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Abstract

We analyze a class of norms defined via an optimal interpolation problem involving the compo-
sition of norms and a linear operator. This construction, known as infimal postcomposition in

convex analysis, is shown to encompass various of norms which have been used as regularizers
in machine learning, signal processing, and statistics. In particular, these include the latent group

lasso, the overlapping group lasso, and certain norms used for learning tensors. We establish

basic properties of this class of norms and we provide dual norms. The extension to more gen-
eral classes of convex functions is also discussed. A stochastic block-coordinate version of the

Douglas-Rachford algorithm is devised to solve minimization problems involving these regulariz-

ers. A prominent feature of the algorithm is that it yields iterates that converge to a solution in the
case of non smooth losses and random block updates. Finally, we present numerical experiments

with problems employing the latent group lasso penalty.
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1 Introduction

In various areas of data analysis such as machine learning, statistics, and signal processing, regu-

larization is a standard tool used to promote known structures in the solutions of an optimization

problem. Structured sparsity regularizers have been of particular interest, as a means to encourage

specific sparsity patterns in regression vectors, spectra of matrices, gradient of images, and signal

decompositions. Important examples include the group lasso [47] and related norms [19, 31, 51],

spectral regularizers for low rank matrix learning and multitask learning [1, 20, 39], multiple kernel

learning [7, 33], regularizers for learning tensors [37, 42]. Structured sparsity regularizers also

arise in speech processing [5], high-dimensional inverse problems [10], image decomposition [25],

adaptive image interpolation [26], face reconstruction [40], and hyperspectral imaging [50].

We introduce a general formulation which captures the above norms and allows us to construct

new ones via an optimal interpolation problem involving simpler norms and a linear operator. Specif-

ically, given two Banach spaces X and Y, a norm ‖ · ‖ on Y is constructed as

(∀y ∈ Y) ‖y‖ = inf
x∈X
Lx=y

|||F (x)|||, (1.1)

where F : X → R
m is a mapping the components of which are norms, ||| · ||| is a norm on R

m, and

L : X → Y is a linear operator. As we shall see, this concise formulation encompasses many classes

of regularizers, either via the norm (1.1) or the associated dual norm. In particular, in machine

learning, functions of the type described in (1.1) have been investigated in [3, 19, 32, 27, 42].

This formulation also arises in image recovery [9], in inverse problems [12], and in the theory of

interpolation spaces [35, 44].

We provide basic properties (cf. Proposition 2.1 and Theorem 2.5) and examples of this con-

struction. These include the overlapping group lasso, the latent group lasso, and various norms used

in tensor learning problems. We also consider the more general formulation

ϕ(y) = inf
x∈X
Lx=y

h
(

F (x)
)

, (1.2)

where h and the components of F are convex functions that satisfy certain properties. Such con-

structs are found for instance in signal recovery formulations [9]. In convex analysis, they are known

as infimal postcomposition [8] and their importance was first underlined in [36].

On the numerical side, we shall take advantage of the fact that the mapping F and the operator

L can be composed of a large number of “simple” components to create complex structures. Specifi-

cally, we present a general method to solve optimization problems involving regularizers of the form

(1.1) where ||| · ||| = | · |1. This method is based on the stochastic block-coordinate Douglas-Rachford

iterative framework of [14, 15]. Unlike existing methods, this approach guarantees convergence of

the iterates to a solution even when none of the functions present in the model is differentiable and

when random coordinates updates are performed.

The paper is organized as follows. In Section 2 we introduce the general class of regularizers and

establish some of their basic properties. In Section 3 we construct a number of examples of norms

within the proposed framework. In Section 4 we present a random block-coordinate algorithm to
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solve learning problems involving these regularizers. Finally, in Section 5, we report on numerical

experiments with this algorithm using the latent group lasso penalty.

