+ is naturally associated with

‖ · ‖2, it is customary to focus on κ2(A) = ‖ A ‖2‖ A+ ‖2 in this context: see below.

Consider the maximal-rank column-rectangular case, A ∈ Cn×m
m , m < n.

From the normal equations, A∗Aĉ = A∗b, we obtain ĉ = (A∗A)−1A∗b, thence

A+ = (A∗A)−1A∗. More cogently numerically, given the QR factorization AP = Q̂R̂,

we argued previously that ĉ = PR̂−1Q̂∗b, thence A+ = PR̂−1Q̂∗. It is easily

verified that the Moore-Penrose conditions are satisfied. Since κ2(A
∗A) = κ2(A)2,

and we shall argue below that κ2(A) = κ2(R̂), the QR factorization is numerically

preferable to the normal equations, however, the normal equations involve less

arithmetic.

Taking for granted the anticipated extension of earlier results to this case, we

obtain

‖ A ‖2 =
√
ρ(A∗A)

and

‖ A+ ‖2 =
√
ρ(A+(A+)∗) =

√
ρ((A∗A)−1) ,

from which we find that

κ2(A) = ‖ A ‖2‖ A+ ‖2 = max
x 6=0

{
‖ Ax ‖2
‖ x ‖2

}
/ min

x 6=0

{
‖ Ax ‖2
‖ x ‖2

}
.

51

We again rewrite this as

min
x 6=0

{
‖ Ax ‖2
‖ A ‖2‖ x ‖2

}
= κ2(A)−1 = min

‖x‖2=1

{
‖ Ax ‖2
‖ A ‖2

}
,

and identify the reciprocal of κ2(A) as a scale-invariant measure of near linear

dependence, for κ2(A) � 1. Thus, for ‖ · ‖2 norms, we have parallel results for the

square nonsingular matrix and the maximal-rank column-rectangular matrix cases.

The earlier arguments extending these results for square nonsingular matrices

to other norms fail to extend them for maximal-rank column-rectangular matrices. For

the ‖ · ‖2 norms, matrices with nontrivial nullspace can be addressed using the

extended Rayleigh Principle by restriction to the orthogonal complement of the

nullspace. For other norms, it is not clear how to most usefully extend the notion of

condition number, even to maximal-rank column-rectangular matrices. We shall not

pursue these matters further.

Again one can identify the reciprocal of κ2(A) as the relative distance

between A and the nearest matrix B of lower rank:

‖ A−B ‖2 / ‖ A ‖2 = κ2(A)−1 .

If A → B, we see that κ2(A) → ∞; however, κ2(B) is well-defined, so κ2(A) is

not continuous at B. In particular, if A is a maximal-rank column-rectangular matrix

with κ2(A) � 1, then A is nearly rank deficient, so its columns are nearly linearly

dependent; and ĉ = A+b may be unduly sensitive to small perturbations of A or b.

Consider A ∈ Cn×m
m , m < n, and the decomposition/factorization

AP = QR = Q̂R̂ .

From Q∗Q = I and Q̂∗Q̂ = I, we infer that

P ∗A∗AP = (AP)∗(AP) = R∗R = R̂∗R̂ .

52

A∗A is positive definite, so its eigenvalues are all positive, and coincide with those of

P ∗A∗AP. It follows that

‖ A ‖2 = ‖ AP ‖2 = ‖ R ‖2 = ‖ R̂ ‖2 ,

‖ A+ ‖2 = ‖ (AP)+ ‖2 = ‖ R+ ‖2 = ‖ R̂−1 ‖2 ,

and

κ2(A) = κ2(AP) = κ2(R) = κ2(R̂) .

Therefore, we can focus on κ2(R̂) = ‖ R̂ ‖2‖ R̂−1 ‖2 , the condition number of a

regularly upper triangular square matrix.

Let D ∈ Rm×m
m be any positive definite diagonal matrix. For A ∈ Cn×m

m ,

2 ≤ m ≤ n, let S ∈ Rm×m
m be the positive definite diagonal matrix defined by

e∗kSek = ‖ Aek ‖2, 1 ≤ k ≤ m. It can be shown that

min
D

κ2(D
−1A∗AD−1) ≤ κ2(S

−1A∗AS−1) ≤ mmin
D

κ2(D
−1A∗AD−1) ,

thence

min
D

κ2(AD
−1) ≤ κ2(AS

−1) ≤
√
mmin

D
κ2(AD

−1) .

This is of particular interest for small to moderate m � n, and motivates the

standard scaling strategy: see Golub / Van Loan (2013). If A has columns of

disparate sizes, we can usually expect κ2(AS
−1) � κ2(A). Recall, however, that

κ2(αA) = κ2(A) , for α 6= 0. Note the implications for the normal equations. The

example A =

[
S
0

]
is instructive, though not representative, especially in our

context. We anticipate that the size of κ2(AS
−1)−1 will provide a more reliable

measure of near linear dependence of the columns of A than κ2(A)−1, because the

latter may be small due only to disparate sizes of these columns. Our primary concern

is detecting near linear dependence, rather than the condition number per se.

53

Two brief digressions are in order at this point, before returning to the main

argument. First, recall that during our preliminary remarks about “ill-determination”

and “ill-conditioning”, we introduced an inequality whose proof was deferred for later

consideration, to which we now turn. Let ĉ be the unique minimizer of ‖ b− Ac ‖2,

for a maximal-rank column-rectangular A; and let č be a putative approximation

thereto, so ‖ b− Ač ‖2 ≥ ‖ b− Aĉ ‖2 . We see that

(b− Ač) = (b− Aĉ) + A(ĉ− č)

thence

‖ b− Ač ‖2 ≤ ‖ b− Aĉ ‖2 + ‖ A(č− ĉ) ‖2 .

The compatibility inequality yields

‖ A(č− ĉ) ‖2 ≤ ‖ A ‖2 ‖ č− ĉ ‖2 .

It follows that, for č 6= ĉ and ĉ 6= 0,

‖ A(č− ĉ) ‖2
‖ A ‖2‖ ĉ ‖2

≤
{
‖ A(č− ĉ) ‖2
‖ A ‖2‖ č− ĉ ‖2

} {
‖ č− ĉ ‖2
‖ ĉ ‖2

}
,

and we have the sharp bounds

κ2(A)−1 ≤ ‖ A(č− ĉ) ‖2
‖ A ‖2 ‖ č− ĉ ‖2

≤ 1 .

We may therefore write

0 ≤ [‖ b− Ač ‖2 − ‖ b− Aĉ ‖2]
‖ A ‖2‖ ĉ ‖2

≤ ‖ A(č− ĉ) ‖2
‖ A ‖2‖ ĉ ‖2

≤ ‖ č− ĉ ‖2
‖ ĉ ‖2

,

as advertised earlier. If κ2(A) � 1, the columns of A are nearly linearly dependent,

so there are č such that ‖ A(č− ĉ) ‖2 � ‖ A ‖2‖ č− ĉ ‖2 , thence

‖ A(č− ĉ) ‖2 / ‖ A ‖2‖ ĉ ‖2 � ‖ č− ĉ ‖2 / ‖ ĉ ‖2 .

54

This means that we may well have ‖ b− Ač ‖2 ≈ ‖ b− Aĉ ‖2, for moderately large

‖ č− ĉ ‖2 / ‖ ĉ ‖2 . There are also č such that ‖ A(č− ĉ) ‖2 ≈ ‖ A ‖2‖ č− ĉ ‖2,

thence

‖ A(č− ĉ) ‖2 / ‖ A ‖2‖ ĉ ‖2 ≈ ‖ č− ĉ ‖2 / ‖ ĉ ‖2 .

This allows for the possibility that ‖ b− Ač ‖2 � ‖ b− Aĉ ‖2, though it does not

guarantee this.

Second, if we have the QR decomposition/factorization AP = QR = Q̂R̂

and take any unitary diagonal matrix

U =

[
Û 0
0 Ǔ

]
,

then AP = (QU)(U∗R) = (Q̂Û)(Û∗R̂) is also such a decomposition/factorization.

By choosing Ǔ = I and Û = Diag(sgn(e∗kR̂ek)), we can arrange that Û∗R̂ has

real, positive diagonal elements, for A ∈ Cn×m
m . We identify

P ∗(A∗A)P = (Û∗R̂)∗(Û∗R̂)

as the Cholesky factorization of the positive definite matrix P ∗(A∗A)P. By

construction, the modified Gram–Schmidt process automatically produces this standard

QR factorization. In general, the algorithm detailed in the last section does not

produce the standard QR factorization, but could be augmented to do so by

incorporating the relevant U at the end. If we are only interested in solving

R̂(P ∗c̃) = Q̂∗b = d̂ ,

or subsystems thereof, there is no need to do so since,

(Û∗R̂)(P ∗c̃) = (Q̂Û)∗b = Û∗d̂ .

55

However, observe that if we chose to actually triangularize the augmented matrix

[A b] using an extra Householder matrix, we could also choose U to obtain[
R̂ d̂

0 ‖ ď ‖2

]
The extra Householder matrix and associated U are of no interest when we invoke this

observation later.

Consider A ∈ Cn×m
m , m < n, and the QR factorization AP = Q̂R̂, so

R̂ ∈ Cm×m
m is regularly upper triangular, as is R̂−1. Recall that we have

| e∗kR̂−1ek | = | e∗kR̂ek |−1 , 1 ≤ k ≤ m .

Assume that P has been chosen so that

| e∗1R̂e1 | ≥ | e∗2R̂e2 | ≥ · · · ≥ | e∗mR̂em | > 0 ,

so

| e∗mR̂em |−1 ≥ | e∗m−1R̂em−1 |−1 ≥ · · · ≥ | e∗1R̂e1 |−1 > 0 ,

thence

| e∗mR̂−1em | ≥ | e∗m−1R̂−1em−1 | ≥ · · · ≥ | e∗1R̂−1e1 | > 0 .

We then obtain

| e∗1R̂e1 | = ‖ R̂e1 ‖2 ≤ ‖ R̂ ‖2

and

| e∗mR̂−1em | = ‖ (R̂−1)∗em ‖2 ≤ ‖ (R̂−1)∗ ‖2 ,

so

| e∗mR̂em |−1 ≤ ‖ R̂−1 ‖2 .

It follows that

| e∗1R̂e1 | / | e∗mR̂em | ≤ κ2(R̂) = κ2(A)

56

or

| e∗mR̂em | / | e∗1R̂e1 | ≥ κ2(R̂)−1 = κ2(A)−1 .

Examples have been constructed (see Björck or Golub/Van Loan) for which this lower

bound on the condition number is of order one and the condition number is large.

Practical experience suggests that such disparity is rare; while this lower bound may not

provide a good approximation to a large condition number, it will ordinarily also be

large, providing a reasonably reliable indicator of ill-conditioning, but this cannot be

guaranteed. A large lower bound on the condition number yields a small upper bound

on the reciprocal condition number. We might fail to diagnose near linear dependence,

but will not misdiagnose it, for a specified threshold. Scaling, pivoting and narrow or

dual regularization would arrange that

| e∗mR̂em | ≥ τ | e∗1R̂e1 | ,

or

| e∗mR̂em | / | e∗1R̂e1 | ≥ τ ,

so

| e∗1R̂e1 | / | e∗mR̂em | ≤ τ−1 .

Without scaling, pivoting or regularization, the diagonal elements of R̂ may not provide

a reliable indicator of near rank deficiency, thence near linear dependence.

At this point, we shall briefly examine connections among redundance,

relevance and conditioning. The operational definition of redundance involves the

scaling, pivoting and regularization strategies employed, and the details thereof. We

focus on interpretations of the pivoting strategy; the scaling strategy affects the

outcome thereof, and the regularization strategy affects the consequences thereof.

57

Assume, for the moment, that the standard scaling and pivoting strategies are

used, without regularization. At the kth stage, we seek to maximize | e∗kR̂ek | among

available alternatives. We now identify the alternatives as the norm of the residuals

when available columns are approximated using columns chosen at previous stages. One

interpretation then is that we seek to minimize the collective relevance of the previous

columns in approximating the next one. If all columns were initially scaled to have unit

length, these residual norms are the sines of the angles between the candidate columns

and the span of the previous ones, so another interpretation is that one is seeking to

maximize the corresponding angle. If the columns were initially scaled to have the same

length, but not unit length, the residual norms would be proportional to the sines, so

the same interpretation is apt. If all columns were not initially scaled to have unit or

equal length, we would no longer be maximizing the angle. Columns of disparate sizes

may alter the choice for | e∗kR̂ek | . Smaller columns may be deemed more redundant

than appropriate; and larger columns may be deemed less redundant than appropriate.

The alternate scaling strategy given earlier uses this to accommodate aspects of the

problems of interest.

A third interpretation is that we seek to minimize a lower bound on the

condition number of the submatrix consisting of the columns chosen through the kth

stage. This sounds peculiar when so stated. However, if this lower bound is a reasonably

reliable indicator of potential ill-conditioning, thence near linear dependence, it sounds

more sensible. The first two interpretations are concrete; the third is somewhat more

tenuous. All three interpretations share elements of the intuitive significance of the word

”redundancy.”

Once the kth column has been chosen, regularization may increase | e∗kR̂ek |

by redefining the task at hand to include a penalty term intended to reduce the adverse

58

impact of redundancy on the solution.

Adaptive selection of m(`) is reasonably straightforward when only scaling

and pivoting are involved, and also when regularization is incorporated. Using scaling

and pivoting, a threshold τ, with 0 < τ � 1, determines an effective rank as the

largest k such that 1 ≤ k ≤ min(`,M) and | e∗kR̂ek | ≥ τ | e∗1R̂e1 | . This effective

rank is a measure of redundancy, and not a reliable estimate of rank per se. Recall that

τ is an upper bound for the relative distance to the nearest rank deficient matrix and a

reasonably reliable threshold for declaring near linear dependence. A first approach is to

take the initial candidate for m(`) as this effective rank, and determine the basic least

squares solution as though m(`) was the actual rank. A second approach is to take the

initial candidate for m(`) as min(`,M), and determine the minimal least squares

solution as though the effective rank was the actual rank. The basic solution approach

disregards data regarded as redundant; the minimal solution approach retains all

available data. Thereafter, the initial candidate for m(`) would be reduced as necessary

to satisfy the constraint. For strongly nonlinear problems, I favor using small to

moderate M and the basic solution approach. Redundant iterant data, especially

older data, may be misleading. For weakly nonlinear (or linear) problems, somewhat

larger M and the minimal solution approach may be useful.

When dual regularization is incorporated, we identify the threshold τ with

the narrow regularization parameter. The broad regularization parameter µ may be

assigned or chosen adaptively. The initial candidate for m(`) is min(`,M), and this is

reduced as necessary to satisfy the constraint. Recall that this bridges between the basic

and minimal solutions without specifically invoking an effective rank. Near rank

deficiency is accomodated through the penalty term. Observe that the ingredients for a

basic or minimal solution approach are at hand for µ = 0 : narrow regularization.

59

Addendum

The code which evolved during my work with the Extrapolation Algorithm

thru the 1970s was based on ideas akin to those outlined above. The ideas to be

introduced in the remainder of this section are of more recent vintage. Many of the

theoretical results to follow are familiar; but others are less familiar, and may be of

independent interest. Later sections are not dependent on this material. I have not had,

and will not have, an opportunity to explore their potential practical utility.

We begin by establishing notation and recording well known inequalities

involving the three vector norms of interest. For x ∈ Cn, define | x | ∈ Cn by

e∗i | x | = | e∗ix | and e ∈ Cn by e∗i e = 1. We see that ‖| x |‖1 = ‖ x ‖1,

‖| x |‖∞ = ‖ x ‖∞ and ‖| x |‖2 = ‖ x ‖2 . The triangle inequality (for complex

numbers) can be expressed as

| e∗x | ≤ e∗ | x | = ‖ x ‖1 .

For x, y ∈ Cn the Cauchy-Schwarz inequality can be expressed as

| x∗y | ≤ | x |∗ | y | ≤ ‖ x ‖2 ‖ y ‖2 .

The latter is a special case of the Hölder inequality, which also has the limiting cases

| x∗y | ≤ | x |∗ | y | ≤ ‖ x ‖1 ‖ y ‖∞

and

| x∗y | ≤ | x |∗ | y | ≤ ‖ x ‖∞ ‖ y ‖1 ,

which can be argued directly in elementary fashion. It follows that

‖ x ‖22 = | x∗x | ≤ ‖ x ‖1 ‖ x ‖∞ ,

so

‖ x ‖2 ≤
√
‖ x ‖1 ‖ x ‖∞ .

60

For x ∈ Cn, we have the three pairs of inequalities

‖ x ‖2 ≤ ‖ x ‖1 ≤
√
n ‖ x ‖2 ,

‖ x ‖∞ ≤ ‖ x ‖1 ≤ n ‖ x ‖∞ ,

and

‖ x ‖∞ ≤ ‖ x ‖2 ≤
√
n ‖ x ‖∞ .

These inequalities are all sharp: satisfied as equalities for some x. Their proofs are

straightforward; we shall record that for the first pair, which is the one most relevant for

our later purposes, to make a subsidiary point. We obtain the upper bound from

‖ x ‖1 = e∗ | x | ≤ ‖ e ‖2 ‖ x ‖2 =
√
n ‖ x ‖2 ,

which is satisfied as an equality for | x | / ‖ x ‖∞ = e. We obtain the lower bound

from

‖ x ‖21 = (
∑
k

| e∗kx |)2 = (
∑
i

| e∗ix |) (
∑
j

| e∗jx |) ,

=
∑
k

| e∗kx |2 +
∑
i 6=j

| e∗ix | | e∗jx | ,

= ‖ x ‖22 + 2
∑
i<j

| e∗ix | | e∗jx | ,

so ‖ x ‖22 ≤ ‖ x ‖21 , which is satisfied as an equality for | x | / ‖ x ‖∞ = e` ,

1 ≤ ` ≤ n. For moderate to large n, we observe that the lower bound is loose in the

sense that ‖ x ‖1 is comparable to ‖ x ‖2 only for those special x such that

| x | / ‖ x ‖∞ ≈ e` , 1 ≤ ` ≤ n; and that the upper bound is tight in the sense

that ‖ x ‖1 is comparable to
√
n ‖ x ‖2 for most x not such that

| x | / ‖ x ‖∞ ≈ e` , 1 ≤ ` ≤ n : that is, not special. The second and third pairs

are also sharp for the corresponding x, with the upper bound tight and lower bound

61

loose. We then obtain the complementary pairs of inequalities

1√
n
‖ x ‖1 ≤ ‖ x ‖2 ≤ ‖ x ‖1 ,

1√
n
‖ x ‖1 ≤ ‖ x ‖∞ ≤ ‖ x ‖1 ,

and

1√
n
‖ x ‖2 ≤ ‖ x ‖∞ ≤ ‖ x ‖2 ,

which are sharp with tight lower and loose upper bounds. Observe that we have

‖ x ‖∞ ≤ ‖ x ‖2 ≤
√
‖ x ‖1 ‖ x ‖∞ ≤ ‖ x ‖1 ,

and these inequalities are satisfied as equalities for | x | / ‖ x ‖∞ = e` , 1 ≤ ` ≤ n.

By the foregoing, the lower bound on ‖ x ‖2 and the rightmost upper bound are loose;

the leftmost upper bound may be more representative.

For A ∈ Cn×n, the standard argument above that

‖ A ‖2 ≤
√
‖ A ‖1 ‖ A ‖∞ is simple and elegant, but not very informative. Using the

arithmetic-geometric mean inequality, we also have

‖ A ‖2 ≤
√
‖ A ‖1 ‖ A ‖∞ ≤ 1

2
[‖ A ‖1 + ‖ A ‖∞] ≤ max {‖ A ‖1 , ‖ A ‖∞} .

These inequalities are sharp, satisfied as equalities for A = I. The arithmetic and

geometric means of ‖ A ‖1 and ‖ A ‖∞ satisfy (1) and (2); the arithmetic mean

satisfies (3), but not (4); the geometric mean satisfies (4), but not (3). Thus, neither

mean defines a matrix norm. However,

‖ A ‖II := max {‖ A ‖1 , ‖ A ‖∞}

satisfies (1) - (4) and (6), thence defining a normalized matrix norm. ‖ A ‖II is

compatible with the ‖ · ‖1 , ‖ · ‖∞ and ‖ · ‖2 vector norms, but the compatibility

inequalities (5) are not sharp for all A.

62

We shall record an elementary and lengthier, but more informative, proof of

the ‖ A ‖2 ≤
√
‖ A ‖1 ‖ A ‖∞ inequality. We shall then extend the discussion to

counterpart lower bounds for ‖ A ‖2 . In the course of doing so, we shall encounter two

other matrix norms which are readily computable and compatible with the ‖ · ‖2

vector norm, thence providing upper bounds for ‖ A ‖2 .

For A ∈ Cn×n and x ∈ Cn, so Ax ∈ Cn, we obtain

‖ Ax ‖22 =
∑
i

|
∑
j

(e∗iAej)(e
∗
jx) |2 ,

≤
∑
i

{∑
j

| e∗iAej | | e∗jx |

}2

,

≤
∑
i

{∑
j

| e∗iAej |
1
2 (| e∗iAej |

1
2 | e∗jx |)

}2

,

≤
∑
i

{∑
j

| e∗iAej |
∑
k

| e∗iAek | | e∗kx |2
}

,

≤ max
`

∑
j

| e∗`Aej |
∑
i

∑
k

| e∗iAek | | e∗kx |2 ,

≤ ‖ A ‖∞
∑
k

∑
i

| e∗iAek | | e∗kx |2 ,

≤ ‖ A ‖∞ max
`

∑
i

| e∗iAe` |
∑
k

| e∗kx |2 ,

≤ ‖ A ‖∞ ‖ A ‖1 ‖ x ‖22 ,

thence

‖ Ax ‖2 ≤
√
‖ A ‖1 ‖ A ‖∞ ‖ x ‖2

and

‖ A ‖2 = max
x6=0

(‖ Ax ‖2 / ‖ x ‖2) ≤
√
‖ A ‖1 ‖ A ‖∞ .

In the chain of inequalities bounding ‖ Ax ‖22, the first (triangle inequality), third

(Cauchy-Schwarz inequality), fourth and sixth (limiting Hölder inequality) are sharp,

63

but usually increase the upper bound, perhaps substantially. The second, fifth and

seventh do not increase the upper bound. The geometric mean of ‖ A ‖1 and ‖ A ‖∞

may be significantly larger than ‖ A ‖2 .

In the foregoing, all indices in summations and maximizations implicitly

range from 1 to n. To extend the argument to rectangular matrices

A ∈ Cn×m, m 6= n, it will suffice to adjust the ranges of all indices in obvious ways.

We shall focus primarily on the square matrix case m = n hereafter, but will flag one

further point regarding the rectangular case m 6= n. We introduce the notation

‖ A ‖F =

{∑
i

∑
j

| e∗iAej |2
} 1

2

and

‖ A ‖ii =
√
m max

k
‖ Aek ‖2 ,

for A ∈ Cn×m, anticipating subsequent verification that these are matrix norms

compatible with the ‖ · ‖2 vector norm. For the Frobenius norm ‖ A ‖F , index ranges

are accomodated implicitly, and we see that ‖ A∗ ‖F = ‖ A ‖F . For ‖ A ‖ii, index

ranges enter explicitly, and we see that

‖ A∗ ‖ii =
√
n max

`
‖ A∗e` ‖2 .

Minor modifications of results to follow, derived for m = n, are needed to accomodate

m 6= n; the task is left as an exercise for the interested reader.

Returning to the square matrix case of primary interest later, and to the

earlier result

‖ Ax ‖22 ≤
∑
i

{∑
j

| e∗iAej | | e∗jx |

}2

,

we invoke the Cauchy-Schwarz inequality to establish that

‖ Ax ‖22 ≤
∑
i

∑
j

| e∗iAej |2
∑
k

| e∗kx |2 = ‖ A ‖2F ‖ x ‖22

64

thereby obtaining the compatibility inequality (5), ‖ Ax ‖2 ≤ ‖ A ‖F ‖ x ‖2 , thence

‖ A ‖2 ≤ ‖ A ‖F . For A in the linear algebra Cn×n, we observe that

A =
∑
i

∑
j

(e∗iAej) eie
∗
j ,

and identify ‖ A ‖F as the ‖ · ‖2 vector norm of the coordinate vector of A with

respect to the standard basis
{
eie
∗
j

}
for the linear vector space Cn×n, from which (1)

- (3) follow. However, we have ‖ I ‖F =
√
n, so the normalization condition (6) is not

satisfied. We see that

‖ A ‖2F =
∑
j

‖ Aej ‖22 =
∑
i

‖ A∗ei ‖22 = ‖ A∗ ‖2F ,

thence

‖ BA ‖2F =
∑
j

‖ BAej ‖22 =
∑
i

‖ A∗B∗ei ‖22 = ‖ A∗B∗ ‖2F .

We observe first that if B, thence also B∗, is unitary then

‖ BA ‖2F = ‖ A ‖2F = ‖ A∗ ‖2F = ‖ A∗B∗ ‖2F ,

so the Frobenius norm is unitarily invariant for left or right multiplication by a unitary

matrix. Using the compatibility inequality, we observe second that

‖ BA ‖2F ≤ ‖ B ‖2F
∑
j

‖ Aej ‖22 = ‖ B ‖2F ‖ A ‖2F ,

thence

‖ BA ‖F ≤ ‖ B ‖F ‖ A ‖F ,

so the consistency condition (4) is satisfied. Ergo, we identify ‖ A ‖F as an

unnormalized matrix norm compatible with the ‖ · ‖2 vector norm.

