Skip to main content
Log in

A spectral method for an elliptic equation with a nonlinear Neumann boundary condition

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Let Ω be an open region in ℝd, d ≥ 2, that is diffeomorphic to 𝔹d. Consider solving −Δu + γu = 0 on Ω with the Neumann boundary condition \(\frac {\partial u}{\partial \mathbf {n}}=b\left (\cdot ,u\right ) \) over Ω. The function b is a nonlinear function of u. The problem is reformulated in a weak form, and then a spectral Galerkin method is used to create a sequence of finite dimensional nonlinear problems. An error analysis shows that under suitable assumptions, the solutions of the finite dimensional problems converge to those of the original problem. To carry out the error analysis, the original problem and the spectral method is converted to a nonlinear integral equation over H1/2 (Ω) , and the reformulation is analyzed using tools for solving nonlinear integral equations. Numerical examples are given to illustrate the method. In our error analysis, we assume the existence and local uniqueness of a solution. For the case of three dimensions and a nonlinearity b that is given by the Stefan–Boltzmann law, we will provide an existence proof in the final section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Nonlinear elliptic equations with nonlinear boundary conditions. In: Eckhaus, W. (ed.) New Developments in Differential Equations, pp. 43–63. North-Holland (1976)

  2. Atkinson, K.: The numerical evaluation of fixed points for completely continuous operators. SIAM J. Num. Anal. 10, 799–807 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atkinson, K., Chien, D., Hansen, O.: A spectral method for elliptic equations: the Dirichlet problem. Adv. Comput. Math. 33, 169–189 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atkinson, K., Chien, D., Hansen, O.: Evaluating polynomials over the unit disk and the unit ball. Numerical Algorithms 67, 691–711 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Atkinson, K., Han, W.: Theoretical Numerical Analysis: A Functional Analysis Framework. 3rd edn. Springer, Berlin (2009)

  6. Atkinson, K., Han, W.: An Introduction to Spherical Harmonics and Approximations on the Unit Sphere. Springer, Berlin (2012)

  7. Atkinson, K., Hansen, O.: Creating domain mappings. Electron. Trans. Numer. Anal. 39, 202–230 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Atkinson, K., Hansen, O., Chien, D.: A spectral method for elliptic equations: the Neumann problem. Adv. Comput. Math. 34, 295–317 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Atkinson, K., Chien, D., Hansen, O.: A spectral method for nonlinear elliptic equations. Numerical Algorithms 74, 797–819 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Aubin, J.-P.: Approximation of Elliptic Boundary-Value Problems. Wiley-Interscience, Hoboken (1972)

    MATH  Google Scholar 

  11. Aubin, J.-P.: Applied Functional Analysis. 2nd edn. Wiley-Interscience, Hoboken (2000)

  12. Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  13. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland (1978)

  14. Dai, F., Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer, Berlin (2013)

  15. Delfour, M., Payre, G., Zolésios, J.-P.: Approximation of nonlinear problems associated with radiating bodies in space. SIAM J. Numerical Anal. 24, 1077–1094 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dunkl, C., Xu, Y.: Orthogonal Polynomials of Several Variables. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  17. Garabedian, P.: Partial Differential Equations. Wiley, Hoboken (1964)

    MATH  Google Scholar 

  18. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman Pub (1985)

  19. Li, H., Xu, Y.: Spectral approximation on the the unit ball. SIAM J. Num. Anal. 52, 2647–2675 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liou, K.-N.: An Introduction to Atmospheric Radiation. Academic Press, Cambridge (1980)

    Google Scholar 

  21. Krasnoseľskii, M.: Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon press, Oxford (1964)

    Google Scholar 

  22. Krasnoseľskii, M.: Positive Solutions of Operator Equations. Noordhoff (1964)

  23. Marcus, M., Mizel, V.: Absolute continuity on tracks and mappings of Sobolev spaces. Arch. Rat. Mech. Anal. 45, 294–320 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Maz’ya, V.: Sobolev Spaces. Springer, Berlin (1985)

    MATH  Google Scholar 

  25. Mikhlin, S.: Mathematical Physics, an Advanced Course. North-Holland (1970)

  26. Osborn, J.: Spectral approximation for compact operators. Math. Comput. 29, 712–725 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  27. Roach, G.: Green’s Functions. 2nd edn. Cambridge University Press, Cambridge (1982)