Notation. We introduce our notation and recall basic concepts from convex analysis used

throughout the paper; for details see [8, 48]. Let X be a real Banach space, let ‖ · ‖ be its norm, let

X ∗ be its topological dual, and let 〈·, ·〉 be the canonical bilinear form on X ×X ∗. If X 6= {0} and X
is reflexive, it follows from James’ theorem that the norm of X ∗ is defined by

(∀x∗ ∈ X ∗) ‖x∗‖∗ = max
x∈X
‖x‖=1

〈x, x∗〉. (1.3)

The space of bounded linear operators from X to a Banach space Y is denoted by B (X ,Y). Let

ϕ : X → ]−∞,+∞]. The domain of ϕ is domϕ =
{

x ∈ X
∣

∣ ϕ(x) < +∞
}

and the conjugate of ϕ is

ϕ∗ : X ∗ → [−∞,+∞] : x∗ 7→ supx∈X (〈x, x∗〉−ϕ(x)). Γ0(X ) denotes the set of lower semicontinuous

convex functions from X to ]−∞,+∞] with nonempty domain. If X is a Hilbert space, the proximity

operator of ϕ ∈ Γ0(X ) at x ∈ X is the unique minimizer, denoted by proxϕx, of ϕ + ‖x − ·‖2/2.

Given p ∈ [1,+∞], the ℓp norm on R
d is denoted by | · |p. The associated dual norm is | · |q, where

1/p+1/q = 1. Rm+ and R
m
++ are the positive and strictly positive m-dimensional orthant, respectively,

and R
m
− = −R

m
+ .

2 A class of norms

We establish the mathematical foundation of our framework, starting with a scheme to construct

convex functions on Y.

Proposition 2.1 Let X , Y, and Z be reflexive real Banach spaces, let K be a nonempty closed convex

cone in Z, let L : X → Y be linear and bounded, and let F : X → Z be K-convex in the sense that

(∀α ∈ ]0, 1[)(∀x ∈ X )(∀y ∈ X ) F
(

αx+ (1− α)y
)

− αF (x) − (1− α)F (y) ∈ K. (2.1)

Let h : Z → ]−∞,+∞] be a convex function such that dom h ∩ ranF 6= ∅ and

(∀z1 ∈ ranF )(∀z2 ∈ ranF ) z1 − z2 ∈ K ⇒ h(z1) 6 h(z2). (2.2)

Define

ϕ : Y → [−∞,+∞] : y 7→ inf
x∈X
Lx=y

h
(

F (x)
)

. (2.3)

Then the following hold:

(i) ϕ is convex.

(ii) Suppose that F is continuous, that the cone generated by ranL∗ − dom (h ◦ F )∗ is a closed vector

subspace of X ∗, and that h is lower semicontinuous. Then ϕ ∈ Γ0(Y).
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Proof. Set f = h ◦ F .

(i): It is enough to show that f is convex, as this will imply that ϕ is likewise [8, Proposi-

tion 12.36(ii)]. Let α ∈ ]0, 1[, and let x and y be points in X . Combining (2.1) and (2.2) yields

h
(

F (αx+ (1− α)y)
)

6 h
(

αF (x) + (1− α)F (y)
)

. (2.4)

Therefore, by convexity of h, we obtain

(h ◦ F )
(

αx+ (1− α)y
)

6 α(h ◦ F )(x) + (1− α)(h ◦ F )(y), (2.5)

which establishes the convexity of f .

(ii): We first derive from [8, Lemma 1.28] that f is lower semicontinuous. Thus, f ∈ Γ0(X ) and,

since the cone generated by ranL∗ − dom f∗ is a closed vector subspace of X ∗, it follows from [48,

Theorem 2.8.3(vii)] and the same arguments used in the Hilbertian case in [8, Corollary 25.44(i)]

that ϕ ∈ Γ0(Y).

We are now ready to define a class of norms induced by optimal interpolation, which will be the

main focus of the present paper.

Assumption 2.2 Y is a real Banach space and m is a strictly positive integer. For every j ∈ {1, . . . ,m},

Xj is a reflexive real Banach space with norm ‖ · ‖j . A generic element in X = X1 × · · · ×Xm is denoted

by x = (x1, . . . , xm). Furthermore:

(i) F : X → R
m : x 7→ (‖x1‖1, . . . , ‖xm‖m).