The foregoing facts are familiar, and recorded for use in the discussion to

follow. It is also a familiar fact that ‖ A ‖F is the norm induced on the linear vector

65

space Cn×n by the Frobenius inner product

< A | B > = trc(A∗B) ,

so

‖ A ‖2F = trc(A∗A) .

Therefore, ‖ A ‖F is the square root of the sum of the eigenvalues of A∗A, thence

usually significantly larger than ‖ A ‖2, the square root of the largest eigenvalue,

especially for A ∈ Cn×n
n with moderate to large n. The inequality ‖ A ‖2 ≤ ‖ A ‖F

is sharp: satisfied as an equality for A ∈ Cn×n
1 . Likewise, for A ∈ Cn×n, we see that

‖ A ‖F ≤
√
n ‖ A ‖2, which is also sharp: satisfied as an equality for A = I. We

therefore have the counterpart inequalities

1√
n
‖ A ‖F ≤ ‖ A ‖2 ≤ ‖ A ‖F

and the complementary inequalities

‖ A ‖2 ≤ ‖ A ‖F ≤
√
n ‖ A ‖2 .

We now observe that

‖ A ‖2F =
∑
j

‖ Aej ‖22 ≤ n max
k
‖ Aek ‖22 ,

thence

‖ A ‖F ≤
√
n max

k
‖ Aek ‖2 = ‖ A ‖ii .

We also have

‖ A ‖F = ‖ A∗ ‖F ≤ ‖ A∗ ‖ii ,

66

thence

‖ A ‖F ≤ min { ‖ A ‖ii , ‖ A∗ ‖ii } ,

≤
√
‖ A ‖ii‖ A∗ ‖ii ,

≤ 1

2
[‖ A ‖ii + ‖ A∗ ‖ii] ,

≤ max { ‖ A ‖ii , ‖ A∗ ‖ii } .

In particular, from ‖ A ‖F ≤ ‖ A ‖ii, we obtain

‖ Ax ‖2 ≤ ‖ A ‖ii‖ x ‖2 ,

the compatibility inequality (5). It is readily apparent that (1) and (2) are satisfied.

There is at least one j such that

max
k
‖ (A+B)ek ‖2 = ‖ (A+B)ej ‖2 ,

≤ ‖ Aej ‖2 + ‖ Bej ‖2 ,

≤ max
k
‖ Aek ‖2 + max

`
‖ Be` ‖2 ,

so we see that

‖ A+B ‖ii ≤ ‖ A ‖ii + ‖ B ‖ii ,

and (3) is satisfied. However, we have ‖ I ‖ii =
√
n, so the normalization condition (6)

is not satisfied. Consider

‖ BA ‖ii =
√
n max

k
‖ BAek ‖2 .

We observe first that if B is unitary then ‖ BA ‖ii = ‖ A ‖ii , so ‖ · ‖ii is unitarily

invariant for left multiplication by a unitary matrix; but not, in general, invariant for

right multiplication. As above, using the compatibility condition, we obtain

max
k

‖ BAek ‖2 = ‖ BAej ‖2 ≤ ‖ B ‖ii ‖ Aej ‖2 ≤ ‖ B ‖ii max
`
‖ Ae` ‖2 ,

67

and we observe second that

‖ BA ‖ii ≤ ‖ B ‖ii ‖ A ‖ii ,

so the consistency condition (4) is satisfied. Ergo, we identify ‖ A ‖ii as an

unnormalized matrix norm compatible with the ‖ · ‖2 vector norm. Observe that we

could define another such norm for A using ‖ A∗ ‖ii instead of, or in addition to, ‖ A ‖ii:

for example, ‖ A ‖iv = max {‖ A ‖ii , ‖ A∗ ‖ii} .

With all this formalism in hand, we reach the crux of the matter. We have

the upper bounds

‖ A ‖2 ≤
√
‖ A ‖1 ‖ A ‖∞ ≤ ‖ A ‖II

and

‖ A ‖2 ≤ ‖ A ‖F ≤ ‖ A ‖ii ,

thence

‖ A ‖2 ≤ min
{√
‖ A ‖1 ‖ A ‖∞ , ‖ A ‖F

}
.

For A = I, we have ‖ A ‖F = ‖ A ‖ii =
√
n and ‖ A ‖1 = ‖ A ‖∞ =√

‖ A ‖1 ‖ A ‖∞ = 1, so we see that ‖ A ‖F >
√
‖ A ‖1 ‖ A ‖∞. For

A = ee∗1 + e1e
∗ − e1e

∗
1, we have ‖ A ‖F =

√
2n− 1 and ‖ A ‖1 = ‖ A ‖∞ =√

‖ A ‖1‖ A ‖∞ = ‖ A ‖ii = n, so we see that ‖ A ‖F <
√
‖ A ‖1 ‖ A ‖∞, because

n2− 2n+ 1 = (n− 1)2 > 0. For A = ee∗, we have ‖ A ‖F = ‖ A ‖1 = ‖ A ‖∞ =

‖ A ‖ii =
√
‖ A ‖1 ‖ A ‖∞ = ‖ A∗ ‖ii = n, so we see that

‖ A ‖F =
√
‖ A ‖1 ‖ A ‖∞. For the first and third example, ‖ A ‖2 achieves its best

upper bound; for the second example it does not. The issue of whether ‖ A ‖F or√
‖ A ‖1 ‖ A ‖∞ provides a better upper bound for ‖ A ‖2 is separable from that of

whether that bound is close to ‖ A ‖2 and from that of whether the bound is tight or

loose. From this upper bound perspective, ‖ A ‖II and ‖ A ‖ii are of little interest

68

since as good or better readily computable bounds are available. They are of interest

when the fact that they are norms is relevant — and for notational convenience. The

point of the present discussion is to obtain counterpart lower bounds of interest

especially for small to moderate n.

As a simple example, define v ∈ Cn by e∗jv = ‖ Aej ‖2 Recall that

‖ v ‖∞ ≤ ‖ v ‖2 ≤
√
n ‖ v ‖∞ ,

so

max
k
‖ Aek ‖2 ≤

{∑
`

‖ Ae` ‖22

} 1
2

≤
√
nmax

k
‖ Aek ‖2 ,

thence

1√
n
‖ A ‖ii ≤ ‖ A ‖F ≤ ‖ A ‖ii

Recall further that these inequalities are sharp, and that the upper bound is tight while

the lower bound is loose. For the complementary bounds

‖ A ‖F ≤ ‖ A ‖ii ≤
√
n ‖ A ‖F ,

the lower bound is tight and the upper bound is loose. We also have

1√
n
‖ A∗ ‖ii ≤ ‖ A ‖F ≤ ‖ A∗ ‖ii

thence

1√
n

max {‖ A ‖ii , ‖ A∗ ‖ii} ≤ ‖ A ‖F ≤ min {‖ A ‖ii , ‖ A∗ ‖ii} ,

and

1√
n

√
‖ A ‖ii ‖ A∗ ‖ii ≤ ‖ A ‖F ≤

√
‖ A ‖ii ‖ A∗ ‖ii .

Since ‖ A ‖F and ‖ A ‖ii are equally readily calculable, these bounds per se are of

limited interest in practice, but they provide a model for what follows.

69

By definition, we have

‖ Aej ‖2 ≤ ‖ A ‖2 , ∀ j ,

and

‖ A∗ei ‖2 ≤ ‖ A∗ ‖2 = ‖ A ‖2 , ∀ i .

It follows that

1√
n
‖ A ‖ii = max

k
‖ Aek ‖2 ≤ ‖ A ‖2

and

1√
n
‖ A∗ ‖ii = max

`
‖ A∗e` ‖2 ≤ ‖ A ‖2 .

We then obtain from ‖ A ‖2 ≤ ‖ A ‖F and the foregoing that

1√
n

max {‖ A ‖ii , ‖ A∗ ‖ii} ≤ ‖ A ‖2 ≤ min {‖ A ‖ii , ‖ A∗ ‖ii}

and

1√
n

√
‖ A ‖ii ‖ A∗ ‖ii ≤ ‖ A ‖2 ≤

√
‖ A ‖ii ‖ A∗ ‖ii .

‖ A ‖2 is not readily computable, but the bounds are readily computable, and for small

to moderate n are comparable to one another.

For x ∈ Cn, recall the sharp inequalities

1√
n
‖ x ‖1 ≤ ‖ x ‖2 ≤ ‖ x ‖1 ,

with the upper bound loose and lower bound tight. We have, for all j,

1√
n
‖ Aej ‖1 ≤ ‖ Aej ‖2 ≤ ‖ Aej ‖1 ,

1√
n
‖ Aej ‖1 ≤ ‖ Aej ‖2 ≤ max

`
‖ Ae` ‖1 ,

1√
n
‖ Aej ‖1 ≤ max

k
‖ Aek ‖2 ≤ ‖ A ‖1 ,

1√
n

max
j
‖ Aej ‖1 ≤

1√
n
‖ A ‖ii ≤ ‖ A ‖1 ,

70

thence

1√
n
‖ A ‖1 ≤

1√
n
‖ A ‖ii ≤ ‖ A ‖1 ,

and

‖ A ‖1 ≤ ‖ A ‖ii ≤
√
n ‖ A ‖1 .

We also find that

1√
n
‖ A∗ ‖1 ≤

1√
n
‖ A∗ ‖ii ≤ ‖ A∗ ‖1 ,

so

1√
n
‖ A ‖∞ ≤

1√
n
‖ A∗ ‖ii ≤ ‖ A∗ ‖∞ ,

and

‖ A ‖∞ ≤ ‖ A∗ ‖ii ≤
√
n ‖ A∗ ‖∞ .

We then obtain

1√
n

√
‖ A ‖1 ‖ A ‖∞ ≤ 1√

n

√
‖ A ‖ii ‖ A∗ ‖ii ≤

√
‖ A ‖1 ‖ A ‖∞ ,

which, combined with ‖ A ‖2 ≤
√
‖ A ‖1 ‖ A ‖∞ and the foregoing, yields

1√
n

√
‖ A ‖1 ‖ A ‖∞ ≤ ‖ A ‖2 ≤

√
‖ A ‖1 ‖ A ‖∞ .

For nonsingular A, we likewise have

1√
n

√
‖ A−1 ‖1 ‖ A−1 ‖∞ ≤ ‖ A−1 ‖2 ≤

√
‖ A−1 ‖1 ‖ A−1 ‖∞ ,

so we infer that

1

n

√
κ1(A) κ∞(A) ≤ κ2(A) ≤

√
κ1(A) κ∞(A) .

We also obtain

max { ‖ A ‖1 , ‖ A ‖∞ } ≤ max { ‖ A ‖ii , ‖ A∗ ‖ii } ≤
√
n max { ‖ A ‖1 , ‖ A ‖∞ } ,

‖ A ‖II ≤ max { ‖ A ‖ii , ‖ A∗ ‖ii } ≤
√
n ‖ A ‖II ,

71

and

1√
n
‖ A ‖II ≤

1√
n

max { ‖ A ‖ii , ‖ A∗ ‖ii } ≤ ‖ A ‖II .

The best available readily computable lower and upper bounds for ‖ A ‖2

derived above yield

1√
n

max { ‖ A ‖ii , ‖ A∗ ‖ii } ≤ ‖ A ‖2 ≤ min { ‖ A ‖F ,
√
‖ A ‖1 ‖ A ‖∞ } .

With the corresponding bounds for ‖ A−1 ‖2 , we obtain our best available readily

computable bounds for κ2(A). The other counterpart bounds derived above guarantee

that these best bounds increase in tandem as the quantity being bounded increases, and

indicate that these lower and upper bounds are comparable to one another for small to

moderate n. The inequalities involved are sharp. We anticipate that the lower bounds

are tight and the upper bounds are loose, for moderate n. For large n, the gap

between counterpart lower and upper bounds increases, but the norms will tend to

increase with n. However, dramatic increases in norms of inverses thence condition

numbers, due to incipient near linear dependence, are what we seek to detect.

We now focus on the situation of primary interest hereafter. Let T ∈ Cn×n

be regularly upper triangular: that is, e∗kTek 6= 0 and e∗iTej = 0, for i > j. The

ingredients needed to calculate ‖ T ‖1, ‖ T ‖∞ = ‖ T ∗ ‖1, ‖ T ‖F , ‖ T ‖ii and ‖ T ∗ ‖ii

are the sums
∑j

i=1 | e∗iTej | and
∑j

i=1 | e∗iTej |2, for 1 ≤ j ≤ n, and the sums∑n
j=i | e∗iTej | and

∑n
j=i | e∗iTej |2, for 1 ≤ i ≤ n. Note that it would suffice,

for our purposes, to calculate 1√
n
‖ T ‖ii and 1√

n
‖ T ∗ ‖ii .

Define, for τ 6= 0,

T+ =

[
T t
0 τ

]
,

which is also regularly upper triangular. To calculate ‖ T+ ‖1 , ‖ T+ ‖∞ = ‖ T ∗+ ‖1 ,

‖ T+ ‖F , ‖ T+ ‖ii and ‖ T ∗+ ‖ii , the additional ingredients needed are the sums

72

∑n
i=1 | e∗i t | + | τ | and

∑n
i=1 | e∗i t |2 + | τ |2, and the sums

∑n
j=i | e∗iTej | + | e∗i t |

and
∑n

j=i | e∗iTej |2 + | e∗i t |2, for 1 ≤ i ≤ n, together with | τ | and | τ |2 .

The foregoing contains the essence of a recursive or sequential algorithm for evaluating

the relevant norms for all of the leading principal submatrices of T, thence of T and T+.

Details of the implementation are left to the interested reader.

It is easily verified that

T−1+ =

[
T−1 − τ−1(T−1t)

0 τ−1

]
.

Likewise, we have at hand the essence of a recursive or sequential algorithm for

evaluating the relevant norms of the leading principal submatrices of T−1, thence of

T−1 and T−1+ . While one could evaluate T−1t, which will prove to be of interest in its

own right, using T−1, it would be preferable to obtain T−1t by solving Tx = t. If

only the relevant norms are of interest, we need not store T−1, and can simply store the

requisite ingredients for the next step in the process.

The upshot is that we can calculate the relevant best bounds for

‖ T ‖2 , ‖ T−1 ‖2, thence κ2(T) = ‖ T ‖2 ‖ T−1 ‖2 . We can also obtain, in one fell

swoop, these bounds for all of the leading principal submatrices of T, and for T+. We

anticipate that, for moderate n, the best lower bound is a better estimate than the best

upper bound; the geometric mean of the best (or the counterpart) lower and upper

bounds might also be a reasonable candidate.

Recall the earlier derivation of the primitive lower bound

| e∗1Te1 | / | e∗nTen | for κ2(T). Clearly, the best lower bound now at hand is at least

as large and possibly significantly larger than the primitive lower bound. If the

corresponding estimate for κ2(T) is above (below) some specified threshold, one might

adaptively increase (decrease) the narrow regularization parameter at the next iteration.

This would increase (decrease) the size of the penalty term used to control the impact of

73

ill-conditioning, and decrease (increase) the size of the condition number of the

operative matrix. A parallel or alternative discussion in terms of the reciprocal

condition number is immediate, and may be preferable.

We shall now return to the original problem. We begin by recalling that the

alternate scaling strategy involves scaling both A and b, and we seek the least squares

solution of Ãc̃ = b̃. Recall also that the standard scaling strategy usually involves

scaling only A, but b could also be scaled. We assume hereafter that both A and b have

been scaled so ‖ b̃ ‖2 and ‖ Ãej ‖2 are expected to be comparable. Scaling controls

the norms of T and T+, so the norms of T−1 and T−1+ primarily determine κ2(T)

and κ2(T+) , though these too are mollified by scaling.

Using our previous notation, we first identify T = R̂, t = d̂ and

τ = ‖ ď ‖2 . Ideally, κ2(T) is moderately small and κ2(T+) is large, so their ratio

κ2(T+) / κ2(T) is moderately large. This means that R̂(P ∗c̃) = d̂ can be solved

without adverse impact from ill-conditioning. It also means that b̃ is well approximated

by Ãc̃, so ‖ ď ‖2 is small. Note that T−1t = P ∗c̃. If κ2(T) is at or above some

specified threshold, we can reduce the initial value of m(`) from its nominal value

min(`,M) to compensate. For 2 ≤ m(`) < min(`,M), we now identify

T = R̂11, t = d̂1 and τ = { ‖ ď ‖22 + ‖ d̂2 ‖22 }
1
2 . We already have bounds and

estimates for κ2(T), so we can choose the largest initial m(`) such that κ2(T) is below

the threshold.

We can also easily calculate bounds and estimates for κ2(T+). If ‖ d̂2 ‖2 is

small, it may be possible by reducing m(`) to decrease κ2(T) below the threshold

without significantly decreasing κ2(T+), so the ratio κ2(T+) / κ2(T) increases. The

ratio incorporates aspects of both redundance and relevance. This suggests choosing

the initial m(`) to maximize the ratio, subject to κ2(T) being below the threshold.

74

Whether this idea has practical merit worth the extra effort involved remains to be seen.

Choosing β and W

The default choice is β = 1, which is motivated by the tacit assumption

that, for the given x(0), the Picard iteration x(`+1) = g(x(`)) converges,

x(`) → x̂ = g(x̂), albeit perhaps uncomfortably slowly. This means that we expect

y(`) = g(x(`)) to be closer to x̂ than x(`); and, by extension, v̂(`) to be closer to x̂

than û(`) to the extent that v̂(`) approximates g(û(`)), for m(`) > 0.

The default choice is W = I, which is motivated by the tacit assumption

that, absent additional problem-dependent information, we have no principled basis for

distinguishing one element of x or of y = g(x) from another. Of course, simplicity

and parsimony are also factors, as are others to be discussed below.

These assumptions may not be valid, in whole or in part, depending on the

problem context involved. Prospective users of a utility code based on these default

options should be made aware that it may well be productive to reconsider these issues

based on their knowledge of a particular class of problems. Designers of a utility code

should assume the responsibility to educate their prospective users, and to facilitate user

response by making relevant options available. These matters will be discussed in more

detail as we proceed. We shall initially consider the role of β, and later that of W.

These are largely separable issues, but may interact.

Choice of β

Given g : RN → RN and β ∈ R, define

g(x | β) = (1− β)x+ βg(x) ,

= x+ β(g(x)− x) .

We see that g(x | 1) = g(x) , g(x | 0) = x and g(x | −1) = 2x− g(x). For

75

β 6= 0, g(x | β) defines a fixed point problem whose fixed points coincide with those

of g. For β = 0, any x ∈ RN is a fixed point of g(x | 0), with no direct

connection to g(x). Thus, if g(x̂ | β) = x̂, for all β 6= 0, we also have

g(x̂ | 0) = x̂. We identify the nondefault Extrapolation Algorithm with β 6= 1

(and β 6= 0) applied to the g(x) fixed point problem as the default Extrapolation

Algorithm applied to the g(x | β) fixed point problem. Since the behavior of the

default Extrapolation Algorithm depends on the convergence properties of the Picard

iteration for the fixed point problem to which it is applied, we are led to consideration of

the convergence properties of the Picard iteration: first, for g(x̂) = x̂, then for

g(x̂ | β) = x̂, focusing on the influence of β.

The Picard iteration for g is locally convergent at x̂ = g(x̂) if there is an

ε > 0 such that for any x(0) with ‖ x(0) − x̂ ‖ < ε , the Picard iterants

x(`+1) = g(x(`)) satisfy ‖ x(`) − x̂ ‖ < ε, for ` > 0, and converge to

x̂ : x(`) → x̂. In short, the iteration converges for all initial (and subsequent) iterants

sufficiently close to the fixed point in the specified norm. For highly nonlinear g and

large N, it will typically be the case that ε is small, but that there are many x(0)

such that ‖ x(0) − x̂ ‖ ≥ ε , even with ‖ x(0) − x̂ ‖ moderately large compared to ε ,

such that the Picard iteration converges to x̂ with this initial iterant. However,

identifying such x(0) may be difficult — often the most fraught part of the problem to

be solved. Furthermore, note that while convergence per se does not depend on the

norm, this characterization of local convergence and ε does. If x(`) → x̂, then we

know that ‖ x(`) − x̂ ‖ < ε for sufficiently large `.

Let G(x) ∈ RN×N be the Jacobian matrix of g at x ∈ RN . We shall

take for granted the well known facts that a sufficient condition for the Picard iteration

to be locally convergent at x̂ = g(x̂) is that ‖ G(x̂) ‖ < 1 for some matrix norm

76

compatible with the vector norm in question; and that another sufficient condition is

that ρ(G(x̂)) < 1. Moreover, the asymptotic rate of convergence of the iteration, for

sufficiently large `, is controlled by the size of ρ(G(x̂)) : the smaller, the faster. For

intuitive motivational purposes, observe that, with G(x̂) 6= 0 and ‖ x(`) − x̂ ‖ small

enough, we have

x(`+1) = g(x(`)) ≈ g(x̂) +G(x̂)(x(`) − x̂) = x̂+G(x̂)(x(`) − x̂) ,

thence

(x(`+1) − x̂) ≈ G(x̂)(x(`) − x̂)

and

‖ x(`+1) − x̂ ‖ ≈ ‖ G(x̂)(x(`) − x̂) ‖ ≤ ‖ G(x̂) ‖ ‖ x(`) − x̂ ‖ .

For affine g, the approximation is exact, for any x(`). Furthermore, ρ(G(x̂)) > 1

implies that the Picard iteration is not locally convergent at x̂. Recall that

ρ(G(x̂)) ≤ ‖ G(x̂) ‖ . Therefore, the sufficient condition ‖ G(x̂) ‖ < 1 implies the

sufficient condition ρ(G(x̂)) < 1. Moreover, ρ(G(x̂)) > 1 implies that

‖ G(x̂) ‖ > 1. The case ρ(G(x̂)) = 1 is equivocal with regard to local convergence at

x̂, and implies that ‖ G(x̂) ‖ ≥ 1. See Ortega / Rheinboldt (1970), pages 299-303 and

Ostrowski (1966), pages 161-166. (Caution: the Ostrowski book may be somewhat

difficult to read because the mathematical style, terminology and notation were out of

step with prevailing customs when published, as comparison with the nearly

contemporaneous Ortega / Rheinboldt book illustrates.)

If ρ(G(x̂)) < 1, so the Picard iteration is locally convergent, there may be

some x(0) with ‖ x(0) − x̂ ‖ ≥ ε such that the iterant sequence
{
x(`)
}

converges to

x̂. If not, applying the Extrapolation Algorithm may lead to ‖ x(`)− x̂ ‖ < ε, for some

` > 0, so convergence to x̂ ensues. If ρ(G(x̂)) > 1, so the Picard iteration is not

77

locally convergent, for any given x(0) 6= x̂, convergence to x̂ is a possibility but

problematic, and as a practical matter very unlikely. Applying the Extrapolation

Algorithm may still lead to ‖ g(x(`))− x(`) ‖ < δ, for some ` > 0 and specified small

δ, yielding an approximate fixed point x(`). Such computational (as opposed to

mathematical) convergence to an approximate fixed point is more plausible for smaller

ρ(G(x̂)) and larger M, up to a point. In this computational convergence framework,

one might even be able to dispense not only with local convergence but also existence of

a fixed point, provided there are suitable, reasonably well-determined, approximate fixed

points. Finally, it is conceivable that the equistationary Extrapolation Algorithm might

generate a mathematically convergent iterative process even if the underlying Picard

iteration does not.

We shall focus on the fact that if g(x̂) = x̂, then g(x̂ | β) = x̂ for all

β = R. The corresponding Jacobian matrix is

G(x̂ | β) = (1− β)I + βG(x̂) .

If the eigenvalues of G(x̂) are λk, 1 ≤ k ≤ N, then the eigenvalues of G(x̂ | β) are

(1− β) + βλk. At least conceptually, we can examine the dependence of

ρ(G(x̂ | β)) = maxk | (1− β) + βλk | on β. The Picard iteration is of interest only for

β 6= 0; indeed, for |β| sufficiently large, but not too large. Observe that

ρ(G(x̂ | 0)) = 1. For small | β |, the fixed point is ill-determined.

We assume at the outset that ρ(G(x̂)) < 1, but ρ(G(x̂)) ≈ 1, so the

Picard iteration for g(x) = g(x | 1) is locally convergent, but the asymptotic rate of

convergence is slow. Observe that ρ(G(x̂ | 1)) = ρ(G(x̂)) < 1. Define

λ̂ = mink |λk| = |λi| and λ̌ = maxk |λk| = |λj| = ρ(G(x̂)) < 1, for some

1 ≤ i, j ≤ N. We have

| |1− β| − |β||λk| | ≤ | (1− β) + βλk | ≤ |1− β|+ |β||λk| .

78

We shall consider the three cases β < 0, β > 1, and 0 < β < 1, which exhaust

the remaining possibilities.

For β < 0, we see that |1− β| = 1 + |β|, so we obtain, for 1 ≤ k ≤ N,

from 0 ≤ λ̂ ≤ |λk| ≤ λ̌ < 1,

| |1− β| − |β||λk| | = | (1 + |β|)− |β||λk| | ,

= | 1 + (1− |λk|)|β| | ,

= 1 + (1− |λk|)|β| ,

≥ 1 + (1− |λ̌|)|β| ,

which is a sharp inequality satisfied as an equality for k = j. It follows that

| (1− β) + βλk | ≥ 1 + (1− λ̌)|β| ,

and we conclude that, for β < 0 and λ̌ < 1 , we have

ρ(G(x̂ | β)) ≥ 1 + (1− λ̌)|β| > 1 .

