Skip to main content
Log in

Spectral analysis of the preconditioned system for the 3 × 3 block saddle point problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this work, we consider some preconditioning techniques for a class of 3 × 3 block saddle point problems, which arise from finite element methods for solving time-dependent Maxwell equations and some other applications. We propose an exact block diagonal preconditioner for solving the symmetric saddle point problem and its nonsymmetric form. We show that the corresponding preconditioned systems have six different eigenvalues. For the needs of practical application, we also present a class of inexact block diagonal preconditioners for solving the saddle point problems. For the symmetric system, we estimate the lower and upper bounds of positive and negative eigenvalues of the preconditioned matrix, respectively. For the nonsymmetric system, we derive some explicit and sharp bounds on the real and complex eigenvalues. Numerical experiments are presented to demonstrate the effectiveness and robustness of all these new preconditioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assous, F., Degond, P., Heintze, E., Raviart, P.A., Segre, J.: On a finite-element method for solving the three-dimensional Maxwell equations. J. Comput. Phys. 109, 222–237 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bergamaschi, L.: On eigenvalue distribution of constraint-preconditioned symmetric saddle point matrices. Numer. Linear Algebra Appl. 19, 754–772 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific (1999)

  4. Bai, Z.-Z., Chen, F., Wang, Z.-Q.: Additive block diagonal preconditioning for block two-by-two linear systems of skew-Hamiltonian coefficient matrices. Numer. Algor. 62, 655–675 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benzi, M., Golub, G.H.: A preconditioner for generalized saddle point problems. SIAM J. Matrix Anal. Appl. 26, 20–41 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bergamaschi, L., Martínez, Á.: RMCP: relaxed mixed constraint preconditioners for saddle point linear systems arising in geomechanics. Comput. Methods Appl. Mech. Engrg. 221–222, 54–62 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bai, Z.-Z., Ng, M.K.: On inexact preconditioners for nonsymmetric matrices. SIAM J. Sci. Comput. 26, 1710–1724 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benzi, M., Ng, M.K., Niu, Q., Wang, Z.: A relaxed dimensional factorization preconditioner for the incompressible Navier-Stokes equations. J. Comput. Phys. 230, 6185–6202 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bai, Z.-Z., Ng, M.K., Wang, Z.-Q.: Constraint preconditioners for symmetric indefinite matrices. SIAM J. Matrix Anal. Appl. 31, 410–433 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bramble, J.H., Pasciak, J.E.: A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Math. Comput. 50, 1–17 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benzi, M., Simoncini, V.: On the eigenvalues of a class of saddle point matrices. Numer. Math. 103, 173–196 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cao, Z.-H.: Positive stable block triangular preconditioners for symmetric saddle point problems. Appl. Numer. Math. 57, 899–910 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao, Y., Du, J., Niu, Q.: Shift-splitting preconditioners for saddle point problems. J. Comput. Appl. Math. 272, 239–250 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, Z.-M., Du, Q., Zou, J.: Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer Anal. 37, 1542–1570 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, C., Ma, C.-F.: A generalized shift-splitting preconditioner for saddle point problems. Appl. Math. Lett. 43, 49–55 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ciarlet, P., Zou, J.: Finite element convergence for the Darwin model to Maxwell’s equations. RAIRO Modél Math. Anal. Numér. 31, 213–249 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. De Sturler, E., Liesen, J.: Block-diagonal and constraint preconditioners for nonsymmetric indefinite linear systems, Part I: Theory. SIAM J. Sci. Comput. 26, 1598–1619 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dohrmann, C.R., Lehoucq, R.B.: A primal-based penalty preconditioner for elliptic saddle point systems. SIAM J. Numer. Anal. 44, 270–282 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Degond, P., Raviart, P.A.: An analysis of the Darwin model of approximation to Maxwell’s equations. Forum Math. 4, 13–44 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Elman, H.C., Silvester, D.J., Wathen, A.J.: Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations. Numer. Math. 90, 665–688 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fischer, B.: Polynomial Based Iteration Methods for Symmetric Linear Systems, Classics in Applied Mathematics. SIAM, Philadelphia (2011)