(ii) ||| · ||| is a norm on R
m which is monotone in the sense that

(

∀a ∈ R
m
+

)(

∀b ∈ R
m
+

)

a− b ∈ R
m
− ⇒ |||a||| 6 |||b|||. (2.6)

(iii) For every j ∈ {1, . . . ,m}, Lj ∈ B (Xj ,Y), L : X → Y : x 7→ L1x1 + · · ·+ Lmxm, and ranL = Y.

Set

(∀y ∈ Y) ‖y‖ = inf
x∈X
Lx=y

|||F (x)||| = inf
x1∈X1,...,xm∈Xm

L1x1+···+Lmxm=y

∣

∣

∣

∣

∣

∣

(

‖x1‖1, . . . , ‖xm‖m
)∣

∣

∣

∣

∣

∣. (2.7)

Proposition 2.3 Consider the setting of Assumption 2.2 and set n = ||| · ||| ◦ F . Then the following

hold:

(i) n is a norm on X .

(ii) The dual norm of n at x∗ ∈ X ∗ is n∗(x
∗) = |||(‖x∗1‖1∗, . . . , ‖x∗m‖m∗)|||∗.

Proof. Let x ∈ X and x∗ ∈ X ∗.
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(i): We first deduce from Assumption 2.2(i) that

(∀α ∈ R) n(αx) = |||(‖αx1‖1, . . . , ‖αxm‖m)|||
= |||(|α| ‖x1‖1, . . . , |α| ‖xm‖m)|||
= |α| |||(‖x1‖1, . . . , ‖xm‖m)|||
= |α| |||F (x)|||
= |α| n(x) (2.8)

and that

n(x) = 0 ⇔ F (x) = 0

⇔ (∀j ∈ {1, . . . ,m}) ‖xj‖j = 0

⇔ (∀j ∈ {1, . . . ,m}) xj = 0

⇔ x = 0. (2.9)

To check the triangle inequality, let z ∈ X . By Assumption 2.2(i), F (x + z) − F (x) − F (z) ∈ R
m
− .

Hence, we derive from (2.6) that

n(x+ z) = |||F (x+ z)||| 6 |||F (x) + F (z)||| 6 |||F (x)||| + |||F (z)||| = n(x) + n(z). (2.10)

(ii): Suppose that n(x) = 1, set b = (‖x∗j‖j∗)16j6m, and observe that

〈x, x∗〉 =
m
∑

j=1

〈xj , x∗j 〉 6
m
∑

j=1

‖xj‖j ‖x∗j‖j∗ = F (x)⊤b 6 |||b|||∗. (2.11)

Taking the supremum over all such vectors x, we obtain n∗(x
∗) 6 |||b|||∗. However, by (1.3), since

b ∈ [0,+∞[m, there exists a = (αj)16j6m ∈ [0,+∞[m such that |||a||| = 1 and a⊤b = |||b|||∗. Likewise,

for every j ∈ {1, . . . ,m}, there exists zj ∈ Xj such that ‖zj‖j = 1 and ‖x∗j‖j∗ = 〈zj , x∗j〉. Now set

x = (xj)16j6m, where (∀j ∈ {1, . . . ,m}) xj = αjzj . Then

n(x) =
∣

∣

∣

∣

∣

∣

(

‖α1z1‖1, . . . , ‖αmzm‖m
)∣

∣

∣

∣

∣

∣ =
∣

∣

∣

∣

∣

∣

(

α1, . . . , αm
)∣

∣

∣

∣

∣

∣ = |||a||| = 1 (2.12)

and therefore

n∗(x
∗) = sup

w∈X
n(w)=1

〈w, x∗〉 > 〈x, x∗〉 =
m
∑

j=1

〈xj , x∗j 〉 =
m
∑

j=1

αj〈zj , x∗j〉 =
m
∑

j=1

αj‖x∗j‖j∗ = a⊤b = |||b|||∗.

(2.13)

We conclude that n∗(x
∗) = |||b|||∗.