  28. Stroud, A.: Approximate Calculation of Multiple Integrals. Prentice-Hall Inc., Eaglewood Cliffs (1971)

    MATH  Google Scholar 

  29. Treves, F.: Topological Vector Spaces, Distributions, and Kernels. Dover Publications, Mineola (2006)

    MATH  Google Scholar 

  30. Xu, Y.: Lecture notes on orthogonal polynomials of several variables. In: Advances in the Theory of Special Functions and Orthogonal Polynomials, pp. 135–188. Nova Science Publishers (2004)

  31. Zeidler, E.: Nonlinear Functional Analysis and its Applications: I. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  32. Zeidler, E.: Nonlinear Functional Analysis and its Applications: II/B. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  33. Zeidler, E.: Nonlinear Functional Analysis and its Applications III. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

For helpful discussions, we thank Weimin Han and Gerhard Strohmer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendall Atkinson.

Appendix

Appendix

Defining surface normals and Jacobian for a general surface. This is well-known in the literature, but we include it for convenience. For notational simplicity in the mapping \({\Phi }:\overline {\mathbb {B}}^{d}\underset {onto}{\overset {1-1}{\longrightarrow }}\overline {{\Omega }}\), let x be replaced by (x, y, z), and s be replaced by (s, t, u). Write

$$\begin{array} [c]{l} s=s(x,y,z)\\ t=t(x,y,z)\\ u=u(x,y,z) \end{array} $$

For derivatives, use the shorthand notation

$$ds_{1}=\frac{\partial s(x,y,z)}{\partial x}\equiv\frac{\partial{\Phi}_{1}(x,y,z)}{\partial x},\quad ds_{2}=\frac{\partial s(x,y,z)}{\partial y},\quad ds_{3}=\frac{\partial s(x,y,z)}{\partial z} $$

with similar notation for t and u.

For the surface Jacobian |Jbdy (x, y, z)| used in the change of variables expression (2.11),

$$\left\vert J_{\textit{bdy}}\left( x,y,z\right) \right\vert^{2}=\left\vert \begin{array} [c]{ccc} x & y & z\\ dt_{1} & dt_{2} & dt_{3}\\ du_{1} & du_{2} & du_{3} \end{array} \right\vert^{2}+\left\vert \begin{array} [c]{ccc} ds_{1} & ds_{2} & ds_{3}\\ x & y & z\\ du_{1} & du_{2} & du_{3} \end{array} \right\vert^{2}+\left\vert \begin{array} [c]{ccc} ds_{1} & ds_{2} & ds_{3}\\ dt_{1} & dt_{2} & dt_{3}\\ x & y & z \end{array} \right\vert^{2} $$

The normal at (s, t, u) = Φ (x, y, z), call it N (s, t, u), is given by

$$\begin{array}{@{}rcl@{}} \mathbf{N} & =&\frac{\mathbf{G}}{\left\Vert \mathbf{G}\right\Vert },\\ \mathbf{G} & =&\left[ \begin{array} [c]{c} \left( dt_{1}du_{2}-dt_{2}du_{1}\right) z+\left( dt_{3}du_{1}-dt_{1} du_{3}\right) y+\left( dt_{2}du_{3}-dt_{3}du_{2}\right) x\\ \left( du_{1}ds_{2}-du_{2}ds_{1}\right) z+\left( du_{3}ds_{1}-du_{1} ds_{3}\right) y+\left( du_{2}ds_{3}-du_{3}ds_{2}\right) x\\ \left( ds_{1}dt_{2}-ds_{2}dt_{1}\right) z+\left( ds_{3}dt_{1}-ds_{1} dt_{3}\right) y+\left( ds_{2}dt_{3}-ds_{3}dt_{2}\right) x \end{array} \right] . \end{array} $$

As an example, consider the ellipsoidal mapping

$${\Phi}\left( x,y,z\right) =\left( ax,by,cz\right) ,\quad\quad\left( x,y,z\right) \in\overline{\mathbb{B}}^{3}. $$

Then

$$\left\vert J_{\textit{bdy}}\left( x,y,z\right) \right\vert^{2}=\left( bcx\right)^{2}+\left( acy\right)^{2}+\left( abz\right)^{2},\quad \quad\left( x,y,z\right) \in\mathbb{S}^{2}. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atkinson, K., Chien, D. & Hansen, O. A spectral method for an elliptic equation with a nonlinear Neumann boundary condition. Numer Algor 81, 313–344 (2019). https://doi.org/10.1007/s11075-018-0550-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0550-y

Keywords

Mathematics Subject Classification (2010)

Navigation