We note in passing that the argument remains valid also for λ̌ = 1, except that the

conclusion is that ρ(G(x̂ | β)) ≥ 1; the argument is not valid for λ̌ > 1. In

particular, we see that g(x | −1) = 2x− g(x), thence G(x̂ | −1) = 2I −G(x̂). Since

all eigenvalues of G(x̂) lie inside the unit circle in the complex plane, all eigenvalues of

G(x̂ | −1) lie outside the unit circle.

For β > 1, we see that |1− β| = β − 1 and |β| = β, so we obtain, for

1 ≤ k ≤ N, from 0 ≤ λ̂ ≤ |λk| ≤ λ̌ < 1 ,

| |1− β| − |β||λk| | = | (β − 1)− β|λk| | ,

= | (1− |λk|)β − 1 | .

For β > 2/(1− λ̂) , we find that

| |1− β| − |β||λi| | = | (1− λ̂)β − 1 | > 1 ,

79

thence

| (1− β) + βλi | > 1 ;

so we conclude that we have

ρ(G(x̂ | β)) > 1.

We note in passing that the argument and conclusion remain valid for λ̌ ≥ 1 . For

1 ≤ β ≤ 2 /(1− λ̂), and λ̌ < 1, we know that ρ(G(x̂ | β)) must increase from

ρ(G(x̂ | 1)) < 1 to ρ(G(x̂ | 2 /(1− λ̂))) ≥ 1. In particular, we see that

ρ(G(x̂ | β)) < 1 for β > 1, but β sufficiently small.

For 0 < β < 1, we see that |1− β| = 1− β and |β| = β, so we

obtain, for 1 ≤ k ≤ N, from 0 ≤ λ̂ ≤ |λk| ≤ λ̌ < 1,

|1− β|+ |β||λk| = (1− β) + β|λk| ,

= 1 + β(|λk| − 1) ,

≤ 1 + β(λ̌− 1) ,

which is a sharp inequality satisfied as an equality for k = j. It follows that

|(1− β) + βλk| ≤ 1 + β(λ̌− 1) ,

and we conclude that, for 0 < β < 1, and λ̌ < 1, we have

ρ(G(x̂ | β)) ≤ 1 + β(λ̌− 1) < 1 .

We note in passing that the argument leading to the bound

ρ(G(x̂ | β)) ≤ 1 + β(λ̌− 1) remains valid for λ̌ ≥ 1; but we have 1 + β(λ̌− 1) ≥ 1,

so the bound is not very informative: see below.

80

Examples

As an illustrative example, consider the case where all eigenvalues of G(x̂)

are real, positive and labelled so that

0 < λN ≤ λN−1 ≤ · · · ≤ λ1 ,

with λ2 < λ1 < 1, so we have λ̂ = λN and λ̌ = λ1 = ρ(G(x̂)) < 1 . We see

that (1− β) + βλk = 1 + β(λk − 1), for 1 ≤ k ≤ N. We now observe that we can

choose an optimal β̂ > 1 minimizing ρ(G(x̂ | β̂)) by setting

0 < 1 + β̂(λ1 − 1) = −(1 + β̂(λN − 1)) < 1

We then obtain

β̂ = [1− (λ1 + λN) /2]−1 > 1

and

ρ(G(x̂ | β̂)) = {(λ1 − λN) /2} / [1− (λ1 + λN) /2] < λ1 < 1 .

(Since β(λ1 − 1) < 0 and 1 + β(λ1 − 1) = λ1, for β = 1, we see that

1 + β̂(λ1 − 1) < λ1, for β̂ > 1.) In essence, monotonic convergence of the Picard

iteration for g(x) = g(x | 1) permits choice of an optimal β̂ > 1, thence a greater

asymptotic rate of convergence — but only modestly so for 0 ≈ λN � λ1 ≈ 1.

Consider also the case where all eigenvalues of G(x̂) are real, negative and

labelled so that

λ1 ≤ λ2 ≤ · · · ≤ λN < 0 ,

with −1 < λ1 < λ2, so λ̂ = | λN | and λ̌ = | λ1 | = ρ(G(x̂)) < 1. We see that

(1− β) + βλk = 1− β(1 + |λk|), for 1 ≤ k ≤ N. We now observe that we can

choose an optimal β̂ such that 0 < β̂ < 1 minimizing ρ(G(x̂ | β̂)) by setting

0 < 1− β̂(1 + | λN |) = −(1− β̂(1 + | λ1 |)) < 1.

81

We then obtain

β̂ = [1 + (|λ1|+ |λN |) /2]−1 < 1

and

ρ(G(x̂ | β̂)) = {(|λ1| − |λN |) /2} / [1 + (|λ1|+ |λN |) /2] < |λ1| < 1 .

(Since −β(1 + | λ1 |) < 0 and −(1− β(1 + | λ1 |)) = | λ1 | for β = 1, we see that

−(1− β̂(1 + |λ1|)) < |λ1| for β̂ < 1.) In essence, oscillatory convergence of the

Picard iteration for g(x) = g(x | 1) permits choice of an optimal β̂ such that

0 < β̂ < 1, potentially with a significantly greater asymptotic rate of convergence.

These two examples are simple and contrived. They illustrate that for

ρ(G(x̂)) = λ̌ < 1, so the Picard iteration for g(x) = g(x | 1) is locally convergent,

it may be possible to increase the asymptotic rate of convergence by using g(x | β) for

some β such that 0 < β < 1 or for 1 < β < 2/(1− λ̂). Since we have

ρ(G(x̂ | 0)) = 1, ρ(G(x̂ | 1)) < 1 and ρ(G(x̂ | 2/(1− λ̂))) > 1, this is a reasonable

expectation. Lacking information about λ̂ and λ̌, but anticipating that λ̂ is small

and λ̌ ≈ 1, one might pragmatically focus on 0 < β < 2. Of course, it could

happen that β̂ = 1. There are other observations which they also illustrate, which we

shall now explore.

Because of the absolute value and maximization, we know that

ρ(G(x̂ | β)) = max
k
|(1− β) + βλk|

is a continuous function of β, but possibly only piecewise continuously differentiable.

In these examples, the optimal β̂ occurs at a point at which the derivative is

discontinuous, because the eigenvalue whose modulus determines the spectral radius

changes there. This could impact the approximate identification of β̂ in more general

problems.

82

In the oscillatory version of the example, the hypothesis that

ρ(G(x̂ | 1)) = |λ1| < 1, so the Picard iteration for g(x) = g(x | 1) is locally

convergent does not play a role in the determination of β̂, with 0 < β̂ < 1; though

it does play a role in the size of ρ(G(x̂ | β̂)). For moderate |λ1| > 1, so the Picard

iteration for g(x) = g(x | 1) is not locally convergent, we may have ρ(G(x̂ | β̂)) < 1,

so the Picard iteration for g(x | β̂) is locally convergent. As |λ1| increases, β̂

decreases and ρ(G(x̂ | β̂)) increases. In the monotonic version of the example, the

hypothesis that ρ(G(x̂ | 1)) = |λ1| < 1 does play a role in the determination of

β̂ > 1. Considering β < 1 makes more sense than β > 1 for ρ(G(x̂ | 1)) > 1. For

more general problems, one may or may not be able to find a β̂ such that

ρ(G(x̂ | β̂)) < 1 for ρ(G(x̂ | 1)) = ρ(G(x̂)) > 1. Choosing β < 0 might be

considered; examples will be discussed in the next section. Recalling that

ρ(G(x̂ | 0)) = 1, I would be more inclined, on pragmatic grounds, to simply use a

small, but not too small, positive β, the hope being that if ρ(G(x̂ | β̂)) is not too

large the Extrapolation Algorithm might succeed in finding an approximate fixed point.

Experience suggests that this is a reasonable possibility, but by no means assured.

Algorithm

If the Picard iteration for g(x) = g(x | 1) is slowly convergent, we

anticipate that there may be a more suitable choice than β = 1, yielding a larger

asymptotic rate of convergence. How might we find such a β ? In practice, β is often

chosen for a class of related problems by experimenting with representative examples for

selected values of β. The experiments might measure the number of iterations required

to reduce the residual norm to a specified small fraction of its initial value, either with

the Picard iteration for g(x | β) or the default Extrapolation Algorithm applied

thereto, which is just the nondefault Extrapolation Algorithm with β 6= 1.

83

I shall suggest below a conceptual procedure for adaptively choosing β(`+1)

with the caveat that I have not had, and will not have, an opportunity to assess its

practical utility. Before doing so, certain implementation issues must be clarified.

We tacitly assumed above that the Extrapolation Algorithm would be

implemented as a code whose input is `, M, N, µ(`), τ (`), β(`), and (M + 1)×N

arrays X and Y whose columns contain x(`−k) and y(`−k), k = 0, 1, · · · ,min(`,M),

accessed using a pointer whose value is (`− k) modulo (M + 1). The code would

produce x(`+1) as output, plus as yet unspecified accessible byproducts. This means

that a separate code generates y(`+1) = g(x(`+1)), and manages the iteration by

testing for termination or initiating the next invocation of the Extrapolation Algorithm

code. Termination tests will be discussed below. The two codes could be combined,

but there are potential advantages to keeping them separate. The iteration

management code could be combined with other codes involved in solving the overall

problem, but there are potential advantages to keeping them separate — in which case,

it may also produce accessible byproducts.

The simplest situation is that in which µ(`), τ (`) and β(`) are specified, as

µ, τ and β, respectively. We discussed previously how µ(`+1) and/or τ (`+1) might

be chosen adaptively within the Extrapolation Algorithm code, so they must be

accessible byproducts thereof. Choosing β(`+1) adaptively requires y(`+1), so this

must be done in the iteration management code, after the termination tests and before

reinitialization of the Extrapolation Algorithm code.

Recall that we have

û(`) =

min(`,M)∑
k=0

θ̂
(`)
k x(`−k) = x(`) +

min(`,M)∑
k=1

θ̂
(`)
k (x(`−k) − x(`))

v̂(`) =

min(`,M)∑
k=0

θ̂
(`)
k y(`−k) = y(`) +

min(`,M)∑
k=1

θ̂
(`)
k (y(`−k) − y(`)) ,

84

and

x(`+1) = (1− β(`)) û(`) + β(`)v̂(`) .

It is understood that θ̂
(`)
0 > 0 and β(`) > 0, and that if m(`) < min(`,M) and if

the iterant data pair x(`−k) and y(`−k) is being disregarded then θ̂
(`)
k = 0. Recall

also that asymptotically, when all x(`−k) not being disregarded are close enough to x̂,

we expect that v̂(`) ≈ g(û(`)), so ‖ v̂(`) − û(`) ‖ ≈ ‖ g(û(`))− û(`) ‖ .

Introduce relative and absolute termination tolerances εr and εa, with

εr ≥ 0, εa ≥ 0 and εr + εa > 0. Also introduce a maximum number of iterations

L, as a fail-safe device. We specify three termination tests, to be executed sequentially.

If these tests do not result in termination, we proceed to choose β(`+1). If we have

‖ y(`+1) − x(`+1) ‖ ≤ εr ‖ x(`+1) ‖ + εa ,

terminate reporting success with x(`+1) as the approximate fixed point. If we have

‖ x(`+1) − x(`) ‖ ≤ εr ‖ x(`+1) ‖ + εa ,

terminate reporting failure due to inadequate progress. If we have ` = L, terminate

reporting failure due to excessive iterations.

If the Picard iteration for g(x | β(`)), with β(`) > 0, converges, we

anticipate that

x(`+1) = (1− β(`)) û(`) + β(`)v̂(`)

will be closer to x̂ than is û(`), so we expect asymptotically that

‖ y(`+1) − x(`+1) ‖ < ‖ g(û(`))− û(`) ‖ ≈ ‖ v̂(`) − û(`) ‖ .

For ‖ v̂(`) − û(`) ‖ = 0, take β(`+1) = β(`). For ‖ v̂(`) − û(`) ‖ > 0, we shall take

γ(`) := ‖ y(`+1) − x(`+1) ‖ / ‖ v̂(`) − û(`) ‖

85

as a measure of the efficacy of the choice of β(`), by virtue of the convergence of the

Picard iteration for g(x | β(`)) : smaller γ(`) corresponding to greater efficacy. For this

purpose, ‖ v̂(`) − û(`) ‖ should be an accessible byproduct of the Extrapolation

Algorithm code. For ` > 0, we abide by the proscription against using more than one

g evaluation per iteration.

Before sketching a conceptual algorithm for choosing β(`+1), it is well to keep

several things in mind. Motivating arguments in the foregoing depend on asymptotic

properties valid for x(`) close enough to x̂, which may not be valid. Even if they are

asymptotically valid, they may not hold for x(0). Typically, there is a transient phase

for small ` before the underlying Picard iteration and Extrapolation Algorithm settle

into systematic patterns of behavior. Moreover, if the Extrapolation Algorithm proves

to be reasonably effective in finding an approximate fixed point, the net gain in using a

near-optimal β(`) rather than just an acceptable β(`) may have a small overall impact.

Consequently, a safe-guarded primitive algorithm for choosing β(`+1) may suffice for

our purposes.

Introduce β̇ and β̈ such that 0 < β̇ < 1 < β̈ < 2. Specifically, choose

a small (but not excessively small) β̇ and set β̈ = 2− β̇. Partition the interval

[β̇ , β̈] uniformly into an even number greater than 2 of subintervals, so β(0) = 1 is

the central partition point. The set of all partition points will be our candidates for

β(`+1). Let 4β be the length of the subintervals. Introduce a direction indicator d

taking on values −1, 0, 1, and associated quantities γ−1, γ0, γ1 and β−1, β0, β1.

For ` = 0, initialize and invoke the Extrapolation Algorithm code; and,

absent termination, calculate γ(0). Set γ0 = γ(0) and β0 = β(0). If γ0 < 1, set

d = 1 and β(1) = β0 +4β. If γ0 ≥ 1, set d = −1 and β(1) = β0 −4β.

Increment ` by 1.

86

For ` = 1, reinitialize and invoke the Extrapolation Algorithm code; and,

absent termination, calculate γ(1). If d = 1, set γ1 = γ(1) and β1 = β(1). If

d = −1 set γ−1 = γ(1) and β−1 = β(1). If d = 1 and γ1 > γ0, set t = −1

and β(2) = β0 −4β. If d = 1 and γ1 ≤ γ0, set t = 1 and β(2) = β0 +4β;

and transfer γ0, β0, γ1, β1, to γ−1, β−1, γ0, β0, respectively. If d = −1 and

γ−1 > γ0, set t = 0 and β(2) = β0. If d = −1 and γ−1 ≤ γ0, set t = −1

and β(2) = β0 −4β; and transfer γ−1, β−1, γ0, β0, to γ0, β0, γ1, β1, respectively.

Set d = t and increment ` by 1.

If ` ≥ 2, reinitialize and invoke the Extrapolation Algorithm code; and,

absent termination, calculate γ(`). If d = 0, set t = 0 and β(`+1) = β0. If

d = 1, set γ1 = γ(`) and β1 = β(`). If d = −1 set γ−1 = γ(`) and β−1 = β(`).

If d = 1 and γ1 > γ0, set t = 0 and β(`+1) = β0. If d = 1, γ1 ≤ γ0 and

β1 +4β > β̈, set t = 0 and β(`+1) = β̈. If d = 1, γ1 ≤ γ0 and

β1 +4β ≤ β̈, set t = 1 and β(`+1) = β1 +4β. If d = −1 and γ−1 > γ0,

set t = 0 and β(`+1) = β0. If d = −1, γ−1 ≤ γ0 and β−1 −4β < β̇, set

t = 0 and β(`+1) = β̇. If d = −1, γ−1 ≤ γ0 and β−1−4β ≥ β̇, set t = −1

and β(`+1) = β−1 −4β. Set d = t and increment ` by 1.

A code using a decision tree would be simpler than the foregoing might

appear. The net effect is to attempt to identify a candidate for β that will enhance the

asymptotic rate of convergence of the Picard iteration; and, failing this, to fix β at a

limiting value β̇ (or, conceivably, β̈), hoping that the Extrapolation Algorithm will

succeed in finding an approximate fixed point.

There is a point which needs clarification in anticipation of matters to be

discussed in the next section, involving connections between fixed point problems and

root-finding problems—or, more specifically, zero-finding problems. Our starting point is

87

the fixed point problem for g, which we assume to have a locally convergent Picard

iteration at g(x̂) = x̂. This fixed point problem may be explicit as the numerical

problem whose solution is sought; or implicit in an iterative process for solving another

numerical problem; for example, a root-finding problem f(x̂) = 0.

The fixed point problem g(x̂) = x̂ is naturally associated with the

root-finding problem g(x̂)− x̂ = 0, though many people prefer x̂ = g(x̂) and

x̂− g(x̂) = 0. With the root-finding problem f(x̂) = 0, we can naturally associate

the fixed point problem for x+ f(x), though many people prefer x− f(x). With the

root-finding problem g(x̂)− x̂ = 0, we see that x+ f(x) = g(x) = g(x | 1), and

x− f(x) = 2x− g(x) = g(x | −1), which we know have radically different

convergence properties. Likewise, with x̂− g(x̂) = 0, we see that

x+ f(x) = g(x | −1) and x− f(x) = g(x). The root-finding problem f(x̂) = 0 is

essentially unaltered if replaced by αf(x̂) = 0, for α 6= 0. Similarly, for

g(x̂)− x̂ = 0, we see that x+ αf(x) = g(x | α) and x− αf(x) = g(x | −α); and,

for x̂− g(x̂) = 0, we see that x+ αf(x) = g(x | −α) and x+ αf(x) = g(x | α).

For general root-finding problems, there is no correspondence between α and β. It

may or may not be possible to choose α to arrange for or accelerate the convergence of

the corresponding Picard iteration, and the sign of α may be significant.

Finally, the root-finding problem f(x̂) = 0 is also essentially unaltered if

replaced by Bf(x̂) = 0, for nonsingular B. Let F (x̂) be the Jacobian of f at x̂,

and assume that F (x̂) is nonsingular, so x̂ is a locally unique solution. An ideal (but

infeasible) choice for B with x ± Bf(x) would be B = ∓ F (x̂)−1, so the Jacobian

I ± BF (x) is 0 at x̂. Newton’s method approximates F (x̂) by F (x(`)), which is

impractical in our context. However, other iterative procedures for root-finding

problems can be interpreted from this perspective: see further below.

88

Choice of W

We turn now to the choice of W in the Extrapolation Algorithm. Note that

a different choice might be appropriate in the termination tests. Recall that

W = Diag(w), so w = diag(W), with w > 0. Thus, we can equivalently discuss the

choice of w. I shall normalize W by requiring that ‖ w ‖2 /
√
N = 1, which is the

case for W = I where w = e. Several preliminary remarks are in order before we

proceed. First, for a fixed point problem g(x̂) = x̂, there is a natural correspondence

between the elements of x and of g(x); thence, comparable scaling considerations for

x and g(x). For a root-finding problem f(x̂) = 0, there is not necessarily any such

association between x and f ; one can think of the earlier generation of a fixed point

problem from a root-finding problem as an attempt to establish such a connection.

Second, we wrote β(`) in anticipation of choosing β adaptively; but we did

not write W (`). Adaptive choice of W (`) would complicate monitoring the iteration,

and feedback might lead to potential instability. We contemplate that W will be

chosen at the outset, but could allow the iteration to be restarted episodically or

periodically. In particular, recall the observation above that there may be a brief

unrepresentative transient phase at the beginning if the initial iterant is inadequate.

For both the choice of β and W, it may be helpful to do a small number (2-3) of

iterations at the outset with the default values before restarting the iteration with an

updated initial iterant, and nondefault values of β and W. If β has been chosen

adaptively, it might be fixed in any subsequent restart. Note that changing β and W

does not entail discarding prior iterant data, though early data regarded as

unrepresentative might well be discarded.

Third, the choice of a nondefault W necessarily involves problem-dependent

knowledge allowing us to make cogent distinctions among subsets of the elements of x

89

and g(x). We posit that we can partition the elements of x and g(x) into a relatively

small number of subvectors of significant size with relevantly different characteristics.

We shall assign all elements of corresponding subvectors of w the same value. The

efficacy of the Extrapolation Algorithm hinges on perceiving and predicting pertinent

patterns in the iterant data, and all subvectors must contribute appropriately to the

inner products and norms centrally involved. There may be complementary and

competing considerations requiring careful compromises. Insights from the scientific or

engineering context from which the mathematical problem being solved numerically

derives may be crucial.

The most straightforward basis for partitioning x and g(x) into subvectors

arises when the mathematical problem involves several dependent variables defined over

some domain, so subvectors can be associated with the discretized version of each

dependent variable. Such initial subvectors might be subdivided further based on

geometric or other considerations. For instance, the class of problems that originally

motivated the development of the Extrapolation Algorithm constituted a set of three to

five coupled singular nonlinear Fredholm integral equations of the second kind, modeling

a rarefied gas: for example, argon. The dependent variables involved were a number

density, a temperature, and one to three velocity components, for which scientifically

natural units would be moles per cubic meter, kelvins and meters per second. Using

such natural units may lead to dependent variables of disparate sizes. Scaling to

balance their contributions to inner products and norms may be in order on numerical

grounds, but this is a complicated issue which is context-dependent.

I shall briefly discuss four sets of ideas related to W in what follows, which I

shall label as adjustment, influence, decimation and implementation. The intent is not

to be definitive, but simply to suggest that the choice of W is worth thinking about

90

seriously in the framework of a class of related problems, especially if these are

challenging problems.

Adjustment

Adjustment is related to but distinguishable from simple-minded rescaling of

multiple dependent variables of disparate sizes to make them comparable in size.

Consider the nonsingular affine transformation of variables z = W (x− s), thence

x = W−1z + s. Correspondingly, define

h(z) = W (g(W−1z + s)− s) ,

thence

g(x) = W−1h(z) + s .

Then, the fixed point problems g(x̂) = x̂ and h(ẑ) = ẑ are related by

ẑ = W (x̂− s), thence x̂ = W−1ẑ + s. We should select the shift vector s so that

e∗i s is a representative value of e∗ix or e∗i g(x), 1 ≤ i ≤ N, in some neighborhood of

x̂. The choice s = x̂ would be ideal, but infeasible. Consequently, W−1z

constitutes the deviation of x from s.

Observe that we have

‖
min(`,M)∑

k=0

θ
(`)
k

[
h(z(`−k))− z(`−k)

]
‖22 = ‖

min(`,M)∑
k=0

θ
(`)
k

[
W (g(x(`−k))− s)−W (x(`−k) − s)

]
‖22 ,

= ‖
min(`,M)∑

k=0

θ
(`)
k

[
Wg(x(`−k))−Wx(`−k)

]
‖22 ,

= ‖ W
min(`,M)∑

k=0

θ
(`)
k

[
g(x(`−k))− x(`−k)

]
‖22 .

Therefore, the θ̂
(`)
k , 0 ≤ k ≤ min(`,M), depend on W but do not depend on s,

except insofar as the choice of s affects that of W. From this perspective, the choice of

W should be made to roughly equilibrate z = W (W−1z) rather than W−1z. Units

91

affect the deviations as well as the representative values, but ordinarily more moderately

if the latter are disparate in size. We are rescaling the residual g(x)− x rather than x

and g(x). For example, if x and g(x) have initially been partitioned into subvectors

corresponding to different dependent variables, possibly further subdivided, one might

choose the elements of the corresponding subvectors of w as a multiple of the

reciprocal of the standard deviation (assumed nonzero) of the set of elements of the

corresponding subvector of g(x(0)) and x(0). The multiplier should be chosen so that

‖ w ‖2 /
√
N = 1 . Among other things, this would adjust for differences in units. In

the unusual event of a zero, or excessively small, standard deviation, one might

temporarily assign a zero value to the elements of that subvector, and choose the

multiplier so that ‖ w ‖2 /
√
n = 1 , where n is the number of nonzero elements of

w. If we then reassign the N − n temporarily zero elements of w the value one, we

will obtain ‖ w ‖2 /
√
N = 1 . This initial w might be modified based on

considerations discussed hereafter.

Influence

In addition to issues related to disparate size, there are potential issues of

disparate influence which are worth looking for in example calculations and anticipating

or rationalizing in the problem context. For illustration, we shall dichotomize, but there

might be intermediate categories. Suppose that there is a category of volatile variables

which depend sensitively on a category of nonvolatile variables which ultimately

determine the values of both. The volatile variables may be ill-determined even when

the values of the nonvolatile variables have stabilized. Turbulent behavior of volatile

variables may obscure systematic behavior of nonvolatile variables. One may profit by

downweighting the volatile variables and letting them dominate only after the

nonvolatile variables have stabilized. Suppose that there is a category of stolid variables

92

which are largely determined (for example, by boundary or asymptotic conditions) for

the particular problem at hand. If there are a significant number of stolid variables, one

may profit from upweighting the more active nonstolid variables. Adjustment also

responds to volatility and stolidity. In complementary fashion, sensitive variables for

which small changes can cause much larger changes in other variables might be

upweighted to inhibit excessive variation; and insensitive variables for which moderately

large changes are required to significantly affect other variables might be downweighted.

This is a surrogate, based on qualitative knowledge of the problem context (if available

and unequivocal), for quantitative information about off-diagonal elements of the

Jacobian. In the same vein, there may be localized regions within the domain which

play a key role and should be focused upon during the iteration. These are examples of

disparate influence of subvectors which, if anticipated, may be worth incorporating into

the choice of W. Downweighting or upweighting might be applied to an initial w

chosen along the lines laid out above. Downweighting or upweighting would be followed

by renormalizing so that ‖ w ‖2 /
√
N = 1. Consequently, downweighting

(upweighting) one subvector would be accompanied by upweighting (downweighting) the

other subvector.