Remark 2.4 Let y ∈ Y and set C =
{

x ∈ X
∣

∣ Lx = y
}

. Since ranL = Y, we have C 6= ∅. Now let

dC be the distance function to the affine subspace C associated with the norm n = ||| · ||| ◦ F (see

Proposition 2.3), that is,

(∀z ∈ X ) dC(z) = inf
x∈C

n(z − x). (2.14)
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It follows from (2.7) that

dC(0) = inf
x∈C

n(x− 0) = inf
x∈C

n(x) = ‖y‖. (2.15)

Thus, the function ‖ · ‖ in (2.7) is defined via a minimal norm interpolation process, that is, the

optimization problem underlying (2.7) is that of minimizing the norm n over the affine subspace

C. Optimal interpolation and, in particular, the problem of finding a minimal norm interpolant to

a finite set of points has a long history in approximation theory; see, e.g., [11] and the references

therein.

In the next result we show that the construction described in Assumption 2.2 does provide a

norm, and we compute its dual norm.

Theorem 2.5 Consider the setting of Assumption 2.2. Then the following hold:

(i) ‖ · ‖ is a norm on Y.

(ii) Suppose that Y is finite-dimensional. Then the dual norm of ‖ · ‖ at y∗ ∈ Y∗ is

‖y∗‖∗ =
∣

∣

∣

∣

∣

∣

(

‖L∗
1y

∗‖1∗, . . . , ‖L∗
my

∗‖m∗

)∣

∣

∣

∣

∣

∣

∗
. (2.16)

Proof. Set n = ||| · ||| ◦ F and recall from Proposition 2.3 that n is a norm.

(i): We first note that, since ranL = Y, dom ‖ · ‖ = Y. Next, we derive from (2.7) that, for every

y ∈ Y and every α ∈ Rr {0},

‖αy‖ = inf
x∈X
Lx=αy

n(x) = |α| inf
x∈X

L(x/α)=y

n(x/α) = |α| ‖y‖. (2.17)

On the other hand, it is clear that F satisfies (2.1) with K = R
m
− , that ||| · ||| satisfies (2.2), and that

(2.7) assumes the same form as (2.3). Hence, by Proposition 2.1(i), the function ‖ · ‖ is convex. In

view of (2.17), we therefore have, for every (y, z) ∈ Y × Y, ‖y + z‖ 6 ‖y‖ + ‖z‖. Now let y ∈ Y be

such that ‖y‖ = 0 and set C =
{

x ∈ X
∣

∣ Lx = y
}

. Then it follows from (2.15) that dC(0) = 0 and,

since C is closed, we get 0 ∈ C. Therefore, y = L0 = 0. Altogether, ‖ · ‖ is a norm.

(ii): Let y∗ ∈ Y∗. Then

‖y∗‖∗ = max
{

〈y, y∗〉
∣

∣ y ∈ Y, ‖y‖ = 1
}

= max
{

〈y, y∗〉
∣

∣

∣
y ∈ Y, min

x∈X , Lx=y
n(x) = 1

}

= max
{

〈Lx, y∗〉
∣

∣ x ∈ H, n(x) = 1
}

= max
{

〈x,L∗y∗〉
∣

∣ x ∈ H, n(x) = 1
}

= n∗(L
∗y∗). (2.18)

We conclude by applying Proposition 2.3.

We illustrate the construction (2.7) via two examples.
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Example 2.6 In Theorem 2.5 suppose that m = 2, that X1 and X2 are continuously embedded in the

same topological vector space Y, that L1 and L2 are the canonical injections, and that ||| · ||| = | · |1.

Then (2.7) becomes

(∀y ∈ Y) ‖y‖ = min
x1∈X1,x2∈X2

x1+x2=y

(

‖x1‖1 + ‖x2‖2
)

. (2.19)

In other words, ‖ · ‖ represents the infimal convolution of the norms ‖ · ‖1 and ‖ · ‖2. This type of

construct is central is the theory of interpolation spaces [35, 44]. If we replace the ℓ1 norm by the

ℓp norm for some p ∈ ]1,+∞[ above, we obtain,

(∀y ∈ Y) ‖y‖ = min
x1∈Y1, x2∈Y2

x1+x2=y

(

‖x1‖p1 + ‖x2‖p2
)1/p

. (2.20)

This formulation also arises in the area of interpolation spaces [17, 35].