    Book  Google Scholar 

  22. Funken, S.A., Stephan, E.P.: Fast solvers with block-diagonal preconditioners for linear FEM-BEM coupling. Numer. Linear Algebra Appl. 16, 365–395 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEr and SifDec, a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29, 373–394 (2003)

    Article  MATH  Google Scholar 

  24. Hu, Q.-Y., Liu, C.-M., Shu, S., Zou, J.: An effective preconditioner for a PLM system for electromagnetic scattering problem. ESAIM: Math. Model. Numer. Anal. 49, 839–854 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, N., Ma, C.-F., Xie, Y.-J.: An inexact relaxed DPSS preconditioner for saddle point problem. Appl. Math. Comput. 265, 431–447 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Han, D.R., Yuan, X.M.: Local linear convergence of the alternating direction method of multipliers for quadratic programs. SIAM J. Numer. Anal. 51, 3446–3457 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hewett, D.W., Nielson, C.W.: A multidimensional quasineutral plasma simulation model. J. Comput. Phys. 29, 219–236 (1978)

    Article  MATH  Google Scholar 

  28. Hu, K.B., Xu, J.C.: Structure-preserving finite element methods for stationary MHD models, arXiv:1503.06160

  29. Jiang, M.-Q., Cao, Y., Yao, L.-Q.: On parameterized block triangular preconditioners for generalized saddle point problems. Appl. Math. Comput. 216, 1777–1789 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Krzyzanowski, P.: On block preconditioners for nonsymmetric saddle point problems. SIAM J. Sci. Comput. 23, 157–169 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Krzyzanowski, P.: On block preconditioners for saddle point problems with singular or indefinite (1, 1) block. Numer. Linear Algebra Appl. 18, 123–140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Keller, C., Gould, N.I.M., Wathen, A.J.: Constraint preconditioning for indefinite linear systems. SIAM J. Matrix Anal. Appl. 21, 1300–1317 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Monk, P.: Analysis of a finite element method for Maxwell’s equations. SIAM J. Numer. Anal. 29, 714–729 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mandel, J.: On block diagonal and Schur complement preconditioning. Numer. Math. 58, 79–93 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pan, J.-Y., Ng, M.K., Bai, Z.-Z.: New preconditioners for saddle point problems. Appl. Math. Comput. 172, 762–771 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Raviart, P.A.: Finite Element Approximation of the Time-Dependent Maxwell Equations, Tech report GdR SPARCH, 6. Ecole Polytechnique, France (1993)

    Google Scholar 

  37. Sonnendrücker, E., Ambrosiano, J.J., Brandon, S.T.: A finite element formulation of the Darwin PIC model for use on unstructured grids. J. Comput. Phys. 121, 281–297 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Silvester, D., Elman, H., Kay, D., Wathen, A.: Efficient preconditioning of the linearized Navier-Stokes equations for incompressible flow. J. Comput. Appl. Math. 128, 261–279 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Silvester, D., Wathen, A.: Fast iterative solution of stabilised Stokes systems, Part II: Using general block preconditioners. SIAM J. Numer. Anal. 31, 1352–1367 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, J.-L., Gu, C.-Q., Zhang, K.: A relaxed positive-definite and skew-Hermitian splitting preconditioner for saddle point problems. Appl. Math Comput. 249, 468–479 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, N.-M., Shen, P.: Constraint preconditioners for solving singular saddle point problems. J. Comput. Appl. Math. 238, 116–125 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewers for their valuable comments and suggestions that helped improve the quality of this paper.

Funding

The work was supported by the National Postdoctoral Program for Innovative Talents (Grant No. BX201600182), China Postdoctoral Science Foundation (Grant No. 2016M600141), National Natural Science Foundation of China (Grant No. 11071041), National Science Foundation of China (41725017), and National Basic Research Program of China under grant number 2014CB845906. It is also partially supported by the CAS/CAFEA international partnership Program for creative research teams (No. KZZD-EW-TZ-19 and KZZD-EW-TZ-15), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB18010202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Feng Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, N., Ma, CF. Spectral analysis of the preconditioned system for the 3 × 3 block saddle point problem. Numer Algor 81, 421–444 (2019). https://doi.org/10.1007/s11075-018-0555-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0555-6

Keywords

Mathematics Subject Classification (2010)

Navigation