Decimation

Before discussing decimation, I shall briefly sketch two more familiar ideas

which should not be confused with it. Let N be the number of degrees of freedom to

be determined in a discretization of a continuous problem like a differential or integral

equation. For ease in exposition, we focus on a single dependent variable, but extension

to several is straightforward. For challenging nonlinear problems of this sort requiring

large N, I take it for granted that potential use of a continuation procedure in N will

be on the agenda. This involves solving a family of problems with increasing N,

93

taking an approximate solution for one N as the initial iterant for the next larger N,

beginning with an N large enough to capture the essence of the problem but not large

enough to yield the requisite accuracy. In our context, we imagine solving a fixed point

problem for a given N and initial iterant, whose Picard iteration is increasingly costly

and slowly convergent as N becomes larger. Consequently, the overall cost of solving a

family of such problems may be less than that of solving the problem with maximal N

alone.

Consider fixed point problems whose Picard iteration preserves and enhances

smoothness of the iterants. Discretizations of Fredholm integral equations of the second

kind naturally lead to such problems because integration is a global averaging, thence

global smoothing, process. Discretizations of appropriate differential equations using

elementary iterative methods based on a local averaging, thence preferential local

smoothing, process may also yield problems of this sort. This is familiar in the context

of multigrid, or multilevel, methods, also involving a family of discretized problems akin

to those in the aforementioned continuation procedure. By systematically cycling

among different family members, one seeks to damp out smaller scale errors before

moving to the next member.

Neither of the foregoing ideas is of current interest here. However, one can

imagine situations in which continuation or multigrid iterations might be used to define

the fixed point problem to which the Extrapolation Algorithm is applied; or in which

the Extrapolation Algorithm is applied within stages of the continuation or multigrid

iterations.

Recall that N -vectors enter the Extrapolation Algorithm first, and foremost,

in the evaluation of inner products and norms involved in the calculation of the affine

combination coefficients θ̂
(`)
k , 0 ≤ k ≤ min(`,M), and subsequently in the

94

calculation of the affine combinations. Use of large N to achieve desired numerical

accuracy may lead to a form of redundancy, which we can attempt to alleviate. We

shall identify two relevant situations. The first situation arises when elements of x

represent local approximations to values of the dependent variable in the vicinity of

points within the domain. Elements of x associated with nearby points must be nearly

equal, the moreso as N increases with refinement of the discretization. The second

situation arises when elements of x represent coefficients in a linear combination of

basis functions approximating the dependent variable globally throughout the domain,

and when they can be ordered so as to decrease rapidly in magnitude as N increases

with refinement of the discretization. Finite difference, finite volume and finite element

methods using piecewise polynomial nodal basis functions of small support yield the

first situation. Finite orthogonal expansions in trigonometric functions, orthogonal

polynomials or other special functions and finite element methods with hierarchical

basis functions yield the second situation. The basis functions which are more highly

oscillatory or have smaller support resolve finer details and their coefficients become

small for smooth dependent variables.

In the integral equation problems motivating the development of the

Extrapolation Algorithm, a dual representation of the dependent variables was

employed, using both values at specially selected grid points and coefficients of finite

expansions in Chebyshev polynomials of the first kind, connected via the well-known

discrete orthogonality conditions. The problems were small enough so that decimation

applied to grid point values was not a plausible tactic, but could possibly have been

applied to expansion coefficients because of the smoothness of the solutions, though

incentive to do so was absent. Small expansion coefficients attributable to smoothness

may also be regarded as stolid.

95

Having identified interesting situations arising from two classes of

discretizations, we now note that they could be combined. If there are several

dependent variables, different modes of discretization appropriate to each could be

utilized. If there are several independent variables, different modes of discretization

appropriate to each could be utilized. This approach is not uncommon in practice. We

shall focus below simply on the two situations identified above.

I prefer to think about decimation in the framework of choosing W, but this is

not essential. We shall formally relax the constraint w > 0 to w ≥ 0; and assume

that w is normalized so that ‖ w ‖2 /
√
n = 1, where n is the number of nonzero

elements of w, with 1 � n� N. It is understood from the outset that we shall not

simply apply the foregoing algorithms with the corresponding W.

The elements of x and g(x) corresponding to the nonzero elements of w

will be called the representative subset, and those corresponding to the zero elements

the complementary subset. In practice, the representative subset will be chosen,

followed by w, as discussed further below. If the complementary subset of x is held

fixed, g defines a fixed point problem and Picard iteration for the representative

subset, to which the Extrapolation Algorithm could be applied. One can envision an

analogue of the block Jacobi or block Gauss-Seidel iteration in which x is partitioned

into subsets which are identified successively with the representative subset. A small

number of Picard or Extrapolation Algorithm iterations could be applied for each

representative subset; and the Picard iteration or Extrapolation Algorithm could then

be applied to the overall iterative process. As a practical matter, this requires the

capability to evaluate subvectors of g independently, which may not be feasible.

Again, this approach is not of current interest here, and is mentioned only to distinguish

it from the decimation idea to follow.

96

Recall that in the Extrapolation Algorithm we essentially use a single Picard

iteration to generate y(`) = g(x(`)) from x(`); but, for ` > 0, x(`) is not itself

ordinarily the direct product of a Picard iteration. It is iterant data pairs x(`−k) and

y(`−k), 0 ≤ k ≤ min(`,M), that enter the determination of x(`+1) by the

Extrapolation Algorithm. This involves calculating the affine combination coefficients

θ̂
(`)
k , 0 ≤ k ≤ min(`,M), thence the affine combinations û(`) =

∑min(`,M)
k=0 θ̂

(`)
k x(`−k)

and v̂(`) =
∑min(`,M)

k=0 θ̂
(`)
k y(`−k), and finally x(`+1) = (1− β(`))û(`) + β(`)v̂(`). In the

decimation approach the idea is to use the n-vector representative subsets of x(`−k)

and y(`−k), 0 ≤ k ≤ min(`,M), to calculate the affine combination coefficients

θ̂
(`)
k , 0 ≤ k ≤ min(`,M); and then use these to calculate the N -vectors û(`) and

v̂(`), thence x(`+1). Whether it makes sense to approximate the affine combination

coefficients calculated using N -vectors by those calculated using n-vectors depends on

the nature of the original fixed point problem and on the selection of the representative

subsets involved.

The key assumption is that the convergent Picard iteration for g preserves

and enhances smoothness. Forming affine combinations does likewise. In the first

situation outlined above, elements of x in the representative subset may be chosen as

proxies for neighboring elements with nearly equal values; one must take n large

enough to adequately sample all relevant neighborhoods. The nonzero elements of w

should ideally be proportional to the number of members of the complementary subset

for which that element of the representative subset serves as a proxy. In the second

situation outlined above, representative elements must include all coefficients of

significant magnitude. The process might be facilitated by recognizing variables

contained in a less refined discretization within a more refined discretization. With

ample computational resources at their disposal, scientists and engineers commonly seek

97

high enough numerical accuracy that n might usefully be taken much smaller than N ,

especially when multiple dependent and independent variables are involved.

Implementation

We turn now to implementation issues. I reiterate that code providers should

educated prospective users about potential advantages of choosing W 6= I, and

facilitate this to the extent feasible. Above (and below), I have chosen to incorporate

W into the Extrapolation Algorithm calculations when forming the AB array,

containing the ingredients A and b of the least squares problem to be solved, from the

arrays X and Y containing the input iterant data x(`−k) and y(`−k) = g(x(`−k)),

0 ≤ k ≤ min(`,M). There are two other approaches that could be considered.

The most elegant, but least attractive, approach would involve reworking the

constructions detailed above, using the standard Euclidean inner product and norm, in

terms of the weighted inner product and norm introduced to define the minimization

problem determining the optimal affine combination coefficients. The N−1 factor in

the inner product and the N−
1
2 factor in the norm could be accommodated using the

implicit scaling strategy sketched previously.

More interesting in practice is the observation that we could use an algorithm

based on the default choice W = I, but replace the input iterant data x(`−k) and

y(`−k) by Wx(`−k) and Wy(`−k), 0 ≤ k ≤ min(`,M). Furthermore, we could use an

algorithm based on the default choice β(`) = β = 1, but replace the input iterant

data x(`−k) and y(`−k) by Wx(`−k) and (1− β(`))Wx(`−k) + β(`)Wy(`−k),

0 ≤ k ≤ min(`,M). One can envision an interface subprogram that accepts the

original input iterant data x(`−k) and y(`−k), 0 ≤ k ≤ min(`,M), and produces

the modified input iterant data for use by the default algorithm, and vice versa.

In my experience, scientists and engineers are skilled and comfortable with

98

the use of scaling and other transformations in the formulation of mathematical models,

to identify relevant dimensionless parameters and suitable approximations. They are

often reluctant to accept the desirability of further scaling and other transformations for

numerical purposes, and recalcitrant about producing input or being presented with

intermediate or final output results in other than the variables and units natural to the

problem context. An interface subprogram could be provided by a user interested in

exploring the potential advantages of nondefault options. Alternatively, an interface

subprogram could be provided by a member of the project team who already

appreciates such advantages and can deploy them to meet the unfelt needs of the user.

Note that the termination criterion has then been altered correspondingly.

I tacitly assumed above that the Extrapolation Algorithm code would

recognize three cases with regard to β. The first case is the default option β = 1,

which means that x(`+1) = v̂(`), so û(`) need not be evaluated. The second case

involves a specified β 6= 1, which means that x(`+1) = (1− β)û(`) + βv̂(`), so both

û(`) and v̂(`) are required. The third case is x(`+1) = (1− β(`))û(`) + β(`)v̂(`) and

β(`+1) is to be chosen adaptively. It is much more important that the code recognize

three cases with regard to W. The first case is the default option w = e, which

means that [A b] can be evaluated column-by-column, as presented above, omitting

all vacuous multiplications by W = I. The second case involves a specified w > 0.

Again [A b] can be evaluated column-by-column, as presented above. We may be

able to exploit Fortran array products, which are element-by-element Hadamard

products, using w rather than formal use of W. The third case involves a specified

w ≥ 0, with n � N. We now evaluate [A b] row-by-row, ignoring the N − n

rows associated with zero elements of w and multiplying corresponding rows by the

nonzero elements, obtaining n as a byproduct.

99

The user must provide nondefault w. A stand alone code or subroutine

along the following lines might be of assistance. The basic input would be an N -vector

which might become w upon output. The elements of the input vector would be

nonzero integers whose magnitudes designate which subvector of x and g(x) they are

associated with, and whose signs designate whether they are members of the

representative subset (positive) or the complementary subset (negative). Also part of

the input would be a list of all subvectors which are to be downweighted or upweighted,

and a positive weighting factor less than, equal to or greater than one. Initially, the

output vector would be defined by the adjustment procedure described above. For this

purpose, the code must also be supplied with x(0) and y(0) = g(x(0)). Then, if the

weighting factor is not one, the listed subvectors would be multiplied by the weighting

factor. Finally, all elements of the output w vector in the complementary subset

would be set equal to zero, n would be determined, and the output vector normalized

so that we obtain ‖ w ‖2 /
√
n = 1. For ease in exposition, we have discussed the

simplest version using all of the foregoing, which could be elaborated upon.

Remarks on Relevant Literature

It is not my purpose here to comprehensively review the extensive literature

pertaining to Anderson Acceleration, Anderson Mixing, and equivalent or related

methods. Rather, I shall focus on selected aspects of noteworthy items and on two

themes, one computational and the other conceptual.

Later in this section, I shall pay particular attention to the already influential

Walker/Ni (2011) paper, which introduced the Anderson Acceleration terminology; and

the next section will be devoted to detailed discussion of related implementation issues.

Comparing and contrasting computational considerations in the literature to those laid

out above is the recurrent first theme. I believe that portions of the literature might well

100

lead readers astray.

In the classic Ortega/Rheinboldt (1970) magnum opus on root-finding

problems, there was a note (pages 204-205) on the Anderson (1965) paper. No mention

was made of the fact that the Extrapolation Algorithm was motivated by and intended

for fixed point problems with slowly converging Picard iterations. Rather, it was recast

as a method for root-finding problems, in a form which made it appear to be a silly idea.

Repeated conflicts between thinking in terms of fixed point or root-finding problems,

with consequent confusion, is the recurrent second theme. I have already indicated how

I believe this conflict ought to be resolved, and will explain why and in what sense.

Broyden

There is a large literature stemming from the Broyden (1965) paper, with

alternative and competing terminology and characterizations. A sketch for orientation

hereafter will suffice for our purposes, and I shall adopt my own language in aid of

clarity and conciseness. The goal is to connect the Extrapolation Algorithm with, but

distinguish it from , this body of material, which is framed in the context of the

root-finding problem f(x̂) = 0.

As above, denote the Jacobian of f(x) by F (x), assumed nonsingular. Let x0

and x1 be two distinct nearby points, and assume that f(x0) and f(x1) are also

distinct nearby points. We have the direct approximation

f(x1)− f(x0) ≈ F (x0)(x1 − x0)

and the inverse approximation

x1 − x0 ≈ F (x0)
−1(f(x1)− f(x0)) .

Taking x1 = x̂, so f(x1) = 0, we obtain

x̂ ≈ x0 − F (x0)
−1f(x0)

101

or

F (x0)(x̂ − x0) ≈ −f(x0) .

This is the approximation underlying the Newton method: for ` = 0, 1, · · · ,

x(`+1) = x(`) − F (x(`)))−1f(x(`))

or

F (x(`))(x(`+1) − x(`)) = −f(x(`)) .

In the original Broyden direct secant method, we initially possess

x(`−1), f(x(`−1)) and an approximation J (`−1) to F (x(`−1)). We solve

J (`−1)(x(`) − x(`−1)) = −f(x(`−1)) to obtain x(`) = x(`−1) − (J (`−1))−1f(x(`−1)), and

evaluate f(x(`)). We then obtain a companion J (`) by satisfying the direct secant

condition

J (`)(x(`−1) − x(`)) = (f(x(`−1))− f(x(`))) ,

or equivalently,

J (`)(x(`) − x(`−1)) = (f(x(`))− f(x(`−1))) ,

and also the restriction that J (`)d = J (`−1)d, for all nonzero d ⊥ (x(`) − x(`−1)). It

can be shown that this is equivalent to minimizing ‖ J (`) − J (`−1) ‖F subject to the

direct secant condition constraint, but this will play no direct role in what follows.

In the original Broyden inverse secant method, we initially possess

x(`−1), f(x(`−1)), and an approximation K(`−1) to F (x(`−1))−1. We obtain

x(`) = x(`−1) −K(`−1)f(x(`−1)), and evaluate f(x(`)). We then obtain a companion

K(`) by satisfying the inverse secant condition

K(`)(f(x(`−1))− f(x(`))) = (x(`−1) − x(`)) ,

or equivalently,

K(`)(f(x(`))− f(x(`−1))) = (x(`) − x(`−1)) ,

102

and also the restriction that K(`)d = K(`−1)d, for all nonzero

d ⊥ (f(x(`))− f(x(`−1))). It can be shown that this is equivalent to minimizing

‖ K(`) −K(`−1) ‖F subject to the inverse secant condition constraint.

Before discussing these methods further, it will prove convenient to slightly

reorganize the calculations involved, with no change in substance.

In the reorganized original Broyden direct secant method, we initially possess

x(`−1), f(x(`−1)), x(`), f(x(`)) and an approximation J (`−1) to F (x(`−1)), with x(`)

obtained as above. We obtain a companion J (`) by satisfying the direct secant

condition

J (`)(x(`−1) − x(`)) = (f(x(`−1))− f(x(`))) ,

or equivalently,

J (`)(x(`) − x(`−1)) = (f(x(`))− f(x(`−1))) ,

and also the restriction that J (`)d = J (`−1)d, for all nonzero d ⊥ (x(`) − x(`−1)). We

then solve J (`)(x(`+1) − x(`)) = −f(x(`)) to obtain x(`+1) = x(`) − (J (`))−1f(x(`)),

and evaluate f(x(`+1)).

In the reorganized original Broyden inverse secant method, we initially

possess x(`−1), f(x(`−1)), x(`), f(x(`)) and an approximation K(`−1) to F (x(`−1))−1.

We obtain a companion K(`) by satisfying the inverse secant condition

K(`)(f(x(`−1))− f(x(`))) = (x(`−1) − x(`)) ,

or equivalently,

K(`)(f(x(`))− f(x(`−1))) = (x(`) − x(`−1)) ,

and also the restriction that K(`)d = K(`−1)d , for all nonzero

d ⊥ (f(x(`))− f(x(`−1))). We then obtain x(`+1) = x(`) −K(`)f(x(`)) , and evaluate

f(x(`+1)).

103

We shall extend these secant methods to counterpart multisecant methods.

Suppose that we have x(`−k) and f(x(`−k)), for 0 ≤ k ≤ m, with 1 ≤ m ≤ M

and ` ≥ m. We focus on m > 1 for multisecant methods, but would reduce to secant

methods for m = 1. There are two natural ways to formulate direct and inverse

multisecant methods. In the end, they will prove to be essentially equivalent. The

literature considers primarily the second approach.

Since we think of J (`) as an approximation to F (x(`)), we are led to the

centered direct multisecant conditions

J (`)(x(`−k) − x(`)) = (f(x(`−k))− f(x(`))) ,

for 1 ≤ k ≤ m. In order to avoid redundancy or inconsistency, we need

{x(`−k) − x(`)}mk=1 to be linearly independent; in order that this be compatible with

nonsingularity of J (`), we also need {f(x(`−k))− f(x(`))}mk=1 to be linearly

independent. If the labelling of x(`−k) , 0 ≤ k ≤ m, reflects an underlying ordering,

we are led to the sequential direct multisecant conditions

J (`)(x(`−k+1) − x(`−k)) = (f(x(`−k+1))− f(x(`−k))) ,

for 1 ≤ k ≤ m. Again, we need {x(`−k+1) − x(`−k)}mk=1 and

{f(x(`−k+1))− f(x(`−k))}mk=1 linearly independent. By earlier work, this means that

{x(`−k) − x(`)}mk=1 and {x(`−k+1) − x(`−k)}mk=1 are deviation and difference bases for the

same subspace; and {f(x(`−k))− f(x(`))}mk=1 and {f(x(`−k+1))− f(x(`−k))}mk=1 are

deviation and difference bases for the same subspace. This also means that {x(`−k)}mk=0

and {f(x(`−k))}mk=0 are affinely independent.

Since we think of K(`) as an approximation to F (x(`))−1, we are led to the

centered inverse multisecant conditions

K(`)(f(x(`−k))− f(x(`))) = (x(`−k) − x(`)) ,

104

for 1 ≤ k ≤ m; and to the sequential inverse multisecant conditions

K(`)(f(x(`−k+1))− f(x(`−k))) = (x(`−k+1) − x(`−k)) ,

for 1 ≤ k ≤ m, if the labelling reflects an underlying ordering. We also need the

same linear and affine independence properties, and consequences thereof.

It will prove convenient to combine further discussion of the centered and

sequential multisecant conditions, thence the deviation and difference bases, by the

notational device of introducing N × m matrices ∆X(`) and ∆F (`). For the

centered multisecant conditions, define ∆X(`)ek = x(`−k) − x(`) and

∆F (`)ek = (f(x(`−k))− f(x(`))), for 1 ≤ k ≤ m. For the sequential multisecant

conditions, define ∆X(`)ek = x(`−k+1) − x(`−k) and

∆F (`)ek = (f(x(`−k+1))− f(x(`−k))), for 1 ≤ k ≤ m. Note that by my indexing

conventions the columns of ∆X(`) and ∆F (`) are ordered by increasing age

(decreasing `− k). Probably for historical reasons (but possibly as an artifact of

indexing preferences), the sequential multisecant conditions, thence ∆X(`) and ∆F (`),

are commonly ordered by decreasing age. This has potentially adverse numerical

consequences.

The direct multisecant conditions now take the form

J (`)∆X(`) = ∆F (`) ,

and the inverse multisecant conditions now take the form

K(`)∆F (`) = ∆X(`) ,

for both the centered and sequential versions. By the foregoing, we know that ∆X(`)

and ∆F (`) have maximal rank, and that the ranges R{∆X(`)} and R{∆F (`)} are

the same for both versions because the columns of ∆X(`) and ∆F (`) are the deviation

and difference bases thereof.

105

We shall obtain J (`) from J (`−m) by satisfying the direct multisecant

conditions J (`)∆X(`) = ∆F (`) and also the restriction that J (`)d = J (`−m)d, for all

nonzero d ⊥ R{∆X(`)}, or equivalently, (∆X(`))∗d = 0. If we write

J (`) = J (`−m) + U
[
(∆X(`))∗∆X(`)

]−1
(∆X(`))∗ ,

then the restriction will be satisfied for any N × m matrix U. From

J (`)∆X(`) = J (`−m)∆X(`) + U ,

we infer that the direct multisecant conditions J (`)∆X(`) = ∆F (`) will be satisfied for

U = ∆F (`) − J (`−m)∆X(`) .

We shall obtain K(`) from K(`−m) by satisfying the inverse multisecant

conditions K(`)∆F (`) = ∆X(`) and also the restriction that K(`)d = K(`−m)d for all

nonzero d ⊥ R{∆F (`)}, or equivalently, (∆F (`))∗d = 0. If we write

K(`) = K(`−m) + U
[
(∆F (`))∗∆F (`)

]−1
(∆F (`))∗

then the restriction will be satisfied for any N × m matrix U. From

K(`)∆F (`) = K(`−m)∆F (`) + U ,

we infer that the direct multisecant conditions K(`)∆F (`) = ∆X(`) will be satisfied for

U = ∆X(`) −K(`−m)∆F (`) .

At this point, I shall introduce the simplified direct and inverse multisecant

methods. In the simplified direct multisecant method, we systematically replace J (`−m)

in the foregoing expressions by −(β(`))−1I; in the simplified inverse multisecant

method, we systematically replace K(`−m) in the foregoing expressions by −β(`)I. I

106

use the word “replace” advisedly, since we have no basis for regarding −(β(`))−1I as an

approximation to F (x(`−m)), or −β(`)I as an approximation to F (x(`−m))−1. The

intent is simplification, not approximation. Nevertheless, we proceed on the hope and

expectation that incorporation of information from the multisecant conditions will make

J (`) and K(`) useful approximations to F (x(`)) and F (x(`))−1 , respectively — which

may or may not be the case. In particular, I shall introduce stationary simplified

multisecant methods, incorporating quasistationary and equistationary components.

We shall be primarily concerned with stationary simplified inverse multisecant methods,

so we shall focus on these and make brief remarks later about stationary simplified

direct multisecant methods.

In simplified form, we have

K(`) = −β(`)I +
{

∆X(`) + β(`)∆F (`)
} [

(∆F (`))∗∆F (`)
]−1

(∆F (`))∗ .

Define

ĉ(`) :=
[
(∆F (`))∗∆F (`)

]−1
(∆F (`))∗f(x(`)) ,

so we have [
(∆F (`))∗∆F (`)

]
ĉ(`) = (∆F (`))∗f(x(`)) ,

which we recognize as the normal equations for the least squares problem

∆F (`)c(`) = f(x(`)). From x(`+1) = x(`) −K(`)f(x(`)) , we obtain

x(`+1) =
{
x(`) −∆X(`)ĉ(`)

}
+ β(`)

{
f(x(`))−∆F (`)ĉ(`)

}
.

We now take f(x) = g(x)− x , so we have

f(x(`)) = g(x(`))− x(`) = y(`) − x(`) = r(`) .

We also take β(`) > 0, and W = I.

107

For the centered inverse secant conditions and corresponding deviation basis

for R
{

∆F (`)
}
, we recognize that e∗kĉ

(`) = −θ̂(`)k , 1 ≤ k ≤ m . It follows that

{
x(`) −∆X(`)ĉ(`)

}
= x(`) +

m∑
k=1

θ̂
(`)
k (x(`−k) − x(`)) = û(`)

and {
f(x(`))−∆F (`)ĉ(`)

}
= r(`) +

m∑
k=1

θ̂
(`)
k (r(`−k) − r(`)) = v̂(`) − û(`) ,

so

x(`+1) = û(`) + β(`)(v̂(`) − û(`)) = (1− β(`))û(`) + β(`)v̂(`) ,

where

v̂(`) = y(`) +
m∑
k=1

θ̂
(`)
k (y(`−k) − y(`)) .

We see that the simplified inverse multisecant method applied to f(x) = g(x)− x

yields the same x(`+1) as the Extrapolation Algorithm applied to g(x) = x+ f(x),

for the same iterant data.

For the sequential inverse secant conditions and corresponding difference basis

for R
{

∆F (`)
}
, we recognize that e∗j ĉ

(`) = ξ̂
(`)
j , 1 ≤ j ≤ m . It follows that

{
x(`) −∆X(`)ĉ(`)

}
= x(`) −

m∑
j=1

ξ̂
(`)
j (x(`−j+1) − x(`−j)) = û(`)

and {
f(x(`))−∆F (`)ĉ(`)

}
= r(`) −

m∑
j=1

ξ̂
(`)
j (r(`−j+1) − r(`−j)) = v̂(`) − û(`) ,

so

x(`+1) = û(`) + β(`)(v̂(`) − û(`)) = (1− β(`))û(`) + β(`)v̂(`) ,

where

v̂(`) = y(`) −
m∑
j=1

ξ̂
(`)
j (y(`−j+1) − y(`−j)) .

The same conclusion follows.