Example 2.7 Let H be a real Hilbert space with norm ‖ · ‖H, which is identified with its dual. In

Theorem 2.5 suppose that X1 = · · · = Xm = H, let p and q be numbers in ]1,+∞[ such that

1/p + 1/q = 1, and let ||| · ||| = | · |p. Then (2.7) becomes

(∀y ∈ Y) ‖y‖ =






min

x1∈H,...,xm∈H∑m
j=1

Ljxj=y

m
∑

j=1

‖xj‖pH







1/p

. (2.21)

Furthermore, if H is finite dimensional, the dual norm at y∗ ∈ Y is given by (2.16) as

‖y∗‖∗ =





m
∑

j=1

∥

∥L∗
jy

∗
∥

∥

q

H





1/q

. (2.22)

This construction is discussed in [27, Theorem 7].

Remark 2.8 Any norm ‖ · ‖ on Y can trivially be written in the form of (2.7) by letting m = 1,

X1 = Y, ‖ · ‖1 = ‖ · ‖, L1 = Id , and ||| · ||| = | · |. However, we are interested in exploiting the

structure of the construction (2.7) in cases in which the norms ||| · ||| and (‖ · ‖j)16j6m are chosen

from a “simple” class and give rise, via the optimal interpolation problem (2.7), to a “complex” norm

‖ · ‖. In particular, when using proximal splitting methods, the computation of prox‖·‖ will typically

not be easy whereas that of the operators (prox‖·‖j)16j6m will be. This will be exploited in Section 4

to devise an efficient block-coordinate splitting algorithm in the case when ||| · ||| = | · |1.

3 Examples

In this section, we observe that the construct presented in Assumption 2.2 contains in a single

framework a number of existing regularizers. For simplicity, we focus on the norms captured by

Example 2.7. Our main aim here is not to derive new regularizers but, rather, to show that our

analysis captures existing ones and to derive their dual norms.
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3.1 Latent group lasso

Notation 3.1 The support of y = (ηi)16i6d ∈ R
d is supp(y) =

{

i ∈ {1, . . . , d}
∣

∣ ηi 6= 0
}

. For every

∅ 6= G ⊂ {1, . . . , d} and y ∈ R
d, we set r = cardG and let y|G denote the vector in R

r obtained by

retaining the components of y indexed by G, i.e., y|G = (ηi)i∈G. Finally, ei is the ith standard unit

vector in R
d.

The example we consider is known as the latent group lasso (LGL), or group lasso with overlap,

which goes back to [19]. For every j ∈ {1, . . . ,m}, fix (pj , qj) ∈ [1,+∞] × [1,+∞] such that

1/pj + 1/qj = 1. Let (Gj)16j6m be a covering of {1, . . . , d} and define the vector space

Z =
{

(zj)16j6m
∣

∣ (∀j ∈ {1, . . . ,m}) zj ∈ R
d and supp(zj) ⊂ Gj

}

. (3.1)

The latent group lasso penalty is defined, for y ∈ R
d, as

‖y‖LGL = min

{

m
∑

j=1

|zj |pj
∣

∣

∣ (zj)16j6m ∈ Z,
m
∑

j=1

zj = y

}

. (3.2)

The optimal interpolation problem (3.2) seeks a decomposition of vector y in terms of vectors

(zj)16j6m the support sets of which are restricted to the corresponding group of variables in Gj .
If the groups overlap then the decomposition is not necessarily unique, and the variational formula-

tion involves those zj for which
∑m

j=1 |zj |pj is minimal. On the other hand, if the groups are pairwise

disjoint, that is (Gj)16j6m forms a partition of {1, . . . , d}, the latent group lasso norm coincides with

the “standard” group lasso norm [47], which is defined as

(

∀y ∈ R
d
)