108

The quasistationary simplified inverse multisecant method corresponds to

1 ≤ ` = m ≤ M and the quasistationary version of the Extrapolation Algorithm.

The equistationary simplified inverse multisecant method corresponds to m = M < `

and the equistationary version of the Extrapolation Algorithm. The stationary

simplified inverse multisecant method combines these components as with the stationary

version of the Extrapolation Algorithm. Recall that, in formulating the inverse

multisecant conditions, we required that
{
f(x(`−k))

}m
k=0

=
{
r(`−k)

}m
k=0

be affine

independent; and also that
{
x(`−k)

}m
k=0

be affine independent, in the expectation that

K(`) will be a nonsingular approximation to F (x(`))−1. Only the affine independence of{
r(`−k)

}m
k=0

plays an explicit role in the Extrapolation Algorithm.

I categorically and emphatically reject the facile assertion that the foregoing

extends the stationary Extrapolation Algorithm from fixed point problems to

root-finding problems; or subsumes it within the stationary simplified inverse

multisecant method. Rather, I would argue, anyone considering application of the

stationary simplified inverse multisecant method to the root-finding problem f(x) = 0

should take cognizance of the fact that this is equivalent to applying the stationary

Extrapolation Algorithm to the implicit fixed point problem for g(x) = x+ f(x). The

convergence properties of the Picard iteration for g have implications for the efficacy of

both methods. There are any number of choices for f yielding the same zero x̂. Some

choices will yield a cogent g, many others will not. As a simple example anticipated

above and discussed further below, replacing f by −f requires also replacing β(`) by

−β(`) to generate the same x(`+1). This makes sense in that replacing f by −f

replaces F by −F . Failure to replace β(`) > 0 by β(`) < 0 will convert a locally

convergent Picard iteration into one that is not locally convergent. This is a trap for

the unwary, so I forthrightly and steadfastly resist all attempts to recast the stationary

109

Extrapolation Algorithm as a method for solving root-finding rather than fixed point

problems. There are other instances where this temptation arises. The fact that r(`)

is involved in the discussion of the stationary Extrapolation Algorithm (as an

abbreviation!) does not mean that it can simply be replaced by f(x(`)).

There is an isomorphism between the initial presentations above of the direct

and inverse multisecant methods, involving interchange of the roles of ∆X(`) and

∆F (`). However, for the direct version, we are not actually interested in J (`) because

the solution of J (`)(x(`+1) − x(`)) = −f(x(`)) to obtain x(`+1) is prohibitively costly.

Rather, we are interested in (J (`))−1, so x(`+1) = x(`) − (J (`))−1f(x(`)). An advantage

of the simplified (but also the unsimplified) direct multisecant method is that the

well-known Sherman-Morrison-Woodbury formula can be used to derive an expression

for (J (`))−1 from that for J (`). For A ∈ Cn×n
n ; U, V ∈ Cn×m; S, T ∈ Cm×m

m , with

m < n and T := S−1 ± V ∗A−1U, we have the Sherman-Morrison-Woodbury

formula (A ± USV ∗)−1 = A−1 ∓ (A−1U)T−1(V ∗A−1). For m = 1, we obtain the

Sherman-Morrison formula by replacing U, V by u, v ∈ Cn, and replacing S, T by

σ, τ ∈ C, assumed nonzero. There is again a linear equation to be solved to obtain

x(`+1) but it no longer takes the form of the normal equations for a least squares

problem. We shall not pursue the details here; they may be found in papers discussed

below.

These papers will be considered in two groups whose members can usefully be

compared and contrasted on matters related to our themes. The first group consists of

Eyert (1996), Marks/Luke (2008), Fang/Saad (2009), and

Calef/Fichtl/Warsa/Berndt/Carlson (2013), which will be abbreviated hereafter as

Calef et al (2013). The second group consists of Walker/Ni (2011), Ni (2009) and

Toth/Kelley (2015), plus Calef et al (2013).

110

It should be understood from the outset that issues raised in the context of a

particular paper may arise there and be of interest because of their implications should

they be taken as a model for later work by others. However, these issues may arise in

earlier papers and/or be included in many other related papers; their discussion in this

context simply reflects the choice to consider this paper.

It used to be commonplace, and still is in some contexts, to solve positive

definite linear equations without scaling, pivoting or regularization, since numerical

stability can be established. Many utility codes for this purpose were so constructed,

ordinarily using the Cholesky or Turing factorization. For authors using the normal

equations, I shall assume that scaling, pivoting, or regularization were not used if no

mention was made that they were used. When scaling or pivoting are mentioned

without further specification I shall assume that the corresponding standard strategy

was employed either when a QR decomposition or factorization approach or the normal

equations approach was involved.

Eyert

Eyert (1996) introduces the fixed point context of the discussion without

specifically introducing g (and later uses G(`) where I have used K(`)). However,

Eyert adopts my x(`) and y(`) = g(x(`)), and the equivalent of

x(`+1) = (1− β(`))û(`) + β(`)v̂(`) , with β(`) > 0, though with û(`) and v̂(`) replaced

by x̄(`) and ȳ(`), respectively. He also adopts the abbreviation r(`) = y(`) − x(`),

though with the residual r(`) replaced by F (`) and v̂(`) − û(`) by F̄ (`), so

x(`+1) = x̄(`) + β(`)F̄ (`). The upshot is that he is thinking throughout in terms of the

fixed point problem for g and the associated zero-finding problem for g(x)− x. This

matters later.

There is some terminological confusion in the literature. Eyert reviews what

111

I have called the stationary Extrapolation Algorithm under the label Anderson Mixing.

The case M = 0, so x(`+1) = (1− β(`))x(`) + β(`)y(`), is called simple mixing, by

Eyert and others, and β(`) is correspondingly called the mixing parameter. For

M > 0, Eyert appears to think of x(`+1) = (1− β(`))x̄(`) + β(`)ȳ(`), as mixing x̄(`)

and ȳ(`). In the Physics community, the original impetus to introduce simple mixing,

typically with an empirical β(`) = β ∼ 1
2
, was to damp out oscillatory behavior from

one Picard iterant to the next. Other authors, especially those taking β(`) = β = 1,

so there is no mixing per se, think of the affine combination coefficients, or the

equivalent thereof, as the mixing coefficients; if β(`) = β 6= 1, is used, this is thought

of as redefining the fixed point problem in an attempt to ensure or enhance the

convergence of the associated Picard iteration.

Eyert also reviews secant and multisecant methods focusing finally on what I

have called the stationary simplified inverse multisecant method. Much of the paper is

devoted to sorting out issues related to variants in the Physics literature deriving from

the minimization characterization of multisecant methods, but we shall not pursue these

matters here. Subsequently, Eyert demonstrates that Anderson Mixing (that is, the

stationary Extrapolation Algorithm) is isomorphic to the stationary simplified inverse

multisecant method.

Recall that it is customary for historical reasons to formulate multisecant

methods using the sequential secant conditions, and to order the resulting difference

basis by decreasing age of the iterant data; Eyert followed these customs in his review.

I used the deviation basis ordered by increasing age of the iterant data in the

Extrapolation Algorithm; Eyert followed these customs in his review. I used the

centered and sequential secant conditions and corresponding deviation and difference

bases ordered by increasing age of the iterant data in my presentation of multisecant

112

methods above; and showed earlier that the two bases have the same span. Eyert’s

construction of the correspondence between the two bases differs from mine in that the

ordering of our difference bases is reversed. Eyert pursues computational aspects of

Anderson Mixing using the difference basis ordered by decreasing age rather than the

deviation basis ordered by increasing age. This matters later. Eyert uses the normal

equations without scaling or pivoting; but he does use regularization, with the

equivalent of D given by e∗kDek = µ ‖ Aek ‖2, 1 ≤ k ≤ min(`,M), and a relatively

large µ = 10−2. With the standard scaling, ‖ Aek ‖2 = 1, this would reduce to

broad regularization, as defined above. Without scaling, this approach is a common,

though not universal, surrogate.

The computational examples in Eyert(1996) use a small (N = 5), simple

(F (x) diagonal and negative definite) and weakly nonlinear test problem, f(x) = 0,

with x̂ = 0 and x(0) = e. We see that G(x̂) = I + F (x̂), thence

G(x̂ | β) = I + βF (x̂). This problem falls within the framework used for studying the

examples discussed above, though with ρ(G(x̂ | 1)) = 2. Thus, the Picard iteration

for g, corresponding to β = 1, is not locally convergent. Nevertheless, there is an

optimal choice β̂ = 4/7 ≈ 0.571 with ρ(G(x̂ | β̂)) = 5/7 ≈ 0.714. Thus, the

Picard iteration for g(x | β̂) is locally convergent. We also have

ρ(G(x̂ | 1/2)) = 3/4 and ρ(G(x̂ | 1/5)) = 9/10 , so the Picard iterations for

g(x | 1/2) and g(x | 1/5) are locally convergent. Figures 5, 7 and 8 in Eyert (1996)

portray results for a range of M with β = 1, 1/2 and 1/5, respectively. The results

for M = 0 correspond to the Picard iteration for g(x | β) and are consistent with

the local convergence properties noted above: divergence for β = 1, convergence for

β = 1/2 and β = 1/5, with more rapid convergence for β = 1/2. For

1 ≤ M ≤ 4, the results portray convergence, somewhat erratic for β = 1, smoother

113

and more rapid for β = 1/2 and β = 1/5, the moreso for β = 1/2 and for

increasing M. For M = N, the equistationary Extrapolation Algorithm is equivalent

to the Wolfe formulation of the classical secant method: see Ortega/Rheinboldt(1970).

One would expect the results for M = 5 to be unusually and unrepresentatively

rapidly convergent, because M = N, and this proves to be the case. Unexpectedly

the results for M = 4 essentially coincide with those for M = 5 in Figures 5, 6 and

7, though not in Figure 8. The meaning of the results portrayed for M = 6 (and

essentially coinciding with those for M = 5) is unclear, since the method is

well-defined only for 0 ≤ M ≤ N. This is related to the regularization and to

matters we have chosen above not to discuss, and may safely be ignored for our

purposes. While the example is trivial when compared to the challenging problems with

1 � M � N motivating our discussion above, the dependence on Picard iteration

convergence mirrors that encountered more broadly.

Figure 6 in Eyert (1996) portrays counterpart results for the stationary

simplified direct multisecant method to those in Figure 5 for Anderson Mixing, thence

the stationary simplified inverse multisecant method. The performance of the inverse

and direct methods is very similar, with the inverse method slightly more rapidly

convergent for 1 ≤ M ≤ 3. For this small test problem, the approximate Jacobian in

the direct method was simply inverted (or the equivalent) when formed, presumably

paralleling the formation of the approximate inverse Jacobian.

Conceptual Issues

We shall now proceed to discussion of the rest of the first group of papers:

Marks/Luke (2008), Fang/Saad (2009) and Calef et al (2013). The work reported in

the first two papers is contemporaneous but disjoint. Marks/Luke report that an

anonymous referee brought a 2007 Fang/Saad technical report to their attention, which

114

they reference; but they apparently did not have access to this document. There is no

indication that Fang/Saad were aware of the Marks/Luke work, which has largely been

ignored by the Applied Mathematics community. (I have no information about its

reception in the Physics community.) Both papers share an undetected sign error,

whose genesis differs but whose consequences are equivalent. The Calef et al paper is

included in this group because it clearly exhibits the potentially adverse impact of that

sign error, which may not be readily apparent in all problems. In different ways, the

work of Eyert is relevant to all three papers.

Marks/Luke

Surprisingly, Marks/Luke appear to be unaware of the Eyert paper; had a

referee brought this reference to their attention, I believe that their paper would have

been significantly improved.

Marks/Luke consider the fixed point problem g(x) = x and the associated

root-finding problem g(x) − x = 0. Ironically, if they had considered the root-finding

problem x− g(x) = 0 instead, no sign error would have arisen. The scientific context

is formulated in terms of fixed point problems; the mathematical discussions are

essentially phrased in terms of root-finding problems, since the special properties of

fixed point problems play no role. Basically, they use the centered secant conditions to

derive stationary simplified direct and inverse multisecant methods, with M = 8 and

β(`) replaced by −σ(`) < 0. They do not connect the resulting inverse algorithm to

Anderson Mixing using the deviation basis. The sign error arises from the fact that if

the Picard iteration for g(x) is locally convergent then the Picard iteration for

(1− β(`))x+ β(`)g(x) = (1 + σ(`))x− σ(`)g(x) is not locally convergent, the moreso as

σ(`) > 0 increases.

The Marks/Luke discussion of relevant features of the motivating electronic

115

structure problems is excellent. However, I find some more mathematical Marks/Luke

arguments unpersuasive. In particular, based on the geometry of the situation, they

argue that σ(`) must be nonzero but should be small. Absent the sign error, we know

that β(`) ∼ 1 may be optimal if the Picard iteration for g is locally convergent. A

smaller positive β(`) may cope with a Picard iteration for g that is not locally

convergent by producing a Picard iteration for (1− β(`))x+ β(`)g(x) which is locally

convergent; or may just mute divergence sufficiently to enable the Extrapolation

Algorithm to generate an approximate fixed point. Whether the latter constitutes

convergence in a mathematical sense is an open question.

Fang/Saad

The Fang/Saad (2009) paper can usefully be divided into three parts:

motivating introduction (section 1), analytical developments (sections 2 and 3) and

computational considerations (sections 4 and 5), plus a final summary (section 6).

Fairly or not, I choose to attribute the first part to the second author and the remainder

to the first author, there being an apparent disjunction. Fang/Saad consider the fixed

point problem g(x) = x and the associated root-finding problem x− g(x) = 0.

The first part provides a nice survey of some of the salient issues related to

the solution of large, nonlinear fixed point problems arising in electronic structure

calculations, with which the second author has been involved. Essentially, the

root-finding problem serves as an abbreviation. This survey also draws upon

Bierlaire/Crittin (2006) where counterpart problems are encountered in transportation

systems. (Marks/Luke reference an earlier conference proceeding contribution by the

same authors.) This work uses the centered secant conditions in a radically different

fashion unsuited for our purposes so we shall not go into further detail. We note,

however, that some issues may be more (or less) salient in one problem context than in

116

another. The second and third parts focus almost exclusively on the root-finding

problem f(x) = 0, with no substantive mention of fixed point problems.

In section 2, direct and inverse secant and multisecant methods are reviewed;

and a related Nonlinear Eirola-Nevalinna-like method (which we shall not go into) and a

preliminary version of Anderson Mixing are introduced. In section 3, these methods are

extended in various ways, leading to a large collection of potential methods of different

types, families and classes. Selected members of this collection were implemented and

tested, as reported in part 3. We shall focus here only on their final version of

Anderson Mixing.

Their preliminary version of Anderson Mixing is a restatement of the

equistationary version as reformulated by Eyert in terms of the difference basis ordered

by decreasing age. This is characterized as “a procedure for solving a large nonlinear

system of equations f(x) = 0 by an iterative process.” Eyert is credited with

establishing the equivalence of the stationary version of Anderson Mixing and the

stationary simplified inverse multisecant method (in my language). Their final version

of Anderson Mixing is the quasistationary version, formally obtained by taking

M = ∞. Since the method is undefined for M > N, there is a tacit assumption

that the iteration will terminate for some ` ≤ M = N.

Eyert was quite clear that the stationary version with relatively small M

was his intended approach; and that solving the fixed point problem for g(x) was the

goal, using the root-finding problem g(x) − x = 0 just as a convenient abbreviation.

Fang/Saad use the root-finding problem x− g(x) = 0. They later mention related

invariance issues, but apparently fail to recognize that reversing the sign of the residual

will not leave the algorithm invariant unless the sign of β(`) is also reversed. In part 3,

they continue to use β(`) > 0, so they are applying Anderson Mixing to the fixed point

117

problem for (1 + β(`))x− β(`)g(x), not (1− β(`))x+ β(`)g(x). If the Picard iteration

for g(x) is locally convergent, that for (1 + β(`))x− β(`)g(x), with β(`) > 0, is not

locally convergent. This is the aforementioned sign error. Use of the quasistationary

version throughout is also problematic, especially for large `.

Calef et al

We turn to Calef et al (2013) for insight on the consequences of the sign error

in Marks/Luke (2008) and in Fang/Saad (2009) . We shall return to computational

aspects of these three papers subsequently.

I intend this discussion to be taken as emblematic of the imperative need to

think of Anderson Acceleration or Mixing as a method for fixed point problems rather

than root-finding problems. When stationary simplified inverse multisecant methods

are applied to the root-finding problem f(x) = 0, it should be fully appreciated that

this is equivalent to applying the stationary Extrapolation Algorithm to the implicit

fixed point problem for x+ f(x); due attention should be paid to the fact that

convergence properties of the Picard iteration for x+ f(x) are a relevant consideration.

Calef et al consider the fixed point problem for g(x) and the associated

root-finding problem f(x) = x− g(x) = 0. The motivating assumption (valid by

design for all three test cases) is that the Picard iteration for g(x) is convergent.

However, most of the discussion is carried on in the root-finding framework. The

scientific context is neutron transport theory for nuclear reactors.

The Nonlinear Krylov Acceleration method is described in Carlson/Miller

(1998), but has been in use since 1990. The original motivating assumption was that

f(x) had been preconditioned so that F (x) ≈ I, so G(x) = I − F (x) is small. In

my language, as used above, this is a stationary simplified inverse multisecant method,

with β(`) = 1. The sequential secant conditions are used, but are negated: backward

118

differences rather than forward differences. Therefore, the negated difference basis is

used, ordered by increasing age rather than the more conventional decreasing age.

Anderson Mixing is introduced with the deviation basis, but again negated. The fact

that the negated difference basis and the negated deviation basis are bases for the same

subspace is simply asserted. The stationary simplified direct multisecant method, with

β(`) = 1, using the negated difference basis ordered by increasing age, is associated

with Broyden. The first item on the Calef et al agenda is to demonstrate that Nonlinear

Krylov Acceleration is mathematically equivalent to Anderson Mixing with β(`) = 1.

The second item on the Calef et al agenda is discussion of an issue arising in

the Walker/Ni paper. We shall postpone consideration of this item until we review the

second group of publications. We shall also consider computational matters related to

Calef et al (2013) together with those for Marks/Luke (2008) and Fang/Saad (2009).

The third item on the Calef et al agenda and the computational results

related thereto are of immediate conceptual interest for our purposes. Recall that both

Fang/Saad and Calef et al use the root-finding problem x− g(x) = 0 to study the

fixed point problem for g(x). Calef et al review the formulation of Anderson Mixing in

Fang/Saad (2009), translated into the Calef et al notation, detect the aforementioned

sign error, and note that Fang/Saad use a positive β(`) rather than a negative β(`). In

a footnote, they indicated that they believe that Fang/Saad implicitly modified the

formula given for x(`+1) to correct the sign error. I am inclined to believe otherwise.

Calef et al heroically set out to illustrate what happens when a β(`) of the

“wrong” sign as chosen by running all of their test cases using their original Nonlinear

Krylov Acceleration method (equivalent to Anderson Mixing with β(`) = 1) and a

modified version (equivalent to Anderson Mixing with β(`) = −1). I say“heroically”

because their test cases are computationally challenging: M = 0, 5, 10, 20 and 30

119

for N = 1.2× 106, 8.0× 106, and 6.5× 108. The contrast to the Eyert test case is

stark, but one can learn from both. The Picard iteration for g(x), corresponding to

β(`) = 1, is locally convergent at the fixed point x̂. The Picard iteration for

2x− g(x), corresponding to β(`) = −1, is therefore (as we have seen above) not

locally convergent at x̂; in fact, all eigenvalues of the associated Jacobian have

modulus greater than one and positive real parts.

Based on previous experience, for the β(`) = 1 case one would expect to see

smooth, steady reduction in the residual norm, at a rate increasing with M ; with a

significant rate increase for smaller M, but “plateauing” with a slower increase for

larger M. Though the costs per iteration are dominated by that of evaluating g(x(`)),

thence f(x(`)), the acceleration has costs that increase with M, for a given N, and

there may be a best choice for M. More precisely, some acceleration costs, for a given

N, will increase with M2 or M3, with N as an overall multiplicative factor. The

results reported are generally consistent with these expectations.

For the β(`) = −1 case, we have a competition between the Picard iteration

pushing x(`) and y(`) apart, and the acceleration process pulling û(`) and v̂(`)

together. I would anticipate erratic oscillatory behavior of the residual norm as the

iteration proceeds, with an amplitude roughly proportional to a local moving average of

the residual norm values, and decreasing as M increases. I note that on the figures,

the residual norms are plotted only for every second, or in some cases every sixth,

iteration; this might mute signs of oscillation. The Eyert results in Figure 5, though

primitive, may be indicative. See also Marks/Luke, Figure 2(e) and Fang/Saad, Figure

6. The Calef et al figures suggest that a standoff may arise, with the rate of decrease of

the residual norms becoming smaller, so the residuals tend to level off near a value

which is smaller for larger M. In the most challenging problem, convergence is reported

120

for no value of M considered; in the less challenging problems, convergence is reported

after many iterations for some of the larger values of M. I suspect that this is a

computational convergence in the sense that the residual norm is decreased enough to

pass the termination test, yielding an approximate fixed point; but does not represent

mathematical convergence, except by accident. The upshot is that the convergence

properties of the Picard iteration for the explicit or implicit fixed point problem involved

matter, at least for nonlinear problems. However, even if this Picard iteration is not

convergent, using a small but nonzero β(`), of either sign, might allow the acceleration

process to produce an approximate fixed point, using a reasonable value of M.

The Broyden method results were uniformly poorer than the Anderson

Mixing with β(`) = 1 results, though in some cases comparable for larger M. The

behavior of the residual norms was erratic and oscillatory, especially for smaller M,

and often diverged. This is consistent with other observations that inverse multisecant

methods are preferable to direct multisecant methods, though direct secant methods

were preferred to inverse secant methods originally.

Computational Procedures

We turn now to discussion of computational procedures and results for

Marks/Luke (2008), Fang/Saad (2009) and Calef et al (2013). All three consider both

direct and inverse multisecant methods. We shall focus on the inverse methods and on

ideas worth noting in the light of our earlier discussion, and not on details best studied

in the papers themselves. We shall begin with Calef et al, because we have already

discussed most of the computational results for their conceptual value, and because our

discussion of computational procedures is brief.

Calef et al

In addition to the methods noted above, Calef et al also consider the

121

well-known Jacobian-Free Newton Krylov method, which we shall not go into here. In

many contexts, this is regarded as the method to beat. In the Calef et al context, it is

beaten by Nonlinear Krylov Acceleration (that is, Anderson Mixing with β(`) = 1) .

Calef et al use the normal equations, Ã∗Ãc̃ = Ã∗b̃, with the counterpart of

the standard scaling strategy, ‖ Ãek ‖2 = 1, solved by Cholesky factorization without

pivoting: Ã∗Ã = C∗ C, c̃ = C−1(C∗)−1d, where d = Ã∗b̃. Note that it is tacitly

assumed that Aek 6= 0, for 1 ≤ k ≤ min(`,M). Recall that they are using the

negated difference basis ordered by increasing age. The description of their approach to

coping with potential ill-conditioning (near-linear-dependence) is concise and cryptic.

To explain and discuss it, I shall present it as I would implement it, which may not be

the way they did. Recall that if Ã = Q̂R̂ is the standard QR factorization of a

maximal rank Ã then C = R̂. We identify e∗1Ce1 = 1. For 1 < k ≤ min(`,M),

we identify e∗kCek as the magnitude of the sine of the angle between Ãek and

spn
{
Ãe1, Ãe2, · · · , Ãek−1

}
= spn

{
Q̂e1, Q̂e2, · · · , Q̂ek−1

}
. If e∗kCek falls below a

specified small positive threshold, then Ãek is declared to be sufficiently nearly linearly

dependent on Ãej, 1 ≤ j ≤ k − 1, to be disregarded or deleted. The question is

how to do so conveniently, recognizing that several such k might arise as the process

proceeds. Note that Ãe1 is always included.

One possibility is to modify Ã∗Ã and Ã∗b̃ by removing Ã∗Ãek, e
∗
kÃ
∗Ã

and e∗kÃ
∗b̃, and continuing with the smaller problem with e∗kc̃ removed. This would

also require keeping track of all k for which this situation arose to interpret the results.

I prefer to proceed as follows: Modify Ã∗Ã and Ã∗b by replacing Ã∗Ãek by ek,

replacing e∗kÃ
∗Ã by e∗k, and replacing e∗kÃ

∗b by 0. Clearly, the solution of the

modified linear equation will have e∗kc̃ = 0. Correspondingly, we will have a modified

C and d with Cek = ek, e∗kC = e∗k and e∗kd = 0. We continue to work with

122

matrices and vectors of the same size without needing to keep track of all k, or move

data around in computer storage. The result is to find a basic solution of the

underlying least squares problem, determined by a particular strategy to avoid

near-linear-dependence (ill-conditioning). One should probably use the column-oriented

algorithm that forms C column-by-column, essentially processing the leading principal

submatrices in order. There is no indication whether this approach actually played a

role in connection with the computational results presented.

If c̃ is a basic solution, the elements (or variables) which are necessarily zero

are termed nonbasic; and those which are ordinarily expected to be nonzero, but which

need not necessarily be nonzero, are termed basic. The number of basic variables is the

effective rank. The basic solution generated by the foregoing and that generated using

the standard pivoting strategy may have different basic variables, thence nonbasic

variables, and even different numbers thereof. Because the approach above is somewhat

more restrictive about declaring variables nonbasic than the pivoting approach, one

would expect the number of basic variables to be at least as large. On the other hand,

the approach above, for the same reason, will tend to privilege the choice of variables

corresponding to older data as nonbasic more than the pivoting approach. One of the

putative advantages of the difference basis (or its negation) in comparison with the

deviation basis is that the differences do not need to be recomputed from one iteration

to the next so long as they remain part of the basis. However, the difference basis may

be more nearly linear dependent than the deviation basis, especially in the later stages

of monotonic convergence. Observe that if a variable is declared nonbasic in the

approach above, it will be declared nonbasic in subsequent iterations until it ages out of

further consideration.

Recall that, except for the youngest and oldest ones, declaring the coefficient

123

associated with a difference basis vector nonbasic does not correspond to disregarding a

particular residual, as would be the case for the deviation basis. For the negated

difference basis ordered by increasing age, we have before scaling

Aek = r(`−k) − r(`−k+1)

and

Aek+1 = r(`−k−1) − r(`−k) ,

for 1 < k < min(`,M). Observe that

Aek + Aek+1 = r(`−k−1) − r(`−k+1) .

If the scale factors ‖ Aek ‖2 and ‖ Aek+1 ‖2 by which Aek and Aek+1 are divided to

obtain Ãek and Ãek+1 are available, a linear combination of the latter pair will

produce the sum of the former pair. If, in addition to modifying Ã∗Ãek, e
∗
kÃ
∗Ã and

e∗kÃ
∗b̃, we also relatively straightforwardly modify Ã∗Ãek+1, e

∗
k+1Ã

∗Ã and e∗k+1Ã
∗b̃,

we could alter the system to correspond to deletion of r(`−k).

Marks/Luke

We turn now to computational aspects of Marks/Luke (2008). They present

results for a version of the direct and inverse secant methods, and for the stationary

simplified direct and inverse multisecant methods, with M = 8. For the multisecant

methods, they are using the deviation basis; during the quasistationary phase, as a

matter of convenience, this is presumably ordered by increasing or decreasing age.

However, during the equistationary phase, data is discarded not based on age but on

proximity to the most recent iterant, discarding the most distant. They use the normal

equations without pivoting, employing broad regularization with the equivalent of

µ = 10−2, invoking several motivations. They begin by incorporating the standard

124

scaling strategy, observing that this is needed for sensible use of broad regularization

(and of the standard pivoting strategy had they employed it). However, they go on

thereafter to dynamically choose a W (`) based on a measure of the relative size of the

norms of two designated subvectors of the residuals associated with different modes of

discretization. There appear to be both scaling and volatility issues involved. In our

discussion above, a static W was introduced at the outset, before scaling. This reflects

the different views of the role of W or W (`) which are outlined previously.

Marks/Luke also introduce an adaptive approach to choosing

σ(`) = −β(`) > 0 : the sign error. Recall that they have conceptual reasons for

believing that σ(`) ought to be small (which are independent of the sign error). They

set upper limits on σ(`) based on geometric considerations, and in absolute terms

(∼ 0.1− 0.2). Adaptive adjustments subject to these limits are multiplicative and

based on ‖ r(`−1) ‖2 / ‖ r(`) ‖2 ; this is more aggressive than the arithmetic adaptive

adjustments of β(`) described above. Whether their satisfactory use of small σ(`) is

due to the sign error or to the nature of their fixed point problems is unclear. We know

that if g has a locally convergent Picard iteration then β(`) ∼ 1 often makes good

sense, and that β(`) too small does not.

Marks/Luke present results for five examples of increasing complexity and

difficulty. In the simplest example, all four methods succeed with the direct methods

performing better than the inverse methods, though not by much. In the three

intermediate examples, the multisecant methods dominate the secant methods, and the

inverse methods dominate the direct methods. For the most challenging example, only

the inverse multisecant method succeeds. Especially in this last case where more

iterations are involved, the anticipated erratic oscillatory behavior of the residual norms

is in evidence; but M = 8 suffices to produce convergence with small σ(`), for the

125

inverse multisecant method: that is, Anderson Mixing with small negative β(`).

Digression

At this point, I shall digress briefly to highlight certain issues lying behind a

cryptic remark of Marks/Luke which has wider import. Many mathematical models of

scientific problems involve constraints, either explicitly or implicitly. By implicitly, I

mean that the solution of the model problem will automatically satisfy the constraint

because the constraint was incorporated in formulating the model. By explicitly, I

mean that satisfying the constraint is part of the task of finding the solution of the

model problem. Typical examples of constraints are symmetries and conservation laws

(another form of symmetry). Symmetries are usually built into the model and thence

implicit. Conservation laws require that functionals of the state variable(s)

characterizing the solution must have a specified value; commonly, there are families of

conservation law constraints parameterized by the assigned value. Conservation law

constraints may be explicit or implicit with regard to the model problem and

subproblems thereof; but may be explicit (implicit) for the model problem and implicit

(explicit) for the subproblem. For our purposes, we focus on fixed point subproblems.

The state variable of the Marks/Luke problem is an electronic charge density.

The integral of the charge density over the domain of interest is the total charge; in

units of the electron charge, the total charge must be equal to the number of electrons

involved in the problem, so this constraint is explicitly part of the model problem.

Within the algorithm which generates the value of g(x), for any given x, a univariant

root-finding problem is solved for a parameter in the putative charge density g(x)

which arranges that the total charge has the specified value. Thus, the conservation law

constraint is implicit with respect to the fixed point subproblem, and must be satisfied

by any fixed point. I shall call g(x) strongly preservative in the sense that g(x)

126

satisfies the constraint whether or not x does. I would term g(x) weakly preservative

if g(x) satisfies the same conservation law constraint as is satisfied by x, which might

correspond to a parameter different from the assigned value. Observe that if the initial

iterant x(0) satisfies the correct conservation law constraint, then all of the Picard

iterants generated by x(`+1) = g(x(`)) , for ` = 0, 1, · · · , will continue to do so,

provided g(x) is either strongly or weakly preservative.

Our interest here focusses on the behavior of the accelerated iteration

generated by applying the Extrapolation Algorithm. In the Marks/Luke problem, the

conservation of total charge involves a linear functional of the charge density, so the

constraint equation is affine. If all of the y(`−k) = g(x(`−k)) , 0 ≤ k ≤ m(`) satisfy

the constraint equation, then v̂(`) as an affine combination thereof will do likewise. If

all of the x(`−k) , 0 ≤ k ≤ m(`) satisfy the constraint equation, then û(`) as an

affine combination thereof will do likewise. Then x(`+1) as an affine combination of

û(`) and v̂(`) for β(`) 6= 1, and equal to v̂(`) for β(`) = 1, will also do likewise.

This is what underlies the Marks/Luke passing remark that total charge is conserved.

The point of going into this is that conservation laws in other problem

contexts often involve quadratic or more general nonlinear functionals, which will not

remain valid when affine combinations of iterants are evaluated. Ad hoc devices to

restore conservation may be appropriate, even if g is strongly preservative, and should

be seriously considered if g(x) is weakly preservative, or neither.

The foregoing has been presented in the framework of the continuous model

problem, a discretized conservation law constraint may be explicit or implicit within the

discretized problem, and similar considerations apply. However, there will be additional

numerical errors when the discretized problem is solved computationally.

127

Fang/Saad

We turn now to computational considerations in Part 3 of Fang/Saad (2009):

Sections 4 and 5. Section 4 is problematic in a number of respects, and it is puzzling

how this passed muster with referees for Numerical Linear Algebra with Applications.

We focus primarily on aspects pertinent to their version of Anderson Mixing. They say

that “regularized Householder QR factorization with complete pivoting” was used.

They are using the AP = Q̂R̂ factorization, derived from the AP = QR

decomposition generated using Householder matrices. (Note that they follow the

common custom of using the terms “factorization” and “decomposition” synonymously

and ambiguously, whereas I do not.) I interpret “complete pivoting”, later

recharacterized as column pivoting, to mean the standard pivoting strategy, without

scaling. They do not mean “regularization” in the senses used above; rather, they mean

that if all elements of R̂22 have magnitude smaller than the unit roundoff error times

| e∗1R̂e1 | they are treated as indistinguishable from zero to determine an effective rank.

Finally, recall three features of their characterization of Anderson Mixing

discussed above: The first feature is the sign error associated with using β(`) = β > 0

together with residuals based on the root-finding problem x− g(x) = 0, or the

equivalent. The second feature is the use of the difference basis ordered by decreasing

age, in forming A. The third feature is identifying Anderson Mixing with the

quasistationary Extrapolation Algorithm by effectively taking M = N.

In section 4, the anticipation of encountering near linear dependence or

ill-conditioning in Anderson Mixing, detected as an effective rank less than `, leads to

a proposed response which we shall examine before discussing these issues more broadly.

The algorithm proposed calculates the basic least squares solution associated with the

scaling and pivoting strategy and choice of the nonmaximal effective rank, but calls it

128

the minimal solution of the least squares problem. Moreover, the subsequent discussion

uses the language of Moore-Penrose pseudoinverses, which would be appropriate only for

the minimal solution. We argued above that the basic and minimal least squares

solutions associated with a given scaling and pivoting strategy and choice of

nonmaximal effective rank coincided only in one unlikely circumstance. As we have

seen previously, the basic least squares solution may, for our purposes, be as interesting

as the minimal least squares solution, or even moreso. Extending this approach to

singular or nearly singular linear equations, as in direct rather than inverse multisecant

methods, is much less sensible.

We turn now to the broader picture, seeking lessons relevant to a wider range

of problems. Recall that for nonlinear, especially strongly nonlinear, problems, we wish

to privilege younger over older iterant data because information pertinent locally near

the fixed point is more relevant and representative. This may be less important for

affine fixed point problems. Allowing for oscillations, if the iteration is converging, we

typically expect the columns of A corresponding to younger iterant data to have

smaller norms than those corresponding to older iterant data; the moreso for the

difference rather than the deviation basis, and for rapid convergence. When A has

more columns, we expect more likelihood of encountering near linear dependence; the

moreso in the later stages of a convergent iteration. The stringent test for declaring

nonmaximal effective rank leaves room for near linear dependence to emerge.

Mathematically, if A has maximal rank, then scaling does not affect the

unique least squares solution ĉ of Ac = b. If A is well-conditioned, so the solution

is well-determined, then scaling and pivoting affect the numerical solution only

marginally. If A has nearly linearly dependent columns, then scaling and pivoting

affect the ill-determined approximate numerical solution selected. Pivoting without

129

scaling and with columns ordered by decreasing age and roughly by decreasing norm

will tend to privilege older iterant data; pivoting with scaling and with columns ordered

by increasing age will tend to privilege younger iterant data. This is of maximal impact

for a basic least squares solution when iterant data is disregarded; for a minimal least

squares solution, all iterant data would contribute, but older data may do so excessively.

I believe that using a moderately small M makes more sense, and would

avoid some of the issues related to near linear dependence. So far as I am aware, the

experience of others is consistent with this opinion.

Fang/Saad include a provision to restart the iteration if the new residual

norm is substantially larger than the current one. This amounts to discarding all

iterant data except the current (x(`), y(`)) pair, or rather the current (x(`), r(`)) pair

in their formulation. However, moderate increases in the residual norm are tolerated.

Restarting was invoked when ‖ r(`) ‖2 < η ‖ r(`+1) ‖2 , with η ∼ 0.1− 0.3. They

report that the choice of η often played a key role in convergence, especially for more

challenging problems (for which η was increased). However, in the results presented,

there is no record of the number or location of instances of restarting, which makes it

hard to interpret the results in terms of their nominal version of Anderson Mixing. For

frequent restarting, nominal and restarted versions are quite different.

Brief remarks on Section 6 will suffice for our purposes. There are three pairs

of examples. The first pair derive from the discretization by finite differences of a

variant of a familiar nonlinear partial differential equation model problem on uniform

grids on the unit square with homogeneous Dirichlet boundary conditions. This is

treated simply as a root-finding problem, so the implicit fixed point problem was

involved, with the number of iterations, L, needed to achieve a sufficiently small

residual norm tabulated for a range of methods considered in Sections 2 and 3. As

130

usual, we focus on their version of Anderson Mixing. The two examples involved

M = N = 400 and M = N = 10000 and yielded L = 65 and L = 273,

which therefore nominally involved rather large least squares problems with ample room

for near linear dependence. Other methods involved comparable numbers of iterations,

but Anderson Mixing was equal to the best of these. More crucially from my

perspective, they found it necessary to take β = 5× 10−5 for the smaller example and

β = 2× 10−5 for the larger example. I do not find results for such small values of β

plausible, and do not believe that much insight can be gained from these examples.

The second pair of examples involved RSDFT, a MATLAB code package

implementing a density function theory approach to atomic electronic structure

calculations. The two examples involved fixed point problems with

M = N = 157464 and M = N = 79507, with β = 1.0 and L ∼ 40 for the

larger example and with β = 0.5 and L ∼ 25 for the smaller example. Residual

norms were plotted against the number of iterations for selected methods. In these

examples, but not the other examples, results for “simple mixing” with β = 0.5 for

the larger and β = 0.3 for the smaller were also plotted and converged smoothly but

somewhat more slowly than most of the other methods. Anderson Mixing converged

with some oscillations at a rate comparable to simple mixing : more slowly for the

larger example and more rapidly for the smaller example.

The sign error hypothesis would lead us to expect that simple mixing would

not converge. Experience of multiple authors would lead us to expect Anderson Mixing

to converge significantly more rapidly than simple mixing. We face a quandry that may

not be resolvable given the limited information available. Noting the use of different

values of β for simple mixing and for the other methods, I wonder whether RSDFT

provided a simple mixing option which was availed of for convenience; if so, presumably

131

it would not contain the sign error, which is clearly contained in the simple mixing

method as stated by Fang/Saad.

The third pair of examples involved PARSEC, a sophisticated Fortran 90

code package for electronic structure calculations in whose development over a decade

the second author has participated. The two examples involved fixed point problems

with M = N = 118238 and M = N = 220490, with β = 0.1 and L = 23

for the smaller example and with β = 0.1 and L = 60 for the larger example.

Residual norms were plotted against the number of iterations for selected methods. All

methods exhibited erratic oscillation, in some cases of large amplitude. Anderson

Mixing was clearly the most effective method.

Walker/Ni

We shall now proceed to discussion of the second group of publications:

Walker/Ni (2011), Ni (2009) and Toth/Kelley (2015). We shall also return briefly to

Calef et al (2013). The Walker/Ni (2011) paper is seminal and influential; it introduced

the Anderson Acceleration terminology, and contains interesting theoretical results and

impressive examples. As such it merits close attention. The original Ni (2009) thesis

has much less to recommend it. The Toth/Kelley (2015) paper builds upon Walker/Ni

(2011), primarily theoretically. For reasons that will emerge, detailed discussion of

some implementation issues related to Walker/Ni (2011) will be postponed until the

next section. There is now a burgeoning literature illustrating that Anderson

Acceleration, and variants and extensions thereof, can be productively applied in a wide

range of computational science and engineering contexts, but we shall not pursue these

matters here.

Walker/Ni are clear that Anderson Acceleration is intended as a means of

increasing the rate of convergence of the Picard iteration for the fixed point problem

132

g(x) = x. They use the associated root-finding problem g(x)− x = 0 to introduce a

residual, as a convenient abbreviation. In essence, they are using the stationary

Extrapolation Algorithm, with W = I and β(`) = 1.

Strictly speaking, the Walker/Ni Anderson Acceleration algorithm has a

minor defect; it tacitly assumes that there will always be unique optimal affine

combination coefficients, which need not be the case. While there will always be a

unique vector in the affine subspace closest to zero, there may be nonunique affine

combination coefficients characterizing that minimizing vector, which would result in the

mathematical algorithm as stated not being well-defined. We know that a necessary

and sufficient condition that there be unique affine combination coefficients is that the

r(`−k), 0 ≤ k ≤ min(`,M), be affine independent; and that a sufficient, but not a

necessary, condition is that r(`−k), 0 ≤ k ≤ min(`,M), be linearly independent.

This will impact theoretical considerations later. As an interim measure, I shall adopt

the understanding that should the mathematical algorithm become ill-defined at some

stage, the process will terminate declaring failure.

This glitch will be resolved in the course of translating a conceptual

mathematical algorithm into a numerically robust implementation thereof. Indeed,

immediately after stating their Anderson Acceleration algorithm, Walker/Ni indicate

that, in practice, they will monitor the condition number of the matrix F (`) with

columns r(`−k), 0 ≤ k ≤ m(`), and reduce m(`) accordingly, but then postpone

further discussion. In the end, they actually consider a somewhat different approach.

These matters will be sorted out subsequently.

A central contribution of the Ni (2009) thesis, reworked and extended in

Walker/Ni (2011), is establishing a connection between Anderson Acceleration applied

to the affine fixed point problem with g(x) = Gx+ h and GMRES (Generalized

133

Minimal Residual Method) applied, with the same initial iterant, to the linear equation

(I −G)x = h. Many classical iterative procedures for solving suitable linear equations

Ax = b correspond to the Picard iteration for an associated affine fixed point problem.

If I −G is nonsingular, g has a unique fixed point x̂ = (I −G)−1h. If G is

nonsingular, g is invertible: if y = Gx+ h = g(x), then

x = G−1y −G−1h = g−1(y). We have G(x) = G. For any matrix norm induced by

a vector norm (or simply compatible with some vector norm), a sufficient, but not a

necessary, condition for convergence of the Picard iteration for g, for any x(0), is that

‖ G ‖ < 1 for the chosen matrix norm.

It is essential to the aformentioned connection between Anderson

Acceleration and GMRES that we consider the quasistationary form of Anderson

Acceleration by taking M = N. There are also counterparts in the GMRES literature

to the stationary form of Anderson Acceleration.

We shall not delve into the details of the formulation, arguments and results

presented in Section 2 of Walker/Ni (2011). We shall simply sketch the nature of the

aformentioned connection. In essence, what emerges is that the
{
û(`)
}

sequence can

be identified with the sequence of GMRES iterants. Because g is affine, we have

v̂(`) = g(û(`)). Consequently, if the
{
û(`)
}

sequence converges, the
{
v̂(`)
}

sequence

must also converge, both of them to x̂. Because β(`) = 1, we have

x(`+1) = v̂(`) = g(û(`)); thus, the Anderson Acceleration iterant x(`+1) and the

GMRES iterant û(`) are different, but related. If ‖ G ‖ < 1, we expect the x(`+1)

iterant to have smaller error than the û(`) iterant. Preconditioning, which plays a key

role in the efficacy of GMRES, also enhances the convergence of the Picard iteration,

thence Anderson Acceleration.

There is a known degeneracy possible in GMRES which has a counterpart in

134

the quasistationary form of Anderson Acceleration. This corresponds to the situation in

which the vector closest to zero from the affine span of r(`−k), k = 1, 2, · · · , `, is the

same as that from the affine span of r(`−k), k = 0, 1, · · · , `, despite the increase in

dimension if both sets are affine independent so the method is well-defined. This results

in û(`) = û(`−1), thence v̂(`) = v̂(`−1), and consequently x(`+1) = x(`), thence

y(`+1) = y(`). The upshot is that we will encounter affine dependence, so the Anderson

Acceleration process will not be well-defined when seeking x(`+2), and by our interim

assumption above will terminate declaring failure. GMRES may be able to recover.

This degenerate situation is mathematically possible, but extremely improbable for

` � N. This observation adds to the already ample incentives to use a stationary or

nonstationary form of Anderson Acceleration. The nonstationary version of the

Extrapolation Algorithm detailed above should cope satisfactorily.

Section 3 of Walker/Ni (2011) reviews the correspondence between Anderson

Acceleration and the stationary simplified inverse multisecant method, following

Fang/Saad (2009) but without the sign error because Walker/Ni use β(`) = 1 and

g(x)− x = 0. It also reviews the stationary simplified direct multisecant method and

the corresponding algorithm that is the counterpart of Anderson Acceleration. It then

reprises Section 2 establishing the counterpart connections between applying the latter

algorithm to the affine fixed point problem with g(x) = Gx+ h, and applying the

Arnoldi method rather than GMRES to the linear equation (I −G)x = h, with the

same initial iterant.

Recall that during our examination of Calef et al (2013), discussion of one

topic was postponed until conceptual aspects of Walker/Ni (2011) had been addressed.

Since Calef et al establish the mathematical equivalence of Nonlinear Krylov

Acceleration and Anderson Acceleration with β(`) = 1, as studied by Walker/Ni, they

135

can rephrase Walker/Ni results related to GMRES to apply to GMRES and Nonlinear

Krylov Acceleration. Calef et al also discuss the degenerate situation described above;

and they introduce a systematic perturbation of their method to surmount this rare

obstacle. Their approach to solving the least squares problem would fail, and

presumably terminate, should the situation described above actually arise, because

iterant data is processed strictly in order of increasing age, so Ae1 = 0.

I regard undue attention to this unlikely and simple situation as misplaced.

This is just one of many ways one can encounter affine dependence, or near affine

dependence. Coping with the larger issue seems to me more to the point. I grant,

however, that for theoretical purposes, one wants to be able to make general statements,

as general as possible while still being correct.

We turn now to computational considerations related to Walker/Ni (2011)

and Ni (2009). Two preliminary points regarding references should be noted. For

obvious reasons, Walker/Ni (2011) and Ni (2009) reference the third edition of

Golub/Van Loan (2013) published in 1996, whereas I am referencing the definitive

fourth edition. It does not appear that this raises any serious issues in what follows.

Ni (2009) references Björck (1996), but appears to have focussed only on one chapter,

and to have failed to appreciate the relevance and significance of material in other

chapters. Walker/Ni (2011) does not reference Björck (1996). This has potential

consequences for others seeking to build upon Walker/Ni (2011).

The Ni (2009) thesis introduces Anderson Acceleration as a root-finding

method for f(x) = 0 by quoting the formulation of Anderson Mixing in Fang/Saad

(2009). Recall that this is the Eyert (1996) reformulation replacing the deviation basis

ordered by increasing age by the difference basis ordered by decreasing age. The

motivating context for the thesis is self-consistent field electronic structure calculations,

136

so attention is focussed on the fixed point problem for g(x), with f(x) = g(x)− x,

or g(x) = x+ f(x). The choices β(`) = β > 0, and eventually β = 1, are

introduced, so the sign error in Fang/Saad (2009) is avoided. In the end, the Walker/Ni

(2011) paper adopts this formulation for computational purposes. The Ni (2009) thesis

also explores other options. Recall that Fang/Saad use an AP = QR decomposition

constructed employing Householder matrices and the standard pivoting strategy. Ni

(explicitly) and Walker/Ni (apparently) use an A = Q̂R̂ factorization constructed

without pivoting and employing the Gram-Schmidt process: presumably the modified

Gram-Schmidt process.

We shall digress briefly before pursuing these matters further.

In formulating the Extrapolation Algorithm above, for m ≤ min(`,M), we

first introduced the iterant data x(`−k) and y(`−k) = g(x(`−k)), for 0 ≤ k ≤ m;

and, as a convenient abbreviation, the residuals r(`−k) = y(`−k) − x(`−k), for

0 ≤ k ≤ m. We introduced the affine combinations u(`) =
∑m

k=0 θ
(`)
k x(`−k) and

v(`) =
∑m

k=0 θ
(`)
k y(`−k), with

∑m
k=0 θ

(`)
k = 1. We now take W = I and seek

optimal affine combination coefficients θ̂
(`)
k , with

∑m
k=0 θ̂

(`)
k = 1, minimizing

‖ v(`) − u(`) ‖2 = ‖
∑m

k=0 θ
(`)
k (y(`−k) − x(`−k)) ‖2; and the associated optimal

û(`) =
∑m

k=0 θ̂
(`)
k x(`−k) and v̂(`) =

∑m
k=0 θ̂

(`)
k y(`−k). We can rephrase this as the task

of minimizing ‖
∑m

k=0 θ
(`)
k r(`−k) ‖22 subject to the equality constraint

∑m
k=0 θ

(`)
k = 1.

Define the N × (m+ 1) matrix F (`) by F (`)ek = r(`−k), for

0 ≤ k ≤ m, and the (m+ 1)-vector θ(`) by e∗kθ
(`) = θ

(`)
k , for 0 ≤ k ≤ m, and

similarly θ̂(`). Our task then is to minimize ‖ F (`)θ(`) ‖22 subject to e∗θ(`) = 1.

Introducing a Lagrange multiplier λ(`) and the Lagrangian

φ(θ(`), λ(`)) =
1

2
‖ F (`)θ(`) ‖22 − λ(`)(e∗θ(`) − 1) ,

137

we obtain the stationarity conditions

∂φ

∂θ(`)
=
[
(F (`))∗F (`)

]
θ̂(`) − λ̂(`)e = 0

and

∂φ

∂λ(`)
= −e∗θ̂(`) + 1 = 0 .

If we now assume that F (`) has maximal rank, so
{
r(`−k)

}m
k=0

is linearly independent,

we know that
[
(F (`))∗F (`)

]
is positive definite, thence nonsingular, and that[

(F (`))∗F (`)
]−1

is also positive definite. We obtain from the first stationarity condition

θ̂(`) =
[
(F (`))∗F (`)

]−1
(λ̂(`)e) ,

and from the second stationarity condition

1 = e∗θ̂(`) = λ̂(`)
{
e∗
[
(F (`))∗F (`)

]−1
e
}
,

thence

λ̂(`) =
{
e∗
[
(F (`))∗F (`)

]−1
e
}−1

and

θ̂(`) =
[
(F (`))∗F (`)

]−1
e /

{
e∗
[
(F (`))∗F (`)

]−1
e
}
.

We see that if F (`) has maximal rank then there is a unique θ̂(`) given by the

foregoing. Methods employed in various areas of physics and chemistry traditionally

use this assumption and formulation to find θ̂(`).

As we have discussed previously, there will always be a unique vector

v̂(`) − û(`) in the affine span of
{
r(`−k)

}m
k=0

which is closest to 0, in the sense of

minimizing ‖ v(`) − u(`) ‖2 , or making v(`) closest to u(`). A necessary and sufficient

condition that there be a unique associated θ̂(`) is that
{
r(`−k)

}m
k=0

is affinely

independent; and if
{
r(`−k)

}m
k=0

is affinely dependent then there will be nonunique

138

associated θ̂(`). Moreover, linear independence of
{
r(`−k)

}m
k=0

, or equivalently F (`)

having maximal rank, is a sufficient, but not a necessary, condition for
{
r(`−k)

}m
k=0

to

be affinely independent. Furthermore, linear dependence of
{
r(`−k)

}
, or equivalently

F (`) being rank deficient, is a necessary, but not a sufficient, condition for 0 to lie in

the affine span of
{
r(`−k)

}m
k=0

, so v̂(`) = û(`). We anticipate that if the acceleration

process is successful then
{
r(`−k)

}m
k=0

will tend to become nearly linearly dependent, or

equivalently F (`) will tend to become nearly rank deficient (ill-conditioned), as `

increases.

If we had a QR factorization F (`) = Q̂R̂, with Q̂ orthonormal, so

Q̂∗Q̂ = I, and R̂ regularly upper triangular, then we could replace
[
(F (`))∗F (`)

]
by

R̂∗R̂, thence
[
(F (`))∗F (`)

]−1
by R̂−1(R̂∗)−1, thereby simplifying the calculation of

θ̂(`). Recall also, that we showed above that κ2(F
(`)) = κ2(R̂) = κ2(R̂

∗), and that

κ2(
[
(F (`))∗F (`)

]
) = κ2(F

(`))2. If the factorization is calculated using Householder

matrices, Q̂ will be nearly orthonormal, and these results are approximately valid. If

the factorization is calculated using the modified Gram-Schmidt process, or other

algorithms which may produce less nearly orthonormal Q̂, then the quality of the

approximations will deteriorate.

In defining F (`) above, I have followed my usual custom of ordering the

residual columns by increasing age. Likewise, when defining 4F (`) in the inverse

multisecant method context, I ordered the deviation or difference basis vector columns

by increasing age. In both cases, I regard this choice to be the computationally

appropriate one, for my purposes. However, I noted that the usual custom when using

the difference basis in this multisecant context is to order the columns by decreasing

age, as in Fang/Saad (2009) thence Walker/Ni (2011). With this revised

understanding, there is no harm in my continuing to use the 4F (`) notation hereafter,

139

though the reordering requires reparameterization and has computational consequences.

Likewise, the counterpart to F (`) in Ni (2009), there called D , and in Walker/Ni

(2011), there called Fk, order the residual columns by decreasing age. Again, with this

revised understanding, there is likewise no harm in my continuing to use the F (`)

notation hereafter.

Ni considers the stationarity conditions derived above and the simplified

version thereof under the assumption that F (`) has maximal rank. In this context, the

F (`) = Q̂R̂ factorization plays a role. Ni also considers the Fang/Saad formulation,

and in this context the 4F (`) = Q̂R̂ factorization plays a role. Finally, Ni devised an

original method based on ideas in Björck (1996), involving a different Q̂R̂

factorization; but we shall not go into detail. The four were compared based on the

average of the condition numbers of the linear equations to be solved for a suite of test

cases. The Walker/Ni choice of the Fang/Saad formulation was based on this

comparison, though the Ni method was not far behind. As one might expect, the

methods using F (`) were not competitive by this criterion; they are comparable to

using the normal equations to solve the least squares problem associated with 4F (`).

It appears that the discussion of F (`) in Walker/Ni (2011) is an artifact from the early

parts of the Ni (2009) thesis; and can safely be ignored.

The important point for further consideration here is the task of updating the

Q̂R̂ factorization when moving from 4F (`−1) to 4F (`), and then arranging that

4F (`) have an acceptably small condition number to be regarded as numerically of

maximal rank. Similar considerations are involved in moving from F (`−1) to F (`),

and Ni introduces them in this context. There are four sets of issues to be dealt with.

We focus on 4F (`−1) and 4F (`).

The first, and simplest, issue is updating the Q̂R̂ factorization of 4F (`−1)

140

to that for 4F (`) when a new last column is adjoined. When using the (modified)

Gram-Schmidt process this is straightforward as the next step of the column-oriented

version of the process. It would be equally easy to update the QR decomposition by

applying the next Householder matrix for this purpose. Note that it would be even

easier to obtain the Q̂R̂ factorization of 4F (`−1) from that of 4F (`) : simply delete

the last columns of Q̂ and R̂, the new ones created when moving from 4F (`−1) to

4F (`). For the QR decomposition an analogous approach suffices.

The second issue arises when ` > M. In order to keep m ≤ M, we must

delete the first column of 4F (`−1), update the Q̂R̂ factorization of this intermediate

matrix, and then adjoin a new last column, updating the factorization to that of 4F (`).

Both Ni (2009) and Walker/Ni (2011) refer the reader to Golub/Van Loan (2013) —

actually the 1996 edition — for details on how to update the Q̂R̂ factorization of the

intermediate matrix. I believe that the reader ought to have been referred to Björck

(1996) instead, and that this is significant.

Golub/Van Loan (2013) is a magnificent classic, but it does have an agenda.

They tend to focus on the QR decomposition rather than the Q̂R̂ factorization, and on

the use of Householder and Givens matrices. Indeed, they explain how to update a QR

decomposition of the intermediate matrix, obtained using Householder matrices, by

astute use of Givens matrices, with the resulting Q encoded as the original product of

Householder matrices and the new product of Givens matrices. This approach is ideal

for a situation in which one has solved a nominal least squares problem and wishes to

explore the effects of changes therein, for sensitivity or exploratory data analysis,

returning to the nominal problem before making additional changes. In our present

context, we contemplate making potentially long chains of successive changes, which is

much more manageable when working the Q̂R̂ factorization using the modified

141

Gram-Schmidt process. Björck carefully explains both approaches, and there are

conceptual and practical differences.

The third issue arises, for ` > 1, when we need to choose m < min(`,M)

in order to work with a 4F (`) of small enough condition number. The immediate

issue is how the condition number is to be approximated. Ni simply talks about the

condition number of F (`), and later 4F (`), but there is a hint that MATLAB

facilities were availed of. Walker/Ni note that we have an approximate Q̂R̂

factorization for each of the matrices whose condition number is sought, so one can

focus on κ2(R̂); but no further indication is given as to how the latter is to be

estimated. Setting this matter aside, the general idea is to remove the first columns of

intermediate matrices with too large a condition number, one-after-another using the

updating discussed above, until an acceptable 4F (`) is found. This must result in

m ≥ 1, since the condition number would be 1 for m = 1.

The fourth issue concerns the determination of the least squares solution for

the 4F (`) case, and the solution of the simplified stationarity conditions for the F (`)

case. Both Ni (2009) and Walker/Ni (2011) indicate unawareness of relevant material

in Björck (1996) in this connection, which is simply mentioned in passing in Golub/Van

Loan (2013).

Because Walker/Ni (2011) is an important paper, I shall devote the next

section to explaining relevant material from Björck (1996), in order to be able to

comment thereon in more detail in the context at hand.

The computational examples in Walker/Ni (2011) speak for themselves.

They are many, varied and impressive. The examples in Ni (2009) are different.

Toth/Kelley

Since Toth/Kelley (2015) is primarily theoretical, our discussion will be brief,

142

informal and focused on what can be learned about computational issues therefrom.

They are concerned, for the most part, with the stationary Anderson Acceleration

algorithm as formulated in Walker/Ni (2011). The case M = 1 receives special

attention. The underlying assumption basically is that the Picard iteration for g

converges to the fixed point x̂, for any initial iterant x(0) if g is affine and for x(0)

close enough to x̂ if g is nonlinear. The detailed hypotheses, arguments and

conclusions are intricate; we shall not go into them here, and refer the interested reader

to the paper itself. For nonlinear g, achieving such results is a significant

accomplishment. On the other hand, in broad brush terms, the outcome is that the

convergence of the accelerated iteration is no worse than that of the Picard iteration. It

would be more surprising if this were not true than that it is true. This in no way

detracts from the merits of the paper per se; the available mathematical tools simply

have limited purchase. It does mean that these results do not in themselves form a

basis for assessing or improving the efficacy of Anderson Acceleration; but they do focus

attention on the role of the convergence of the Picard iteration.

Examples in Walker/Ni (2011) and other contexts commonly demonstrate

that the convergence of the accelerated iteration is much more rapid than that of the

Picard iteration. Moreover, the acceleration may initiate convergence (or at least find

an approximate fixed point) for initial iterants for which the Picard iteration does not

converge. While the analysis follows Walker/Ni (2011) in taking β(`) = 1 throughout,

we observe (on the basis of previous discussion) that it applies equally well for

β(`) = β 6= 1, potentially to advantage in the rate of convergence of the

corresponding Picard iteration. Finally, some flexibility noted in formulating

hypotheses offers the prospect that the results obtained and overall performance may be

insensitive to modest variations in the acceleration process.

143

By the triangle inequality, we have

1 = |
min(`,M)∑

k=0

θ
(`)
k | ≤

min(`,M)∑
k=0

| θ(`)k | .

The Toth/Kelley theory involves an upper bound, uniform in `, on
∑min(`,M)

k=0 | θ(`)k | .

The stationary Extrapolation Algorithm cannot guarantee even the existence of such a

bound. Toth/Kelley suggest three approaches to imposing a reasonable such bound.

The nonstationary Extrapolation Algorithm could combine this constraint with the

θ
(`)
0 > 0 constraint, by virtue of its use of the deviation basis. Iterant data is

disregarded by setting corresponding affine combination coefficient(s) to zero, and

minimizing with respect to the others, subject to the
∑min(`,M)

k=0 θ
(`)
k = 1 constraint.

Regularization can also be acommodated.

In the main computational example presented, Toth/Kelley explore the

possibility of replacing ‖ · ‖2 in the minimization problem determining the optimal

affine combination coefficients by ‖ · ‖1 or ‖ · ‖∞ . Doing so replaces solution of a

least squares problem by solution of a special linear programming problem, which is

computationally more expensive (though good algorithms exist). It would also

complicate moving from a stationary to a nonstationary version of the method.

Moreover, it opens up new possibilities for nonuniqueness and failure of the algorithm to

be well defined which are not posed by the strictly convex ‖ · ‖2 . Because ‖ · ‖1 and

‖ · ‖∞ are not strictly convex, they yield a point in the affine subspace closest to zero,

but not necessarily a unique one: a convex set thereof. In the particular example

presented, the performance of all three norms is comparable; and severe ill-conditioning

appears to curtail the effectiveness of modestly increasing M.

A final remark, tangentially related to Toth/Kelley (2015), is occasioned by

the first paragraph of the introduction thereto and the extensive references cited therein.

There are a number of root-finding algorithms in the literature which are related to the

144

Extrapolation Algorithm in similar fashion to that laid out above in the multisecant

context. When suitably applied to g(x)− x = 0, they generate iterants

corresponding to some version of the Extrapolation Algorithm applied to the fixed point

problem for g(x). Consequently, when applied to the root-finding problem f(x) = 0,

they are generating iterants corresponding to the application of that version of the

Extrapolation Algorithm to the implicit fixed point problem for x+ f(x). Attention to

the convergence of the Picard iteration for this implicit fixed point problem is a relevant

consideration, and the Toth/Kelley results may be applicable.

Implementation: Walker / Ni

We shall consider several implementation issues arising when the difference

basis is used as in the Walker / Ni paper. Nominally, we have m(`) = min(`,M). The

special case M = 1 is best dealt with in its own terms; the least squares problem

involved can be solved directly. Therefore, we assume hereafter that M > 1. The case

m(1) = 1 is also special, but can be incorporated into the general formulation for later

purposes.

The least squares problem A(`)c(`) = b(`) posed has b(`) = r(`) and orders

A(`)ei and e∗i c
(`) by decreasing age, so e∗i c

(`) = ξ
(`)
j and A(`)ei = r(`−j+1) − r(`−j),

with j = m(`) + 1− i , for i = 1, 2, · · · , m(`). This ordering has the cost

advantage that the columns of A(`) and its A(`) = Q(`)R(`) factorization can be

computed incrementally. (No decompositions are involved so we can simplify the

notation for factorizations in this section.) This approach has the disadvantages that

the problem may be poorly scaled and may privilege older rather than younger iterants;

moreover, pivoting is not an option.

We shall look first at the stationary case where β(`) = β > 0 and m(`) is

monotone nondecreasing: 0 < m(`) = min(`,M). (The Walker / Ni paper takes

145

β = 1.) We shall consider the quasistationary phase, 0 < m(`) = ` ≤ M ; and then

the equistationary phase, 0 < m(`) = M < `. This will lead us to two canonical

constructions through which the computation can be implemented. We shall look

second at the nonstationary case where m(`) is permitted to decrease, building on the

previous discussion.

In the quasistationary phase, for ` > 1, A(`) is A(`−1) with

(r(`) − r(`−1)) = (y(`) + x(`−1))− (x(`) + y(`−1))

adjoined as a new last column. For ` = 1 , take Q(1)e1 = A(1)e1 / ‖ A(1)e1 ‖2 and

e∗1R
(1)e1 = ‖ A(1)e1 ‖2, so A(1) = Q(1)R(1). For ` > 1, our basic task is to update

the A(`−1) = Q(`−1)R(`−1) factorization to A(`) = Q(`)R(`), by constructing new last

columns for Q(`) and R(`). We shall use (see below) the column-oriented form of the

modified Gram–Schmidt process, with or without reorthogonalization, following Björck

(1996). This first construction will also be used to solve the least squares problem

A(`)c(`) = b(`) given the factorization A(`) = Q(`)R(`).

In the equistationary phase, our first task is to obtain Ǎ(`−1) by deleting the

first column of A(`−1) and updating the A(`−1) = Q(`−1)R(`−1) factorization to

Ǎ(`−1) = Q̌(`−1)Ř(`−1). We shall use the approach outlined by Björck for this second

construction, which is also used in the nonstationary case. Our second task is to obtain

A(`) by adjoining (r(`) − r(`−1)) to Ǎ(`−1) as a new last column and updating the

Ǎ(`−1) = Q̌(`−1)Ř(`−1) factorization to A(`) = Q(`)R(`) using the first construction.

These two tasks should be done separately and in this order.

First Construction

We shall use generic notation in describing the first construction. Suppose

that we have the factorization A = QR, with A,Q ∈ Rn×m and R ∈ Rm×m,

146

where A has maximal rank, Q is orthonormal and R is upper triangular and

nonsingular. We seek the corresponding factorization

[
A a

]
=
[
Q q

] [R r
0 ρ

]
,

with a, q ∈ Rn, r ∈ Rm,m < n and ρ ∈ R. Set d(0) = a. For k = 1, 2, · · · ,m,

calculate φ(k) = (Qek)∗d(k−1), d(k) = d(k−1) − φ(k)(Qek), and e∗kr = φ(k). Set

ρ = {d(m)∗d(m)}1/2 and q = d(m) / ρ. We obtain [A a] = [QR Qr + ρq].

In particular, for a = b we see that

Ac− b = [A b]

[
c
−1

]
= QRc− (Qr + ρq) = Q(Rc− r)− ρq.

By construction, we have q ⊥ Qek , 1 ≤ k ≤ m, thence q ⊥ Q(Rc− r). By the

Pythagorean Law, we find that

‖ Ac− b ‖22 = ‖ Q(Rc− r) ‖22 + ρ2 .

We then identify R−1r and ρ as the minimizer of ‖ Ac− b ‖2 and the minimum

value thereof. Ideally, Q is an orthonormal matrix. Observe, however, that the foregoing

depends on the normalization ‖ Qek ‖2 = 1 but not specifically on the orthogonality

Qei ⊥ Qej, i 6= j. Without accurate normalization, we could replace φ(k) = (Qek)∗d(k−1)

in the foregoing by φ(k) = (Qek)∗d(k−1) / (Qek)∗(Qek).

The algorithm can be enhanced by invoking reorthogonalization to strengthen

the q ⊥ Qek, 1 ≤ k ≤ m, condition. It may suffice to omit reorthogonalization in

computing Q since the Qei ⊥ Qej, i 6= j, condition is less crucial. There are more

elaborate reorthogonalization schemes in the literature, but the following simple

modification of the foregoing will illustrate the point. Set d(0) = a. For k = 1, 2, · · · ,m,

calculate φ
(k)
0 = (Qek)∗d(k−1), d(k−1/2) = d(k−1) − φ(k)

0 (Qek), φ
(k)
1 = (Qek)∗d(k−1/2),

d(k) = d(k−1/2) − φ(k)
1 (Qek), and e∗kr = φ

(k)
0 + φ

(k)
1 . Set ρ = {d(m)∗d(m)}1/2 and

147

q = d(m) / ρ. The costs involved essentially double. Without reorthogonalization, we

need two invocations of the first construction at each stage. We essentially need the

equivalent of three if reorthogonalization is used only for q, and four if it is used for

both Q and q. Once x(`+1) is chosen, q, r and ρ can be deleted to proceed to the

next iteration.

We summarize some known (see Björck) properties of this modified

Gram–Schmidt process for seeking the least squares solution ĉ of Ac = b by

constructing the factorization

[
A b

]
=
[
Q q

] [R r
0 ρ

]
.

It can be shown that

(i) ‖ A−QR ‖2 ∼ u ‖ A ‖2 ,

(ii) ‖ I −Q∗Q ‖2 ∼ u κ2(A) ,

(iii) ‖ diag(I −Q∗Q) ‖2 ∼ u ‖ diag(I) ‖2 ,

(iv) ‖ ĉ−R−1Q∗b ‖2 ∼ u κ2(A)2 ,

where u is the unit roundoff error and κ2(A) is the condition number of A. The first

property indicates that the range of Q is a good approximation to that of A, so

approximately orthogonalizing q to the range of Q does likewise to that of A. This

implies that ρq approximates b− Aĉ well. It can also be shown that there is an

orthonormal Q̃ such that ‖ A− Q̃R ‖2 = u ‖ A ‖2, so we anticipate that

κ2(R) ≈ κ2(A). The second and third properties indicate that Q is not ideally

orthogonal, but is close to ideally normalized. The Qek, 1 ≤ k ≤ m, should still provide

a well-conditioned basis for the range of Q, thence approximately for that of A,

unless κ2(A) is large. The fourth property indicates that ignoring the fact that Q is

148

not ideally orthonormal may well result in an approximation R−1Q∗b to ĉ no better

than that generated by solving the normal equations A∗Aĉ = A∗b using the Cholesky

factorization of A∗A. However, R−1r is a satisfactory approximation to ĉ; in fact, at

least as satisfactory as that generated using Householder (or Givens) matrix

triangularization. It appears from the Ni thesis that this point was not appreciated;

however, the condition numbers tabulated for the test cases studied are moderately

small. (Golub / Van Loan (2013) mentions (i) and (ii) on pages 255-256 and (iv) on

page 265; (iii) is my addition.)

Second Construction

We turn now to the second construction. We are given the A = QR

factorization. Ǎ is obtained by deleting the first column of A, and we seek the

Ǎ = Q̌Ř factorization. Let P = P ∗1:m be the permutation matrix effecting a left

circular shift so that the first column of A becomes the last column of AP ; thus, Ǎ

is AP with its last column deleted. We have AP = QRP and recognize that RP

is upper Hessenberg: e∗iRPej = 0, i > j + 1. Let G be a product of Givens

matrices, thence unitary, such that G∗RP is upper triangular. The formation of G is

a standard topic in the numerical linear algebra literature such as Björck (1996) or

Golub / Van Loan (2013). I shall record my favorite version since it accomodates both

the real and complex cases gracefully, and will yield the standard QR factorization in

this context, as does the modified Gram–Schmidt process: the diagonal elements of R

are real and positive for maximal rank matrices. To avoid a lengthy digression at this

point, I shall postpone this discussion until the end of this section. Issues related to the

formation of QG are more salient here. We now have AP = (QG)(G∗RP). We

thereby obtain Q̌ by deleting the last column of QG and Ř by deleting the last row

and column of G∗RP. The last columns to be deleted need not be computed; however,

149

the last column of G∗RP might be worth examining in the light of the use of the first

construction to solve the least squares problem.

If Q is orthonormal, then so is QG, thence also Q̌. However, if Q is not

ideally orthogonal, we must expect that QG and thence Q̌ will be even less so. For

M = 2, the orthogonality of QG should be comparable to that of Q, because Givens

matrices are unitary. In principle, for M > 2, if the two-dimensional subspace of the

range of Q spanned by the two columns thereof on which a particular Givens matrix

acts is exactly orthogonal to the rest of the columns, this will continue to be the case;

otherwise, the cosines of the angles between the two new columns and some or all of the

other columns will tend to be larger in magnitude than for the old columns. In

practice, Q is not ideally orthogonal, so increasing entropy presages deteriorating

orthogonality. Normalization should be better preserved, because Givens matrices are

unitary, but will erode for large N.

Even though the orthogonality can be expected to deteriorate, the foregoing

discussion indicates that this may not pose a serious obstacle. If Q is nearly ideally

normalized, the normalization will deteriorate slowly; however, this is potentially more

serious. One may wish to renormalize by dividing each column of the putative Q̌ by

its norm, and multiplying the corresponding row of Ř by that norm. The alternative

would be to accept and deal with less than ideal normalization as noted previously,

which also requires evaluation of these norms. The deterioration will increase with N

and M. We still expect the range of Q̌ to be a reasonably good approximation to the

range of Ǎ; but this connection will also deteriorate, especially for larger numbers of

columns of Q̌ and Ǎ. Inclusion of the newest iterant data and deletion of the oldest

iterant data limits deterioration accumulation. This encourages moderately small M.

The tools needed for the stationary case are now in hand. Thorny issues

150

arise if we turn to the nonstationary case. After the youngest difference basis vector has

been adjoined as a new last column and the factorization has been updated, the Walker

/ Ni paper (and Ni thesis) suggest the possibility of deleting one or more of the older

ones in order to control the condition number. Without scaling and pivoting, detecting

near (or actual) linear dependence of the columns is more problematic. It would be

advantageous, in my opinion, to incorporate the standard scaling strategy by dividing

each prospective new last column by its norm before adjoining it, so ‖ A(`)ek ‖2 = 1 for

1 ≤ k ≤ m(`). The threshold determining declaration of near (or actual) linear

dependence should reflect tolerance for ill-determination rather than data uncertainty.

The Walker / Ni proposal is to estimate the condition number of R(`) as a

proxy for that of A(`). If the estimate exceeds a specified threshold, the second

construction would be used to remove the first column of A(`) and update the

factorization, thereby reducing m(`). The estimation and removal cycle would be

repeated until the threshold is no longer exceeded. By (ii), the orthogonality of the

columns of Q̂ may already have been damaged by a large condition number; and this is

not repaired, but rather exacerbated, as m(`) is reduced to control the condition

number. Without scaling and pivoting, the simple condition number estimate provided

by the diagonal elements of R(`) may be too unreliable to be useful. The more robust

estimates developed above might be considered. The Walker / Ni paper (and the Ni

thesis) appears to require resort to a condition number estimation code. This also

ignores the fact that less than ideal and deteriorating orthonormality of Q(`) weakens

the connection between the condition numbers of A(`) and R(`); however, this may be

adequate for the diagnostic purposes intended. The process could become expensive for

large M and especially for large N , though perhaps not prohibitively so for expensive

g evaluations. What was actually done remains unclear to me; the reference cited does

151

not address the issue. I note their remark that they used a relatively large M and

usually converged rapidly enough to keep ` ≤M, for M � N. Thus, they remained

in the quasistationary phase.

In short, there is a tradeoff to be made between efficacy and efficiency in

incremental processing of the iterant data and in adjusting m(`) to cope with the

impact of anticipated ill-conditioning on the determination of x(`+1).

Givens Matrices

Finally, we return to the choice of Givens matrices used to form G. There

are two distinct classes of Givens matrices: rotators and reflectors. Either class could

be used. I prefer the reflectors, but the rotators are more commonly encountered in the

literature. Consequently, I shall discuss both. The essence of the matter is contained

in the prototype 2× 2 matrix case. I shall formulate the complex version, and point out

the minor simplifications in the real version. I shall then consider general Givens

matrices whose product would be used to form G and to calculate G∗RP and QG.

The Givens rotator and reflector prototypes are

[
c s̄
−s c̄

]
and

[
c s̄
s − c̄

]
,

respectively, with | c |2 + | s |2 = 1. Givens matrices are unitary; the rotators have

determinant 1, and the reflectors have determinant −1, this being their distinguishing

characteristic. These properties are easily verified for the prototypes, and by extension

later for their general counterparts.

For d =
√
| a |2 + | b |2 > 0, we seek c and s such that | c |2 + | s |2= 1

and [
c s̄
−s c̄

]∗ [
a
b

]
=

[
c̄a− s̄b
sa+ cb

]
=

[
d
0

]
.

We see that c = a/d and s = −b/d. We likewise seek c and s such that[
c s̄
s − c̄

]∗ [
a
b

]
=

[
c̄a+ s̄b
sa− cb

]
=

[
d
0

]
.

152

We see that c = a/d and s = b/d. The key point is that we can determine d, c

and s from a and b so as to transform

[
a
b

]
into the target

[
d
0

]
. There are

familiar protocols for evaluating norms such as d. For the complex case, division by d is

facilitated by the fact that it is real. From this perspective, it may be advantageous to

arrange that c or s be real. For a unimodular φ, | φ | = 1, multiplying c and s, as

defined above, by φ̄ will yield the new target

[
φd
0

]
, the most general target for a

2× 2 unitary matrix generating the requisite zero. Choosing φ = sgn(a) will make

the new c real, and choosing φ = sgn(b) will make the new s real.

In the problem at hand, the modified Gram-Schmidt process generates the

standard QR factorization with the diagonal elements of R real and positive, for

maximal rank matrices. The original choice for c and s above preserves this

property. This implies that b will always be real and positive, so s will automatically

be real : sgn(b) = 1. The customary choice in the literature is to make c real.

Observe that the reflector is Hermitian if c is real.

For a pair of vectors f and g, we find that

[
f g

] [c s̄
−s c̄

]
=
[
cf − sg s̄f + c̄g

]
and [

f g
] [c s̄

s − c̄

]
=
[
cf + sg s̄f − c̄g

]
.

It follows that we also have[
c s̄
−s c̄

]∗ [
f ∗

g∗

]
=

[
c̄f ∗ − s̄g∗
sf ∗ + cg∗

]
and [

c s̄
s − c̄

]∗ [
f ∗

g∗

]
=

[
c̄f ∗ + s̄g∗

sf ∗ − cg∗
]
.

153

More generally, for j < k, the Givens rotator takes the form

Gjk(a, b) = I − (eje
∗
j + eke

∗
k)

+ (cej − sek)e∗j

+ (s̄ej + c̄ek)e∗k ,

and the Givens reflector takes the form

Gjk(a, b) = I − (eje
∗
j + eke

∗
k)

+ (cej + sek)e∗j

+ (s̄ej − c̄ek)e∗k .

Clearly, postmultiplication of a matrix by Gjk(a, b) alters only the jth and kth columns;

and premultiplication of a matrix by G∗jk(a, b) alters only the jth and kth rows. The

prototype results above therefore suffice to specify the requisite calculations. There is

no need to form Gjk(a, b) or G∗jk(a, b). It is convenient to parameterize Gjk(a, b) by a

and b, with the understanding that d , c and s are defined in terms of these as

previously indicated.

For the real case, we need only make superficial changes: elide all vacuous

conjugations in the foregoing, both those explicit in c̄ and s̄ and those implicit in the

asterisk superscript denoting conjugate transposition, which becomes simply

transposition. If so desired, | a |2 , | b |2 , | c |2 and | s |2 could be replaced by

a2 , b2 , c2 and s2, to advantage.

We can now sketch the formation of G∗RP and QG. The first step is to

identify a and b with the diagonal and subdiagonal elements of the first column of the

upper Hessenberg matrix RP, and calculate the corresponding d , c and s. Then

process the first and second rows of RP and the first and second columns of Q using

the foregoing, thereby making the corresponding diagonal element d and subdiagonal

154

element 0. The second step is to repeat this pattern starting with the resulting

diagonal and subdiagonal elements in the second column and processing the resulting

second and third rows and columns. Continue in this pattern until the upper triangular

matrix G∗RP and QG have been formed. G is the product of the Givens rotators or

reflectors used, in the order of their formation, though this product need not be formed.

There is also no need to form AP ; forming RP might be helpful, though avoidable.

155

Section Pagination

The Extrapolation Algorithm 2

Scaling, Pivoting and Regularization . 11

Background 12

Scaling and Pivoting 21

Regularization 30

Choosing m(`) . 35
Choice of M 36
Triad . 38
Norms . 39
Condition Numbers 48
Addendum 60

Choosing β and W 75
Choice of β 75

Examples 81
Algorithm 83

Choice of W 89
Adjustment 91
Influence 92
Decimation 93
Implementation 98

Remarks on Relevant Literature 100
Broyden . 101
Eyert . 111
Conceptual Issues 114

Marks / Luke 115
Fang / Saad 116
Calef et al 118

Computational Procedures 121
Calef et al 121
Marks / Luke 124
Digression 126
Fang / Saad 128

Walker / Ni 132
Toth / Kelley 142

Implementation: Walker / Ni 145
First Construction 146
Second Construction 149
Givens Matrices 152

156

References

1. Anderson, Donald G., “Iterative Procedures for Nonlinear Integral Equations,”

JACM 12 (1965), pp. 547-560.

2. Bierlaire, Michel and Crittin, Frank, “Solving Noisy, Large-Scale Fixed Point Prob-

lems and Systems of Nonlinear Equations,” Transportation Science 40 (2006), pp.

44-63.

3. Björck, Åke, “Numerical Methods for Least Squares Problems,” SIAM (1996).

4. Broyden, C. J., “A Class of Methods for Solving Nonlinear Simultaneous Equa-

tions,” Math. Comp. 19 (1965), pp. 577-593.

5. Calef, Matthew, T., Fichtl, Erin, D., Warsa, Berndt, and Carlson, Neil, N. , “Non-

linear Krylov Acceleration Applied to a Discrete Ordinates Formulation of the k-

Eigenvalue Problem,” J. Comp. Phys. 238 (2013), pp. 188-209.

6. Carlson, Neil, N. and Miller, Keith, “Design and Application of a Gradient-Weighted

Moving Finite Element Code I: One Dimension,” SIAM J. Sci. Comput. 19 (1998),

pp. 728-765.

7. Eyert, V., “A Comparative Study on Methods for Convergence Acceleration of

Iterative Vector Sequences,” J. Comp. Phys. 124 (1996), pp. 271-285.

8. Fang, Haw-ren and Saad, Yousef, “Two classes of multisecant methods for nonlinear

acceleration,” Numer. Linear Algebra Appl. 16 (2009), pp. 197-221.

9. Golub, Gene H. and Van Loan, Charles, F., “Matrix Computations,” Fourth Edi-

tion, The Johns Hopkins University Press (2013).

157

10. Horn, Roger, A. and Johnson, Charles A., “Matrix Analysis,” Cambridge University

Press (1985).

11. Marks, L. D. and Luke, D. R., “Robust mixing for ab initio quantum mechanical

calculations,” Phys. Rev. B 78 (2008).

12. Ni, Peng, “Anderson Acceleration of Fixed-Point Iteration with Applications to

Electronic Structure Computations,” Ph.D. thesis, Worcester Polytechnic Institute,

Worcester, MA (2009).

13. Ortega, J. M. and Rheinboldt, W. C., “Iterative Solution of Nonlinear Equations in

Several Variables,” Academic Press (1970).

14. Ostrowski, A. M., “Solution of Equations and Systems of Equations,” Second Edi-

tion, Academic Press (1966).

15. Toth, Alex and Kelley, C. T., “Convergence Analysis For Anderson Acceleration,”

SIAM J. Numer. Anal. 53 (2015), pp. 805-819.

16. Walker, Homer F. and Ni, Peng, “Anderson Acceleration for Fixed-Point Iterations,”

SIAM J. Numer. Anal. 49 (2011), pp. 1715-1735.

158

Appendix

We shall discuss here supplementary matters not strictly required within the

main text, but related and potentially relevant thereto. We adopt the notation and

terminology previously introduced. We rely upon essential results argued above. We

provide arguments for nonessential results previously stated without proof and choices

tacitly made without explicit justification.

Affine subspaces and affine independence/dependence are essentially

geometric concepts, though it is convenient to describe and manipulate them in

algebraic terms. The labelling of x(`−k), y(`−k) = g(x(`−k)) and

r(`−k) = y(`−k) − x(`−k) , 0 ≤ k ≤ m, derives from the iterative process context of

interest, the ordering reflecting the “age” of the iterants. The affine span of the affine

independent defining set {r(`−k)}mk=0 is an affine subspace of maximal dimension, m.

We have chosen above to describe this algebraically using the shift vector r(`) and the

linear subspace with the deviation basis
{
r(`−k) − r(`)

}m
k=1

. From a geometric

perspective, the labelling and ordering of the defining set is irrelevant; any member and

the associated deviation basis could equally well have been used. Moreover, any

nonzero member of the affine span and the associated deviation basis could be used. It

is the questions of how the latter might be accomplished algebraically, and to what

advantage, that originally motivated inclusion of this appendix. For the moment, we

shall continue with our previous choice of shift vector r(`) and deviation basis{
r(`−k) − r(`)

}m
k=1

, examining this choice and alternatives later.

The affine combination
∑m

k=0 θ
(`)
k r(`−k) , with

∑m
k=0 θ

(`)
k = 1 , can be

written in the form r(`) +
∑m

k=1 θ
(`)
k (r(`−k) − r(`)) , with θ

(`)
0 = 1−

∑m
k=1 θ

(`)
k . If we

use shift vector r(`) in representing the affine span of
{
r(`−k)

}m
k=0

, we identify{
r(`−k) − r(`)

}m
k=1

as a spanning set for the associated linear subspace. The dimension

159

is maximal, m , iff
{
r(`−k) − r(`)

}m
k=1

is linearly independent, thence a basis for the

linear subspace. Thus,
{
r(`−k)

}m
k=0

is affinely independent iff
{
r(`−k) − r(`)

}m
k=1

is

linearly independent; and
{
r(`−k)

}m
k=0

is affinely dependent iff
{
r(`−k) − r(`)

}m
k=1

is

linearly dependent.

Recall the pair of assertions above that linear independence of
{
r(`−k)

}m
k=0

is

a sufficient, but not a necessary, condition for affine independence of
{
r(`−k)

}m
k=0

; and

that linear dependence of
{
r(`−k)

}m
k=0

is a necessary, but not a sufficient, condition for

0 to be a member of the affine span of
{
r(`−k)

}m
k=0

. We now provide the requisite

proofs, in reverse order.

If 0 is an affine combination of
{
r(`−k)

}m
k=0

, there is a nontrivial linear

combination of
{
r(`−k)

}m
k=0

which is 0, so
{
r(`−k)

}m
k=0

is linearly dependent.

Therefore, linear dependence of
{
r(`−k)

}m
k=0

is a necessary condition for 0 to be a

member of the affine span of
{
r(`−k)

}m
k=0

. If
{
r(`−k)

}m
k=0

is linearly dependent, but

all nontrivial linear combinations of
{
r(`−k)

}m
k=0

which are 0 have the property that

the sum of their linear combination coefficients is zero, then there is no affine

combination of
{
r(`−k)

}m
k=0

that is 0. Therefore, linear dependence of
{
r(`−k)

}m
k=0

is

not a sufficient condition for 0 to be a member of the affine span of
{
r(`−k)

}m
k=0

.

Assume that
{
r(`−k)

}m
k=0

is affinely dependent, so
{
r(`−k) − r(`)

}m
k=1

is

linearly dependent and there is a nontrival linear combination of
{
r(`−k) − r(`)

}m
k=1

which is 0. If the sum of the linear combination coefficients is nonzero, then we can

express r(`) as a linear combination of
{
r(`−k)

}m
k=1

, so
{
r(`−k)

}m
k=0

is linearly

dependent. If the sum of the linear combination coefficients is zero, then the same

nontrivial linear combination of
{
r(`−k)

}m
k=1

is zero, so
{
r(`−k)

}m
k=1

is linearly

dependent, thence
{
r(`−k)

}m
k=0

is linearly dependent. We conclude that affine

dependence of
{
r(`−k)

}m
k=0

implies linear dependence of
{
r(`−k)

}m
k=0

. Therefore, by

160

contraposition, linear independence of
{
r(`−k)

}m
k=0

implies affine independence of{
r(`−k)

}m
k=0

, establishing sufficiency. To establish lack of necessity, we need only

identify at least one instance
{
r̃(`−k)

}m
k=0

in which
{
r̃(`−k)

}m
k=0

is both linearly

dependent and affinely independent. Before doing so, observe that we implicitly

established sufficiency earlier during the discussion of constrained minimization in

connection with the Ni thesis.

Assume that
{
r(`−k)

}m
k=0

is affinely independent. We have seen earlier that

this is a necessary and sufficient condition for there to be a unique affine combination

(v̂(`) − û(`)) of
{
r(`−k)

}m
k=0

closest to 0. Define r̃(`−k) = r(`−k) − (v̂(`) − û(`)) , for

0 ≤ k ≤ m. Observing that r̃(`−k) − r̃(`) = r(`−k) − r(`) , for 1 ≤ k ≤ m, we

conclude that
{
r̃(`−k)

}m
k=0

is also affinely independent. Moreover, we see that any

affine combination of
{
r̃(`−k)

}m
k=0

is just the corresponding affine combination of{
r(`−k)

}m
k=0

minus (v̂(`) − û(`)). Consequently, the same affine combination coefficients

will yield the affine combinations of
{
r̃(`−k)

}m
k=0

and
{
r(`−k)

}m
k=0

closest to 0, that

affine combination of
{
r̃(`−k)

}m
k=0

being 0, so 0 is in the affine span of
{
r̃(`−k)

}m
k=0

.

We infer that
{
r̃(`−k)

}m
k=0

is both linearly dependent and affinely independent.

Therefore, linear independence of
{
r(`−k)

}m
k=0

is a sufficient, but not a necessary,

condition for
{
r(`−k)

}m
k=0

to be affine independent. Observe that
{
r(`−k)

}m
k=0

can be

nearly linearly dependent while
{
r(`−k) − r(`)

}m
k=1

is not nearly linearly dependent so{
r(`−k)

}m
k=0

is not nearly affinely dependent. Note the implications for the constrained

minimization approach.

Before returning to the choice of the shift vector and associated deviation

basis for the affine span of an affinely independent
{
r(`−k)

}m
k=0

, we shall sort out some

issues regarding affine fixed point problems: g(x) = Gx+ h. There is a unique fixed

point x̂ iff (I −G) is nonsingular, with x̂ = (I −G)−1h. Sufficient conditions for the

161

Picard iteration to converge to a unique fixed point for any h and any initial iterant

x(0) are ‖ G ‖ < 1 or ρ(G) < 1 ; thence, these are also sufficient conditions for

nonsingularity of (I −G). Recall that g is invertible iff G is nonsingular.

For 1 ≤ k ≤ m, we have

g(x(`−k))− g(x(`) = G(x(`−k) − x(`)) = (y(`−k) − y(`)) .

Iff
{
x(`−k) − x(`)

}m
k=1

is linearly dependent, there are nontrivial ηk, 1 ≤ k ≤ m,

such that
∑m

k=1 ηk (x(`−k) − x(`)) = 0. We see that

G

[
m∑
k=1

ηk (x(`−k) − x(`))

]
=

m∑
k=1

ηk (y(`−k) − y(`)) = 0 ,

so linear dependence of
{
x(`−k) − x(`)

}m
k=1

implies linear dependence of{
y(`−k) − y(`)

}m
k=1

. Since the same ηk, 1 ≤ k ≤ m, are involved for both sets, we

also obtain
∑m

k=1 ηk (r(`−k) − r(`)) = 0, so linear dependence of
{
x(`−k) − x(`)

}m
k=1

implies linear dependence of
{
r(`−k) − r(`)

}m
k=1

. We can rephrase these two inferences

as affine dependence of
{
x(`−k)

}m
k=0

implies affine dependence of
{
y(`−k)

}m
k=0

, and

affine dependence of
{
x(`−k)

}m
k=0

implies affine dependence of
{
r(`−k)

}m
k=0

. By

contraposition, these two inferences become affine independence of
{
y(`−k)

}m
k=0

implies

affine independence of
{
x(`−k)

}m
k=0

, and affine independence of
{
r(`−k)

}m
k=0

implies

affine independence of
{
x(`−k)

}m
k=0

.

The foregoing inferences depend only on the assumption that g is affine.

We now assume that g is affine and invertible, so we also have

G−1(y(`−k) − y(`)) = (x(`−k) − x(`)) , 1 ≤ k ≤ m .

We see that linear dependence of
{
y(`−k) − y(`)

}m
k=1

implies linear dependence of{
x(`−k) − x(`)

}m
k=1

. Combined with the foregoing, we obtain linear dependence of{
y(`−k) − y(`)

}m
k=1

iff we have linear dependence of
{
x(`−k) − x(`)

}m
k=1

; thence by

162

contraposition, we obtain linear independence of
{
y(`−k) − y(`)

}m
k=1

iff we have linear

independence of
{
x(`−k) − x(`)

}m
k=1

. This may be rephrased as the statements that we

obtain affine dependence or independence of
{
y(`−k)

}m
k=0

iff we have affine dependence

or independence of
{
x(`−k)

}m
k=0

, respectively. In addition, we infer that linear

dependence of
{
y(`−k) − y(`)

}m
k=1

, or equivalently, affine dependence of
{
y(`−k)

}m
k=0

,

implies linear dependence of
{
r(`−k) − r(`)

}m
k=1

, or equivalently, affine dependence of{
r(`−k)

}m
k=0

. By contraposition, we see that linear independence of
{
r(`−k) − r(`)

}m
k=1

,

or equivalently, affine independence of
{
r(`−k)

}m
k=0

implies linear independence of{
y(`−k) − y(`)

}m
k=1

, or equivalently, affine independence of
{
y(`−k)

}m
k=0

.

Note that in the foregoing results affine dependence of
{
r(`−k)

}m
k=0

appears

only as a conclusion, and affine independence of
{
r(`−k)

}m
k=0

appears only as a

hypothesis. Thus, we identify circumstances in which
{
r(`−k)

}m
k=0

is affinely

dependent, and consequences of
{
r(`−k)

}m
k=0

being affinely independent. However, for

0 ≤ k ≤ m, we have r(`−k) = (G− I)x(`−k) + h; and, for 1 ≤ k ≤ m, we have

(r(`−k) − r(`)) = (G− I)(x(`−k) − x(`)). If (I −G), thence (G− I), is nonsingular, it

follows as above that
{
r(`−k) − r(`)

}m
k=1

is linearly dependent (independent) iff{
x(`−k) − x(`)

}m
k=1

is linearly dependent (independent); or equivalently, that
{
r(`−k)

}m
k=0

is affinely dependent (independent) iff
{
x(`−k)

}m
k=0

is affinely dependent

(independent). Recall that, as a practical matter, near affine (linear) dependence is

usually the more salient issue, so the condition number is relevant.

We now return to the choice of the shift vector and associated deviation basis

for the affine span of an affinely independent
{
r(`−k)

}m
k=0

. As with our previous

choices, we have no principled basis for choosing without relevant information from the

problem context and about the anticipated consequences thereof.

In the nonstationary Extrapolation Algorithm, the one set of iterant data

163

that is immune to being disregarded is that corresponding to the residual chosen as the

shift vector. That set ought to be x(`) and y(`), so r(`) should be chosen as the shift

vector; thence also, imposition of the constraint θ̂
(`)
0 > 0. The motivating assumption

behind the Extrapolation Algorithm is that the underlying Picard iteration is

converging and we seek to increase the rate of convergence. We anticipate that the

younger residuals will eventually be significantly smaller than the older residuals so

(v̂(`) − û(`)) will be close to the younger residuals, whose θ̂
(`)
k will dominate.

Having chosen r(`) as the shift vector, the associated deviation basis can be

rescaled and reordered for numerical purposes, and the issue of actual or near affine

dependence can be addressed. The associated deviation basis could be replaced by the

corresponding difference basis, to exploit the natural ordering of the iterants. These

matters have been discussed in detail in the main text.

Consider the affine subspace of dimension m defined as the affine span of the

affinely independent set
{
r(`−k)

}m
k=0

. Why might one wish to consider a shift vector

other than one of the r(`−k), namely an affine combination of
{
r(`−k)

}m
k=0

? How could

we define, determine and manipulate an associated deviation basis? How could we use

this shift vector and associated deviation basis to find the unique point (v̂(`) − û(`)) in

the affine subspace closest to 0 ? How could we determine the corresponding unique

affine combination coefficients such that

(v̂(`) − û(`)) =
m∑
k=0

θ̂
(`)
k r(`−k) ,

and thence determine û(`) =
∑m

k=0 θ̂
(`)
k x(`−k) and v̂(`) =

∑m
k=0 θ̂

(`)
k y(`−k)? We shall

answer these questions hereafter.

We consider as shift vector the affine combination s(`) =
∑m

k=0 σ
(`)
k r(`−k),

with
∑m

k=0 σ
(`)
k = 1. We shall be primarily concerned with convex combinations:

σ
(`)
k ≥ 0, 0 ≤ k ≤ m. Of particular interest will be the centroid s̄(`), with

164

σ̄
(`)
k = (m+ 1)−1, 0 ≤ k ≤ m. Since the affine span of

{
s(`)
}
∪
{
r(`−k)

}m
k=0

coincides with that of
{
r(`−k)

}m
k=0

,
{
s(`)
}
∪
{
r(`−k)

}m
k=0

is affinely dependent. Any

member (v(`) − u(`)) of the affine span of
{
r(`−k)

}m
k=0

can be written in the form

(v(`) − u(`)) =
m∑
k=0

θ
(`)
k r(`−k) ,

with
∑m

k=0 θ
(`)
k = 1, and can also be written in the form

(v(`) − u(`)) = s(`) +
m∑
k=0

θ
(`)
k (r(`−k) − s(`)) .

We identify
{
r(`−k) − s(`)

}m
k=0

as a deviation spanning set associated with shift vector

s(`) for the affine span of
{
r(`−k)

}m
k=0

, or equivalently
{
s(`)
}
∪
{
r(`−k)

}m
k=0

.{
r(`−k) − s(`)

}m
k=0

is not a deviation basis because it constitutes a set of m+ 1 vectors

in an m dimensional linear subspace and must therefore be linearly dependent.

Since
{
r(`−k)

}m
k=0

is affinely independent, the members of the set are nonzero

and distinct. If all members of
{
r(`−k) − s(`)

}m
k=0

are nonzero, there is a nontrivial

linear combination thereof equal to zero:
∑m

k=0 ηk(r(`−k) − s(`)) = 0. There are at

least two (and at most m+ 1) j such that ηj 6= 0, so (r(`−j) − s(`)) can be expressed

as a linear combination of the other members of
{
r(`−k) − s(`)

}m
k=0

. There is at most

one j such that (r(`−j) − s(`)) = 0. For each j, the linear span of{
r(`−k) − s(`)

}m
k=0
− (r(`−j) − s(`)) coincides with that of

{
r(`−k) − s(`)

}m
k=0

. We identify{
r(`−k) − s(`)

}m
k=0
− (r(`−j) − s(`)) as a deviation spanning set associated with shift

vector s(`). Since
{
r(`−k) − s(`)

}m
k=0
− (r(`−j) − s(`)) constitutes a spanning set of m

vectors in an m dimensional linear subspace this spanning set must be linearly

independent, thence a deviation basis.

When the shift vector is a member of
{
r(`−k)

}m
k=0

, the customary choice,

there is only one associated deviation basis. When the shift vector is not a member of{
r(`−k)

}m
k=0

, there are at least 2 and at most m+ 1 deviation bases. For shift vector

165

s(`) =
∑m

k=0 σ
(`)
k r(`−k), with

∑m
k=0 σ

(`)
k = 1, we see that there are as many deviation

bases as there are nonzero σ
(`)
k , 0 ≤ k ≤ m, because

∑m
k=0 σ

(`)
k (r(`−k) − s(`)) = 0.

In particular, for s̄(`), with σ̄
(`)
k = (m+ 1)−1, 0 ≤ k ≤ m, there are m+ 1

deviation bases. The N × (m+ 1) matrix with columns (r(`−k) − s̄(`)),

0 ≤ k ≤ m � N, will have rank m, and any subset of m columns constitutes a

deviation basis associated with s̄(`). How do we choose among them? If we were to use

the standard scaling and pivoting strategies to construct a QR

decomposition/factorization of this matrix we would select a particular deviation basis.

Interest in using the centroid s̄(`) as the shift vector arises from the expectation that

the resulting deviation basis matrix will have a smaller condition number than that for

the deviation basis associated with r(`). “Centering” of this sort is a common

stratagem in many contexts. Whether the potential gain would be worth the modest

incremental cost remains to be seen and would be problem dependent.

Specifically, suppose that we set out to use the Extrapolation Algorithm as

laid out in the main text to seek the unique point (v̂(`) − û(`)) closest to 0 in the affine

span of
{
s̄(`)
}
∪
{
r(`−k)

}m
k=0

using s̄(`) as the shift vector. The standard scaling,

pivoting and narrow regularization strategies will cope with the actual affine

dependence, and choose an associated deviation basis, characterized by j. Ordering by

increasing age and using the standard scaling strategy will ensure that j > 0, so the

iterant data x(`) and y(`) will not be disregarded in choosing the deviation basis. We

assume that the corresponding basic solution will be produced, so the solution can be

written in the form

(v̂(`) − û(`)) =

[
1−

m∑
k=0

φ̂
(`)
k

]
s̄(`) +

m∑
k=0

φ̂
(`)
k r(`−k) ,

with the understanding that φ̂
(`)
j = 0 for the j characterizing the chosen deviation

166

basis. We may then obtain

(v̂(`) − û(`)) =
m∑
k=0

θ̂
(`)
k r(`−k) ,

where

θ̂
(`)
k = φ̂

(`)
k +

[
1−

m∑
i=0

φ̂
(`)
i

]
σ̄
(`)
k ,

for 0 ≤ k ≤ m. The minimal solution could easily be used instead of the basic

solution. Centering is particularly attractive for problems that exhibit oscillatory

behavior of the residuals. For problems exhibiting monotonic behavior of the residuals,

selection of s(`) closer to the younger residuals may be preferable. The algorithm could

also accomodate near affine dependence of
{
r(`−k)

}m
k=0

, as discussed in the main text.

May 1, 2018

167