‖y‖GL =
m
∑

j=1

∣

∣y|Gj

∣

∣

pj
. (3.3)

The norms (3.2) and (3.3) are presented in [19] and [47] respectively in the case that p1 = · · · =
pm = p and q1 = · · · = qm = q. In general, (3.2) has no closed form expression due to the

overlapping of the groups. However, in special cases which exhibit additional structure, it can be

computed in a finite number of steps. An important example is provided by the (k, p)-support norm

[29], in which the groups consist of all subsets of {1, . . . , d} of cardinality no greater than k, for

some k ∈ {1, . . . , d}. The case p = 2 has been studied in [2] and [28].

Example 3.2 In the above setting, for every j ∈ {1, . . . ,m}, set rj = cardGj . The latent group lasso

penalty (3.2) is a norm of the form (2.7) with Y = R
d, ||| · ||| = | · |1, and, for every j ∈ {1, . . . ,m},

Xj = R
rj , ‖ · ‖j = | · |pj and Lj = [ei | i ∈ Gj ] is a d× rj matrix. The change of variables zj = Ljxj

then yields (3.2). Furthermore, the dual norm is given by

(

∀y∗ ∈ R
d
)

‖y∗‖LGL∗ = max
16j6m

‖y∗|Gj
‖qj . (3.4)

This follows from (2.16) by noting that ||| · |||∗ = | · |∞ and, for all j ∈ {1 . . . ,m}, ‖ · ‖j∗ = | · |qj and

L∗
jy

∗ = y∗|Gj
.
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3.2 Overlapping group lasso

An alternative generalization of the group lasso norm (3.3) is the overlapping group lasso [21,

51], which we denote by ‖ · ‖OGL. It has the same expression as (3.3), except that we drop the

restriction that the groups (Gj)16j6m form a partition of {1, . . . , d}. Our next result establishes that

the overlapping group lasso penalty is captured by a dual norm of type (2.16). We continue to use

Notation 3.1.

Example 3.3 For every j ∈ {1, . . . ,m}, let (pj, qj) ∈ [1,+∞]× [1,+∞] be such that 1/pj +1/qj = 1.

Let (Gj)16j6m be a covering of {1, . . . , d} and let ||| · ||| = | · |∞. For every j ∈ {1, . . . ,m}, set

rj = cardGj , ‖ · ‖j = | · |qj , and Lj = [ei | i ∈ Gj ]. Then the norm (2.7) evaluated at y ∈ R
d is

‖y‖ = inf

{

max
16j6m

|xj|qj
∣

∣

∣

m
∑

j=1

Ljxj = y

}

. (3.5)

In addition, since ||| · |||∗ = | · |1 and, for every j ∈ {1, . . . ,m}, ‖ · ‖j∗ = | · |pj and |L⊤

j y
∗|pj = |y∗|Gj

|pj ,
(2.16) yields ‖ · ‖∗ = ‖ · ‖OGL.

Remark 3.4 The case p = +∞ corresponds to the iCAP penalty of [51]. We can also consider other

choices for the matrices (Lj)16j6m. For example, an appropriate choice gives various total variation

penalties [34]. A further example is obtained by choosing m = 1 and L1 to be the incidence matrix

of a graph, a setting which is has been considered in the context of semi-supervised learning [18].

In particular, for p = 1, this corresponds to the fused lasso penalty [41].

Remark 3.5 We have seen that the norm (2.7) captures the latent group lasso when ||| · ||| = | · |1,

while the dual norm (2.16) captures the overlapping group lasso when ||| · ||| = | · |∞. A natural

extension of either setting is to choose ||| · ||| to be the k Ky-Fan norm for some k ∈ {1, . . . ,m}. In

other words we choose, for every x ∈ R
m, |||x||| =∑k

j=1 |x|
↓
j , where |x|↓ ∈ R

m is the vector obtained

by reordering the components of x so that they are decreasing in absolute value. Note that, if k = 1,

then ||| · ||| = | · |∞ and, if k = m, then ||| · ||| = | · |1.

3.3 Polyhedral norms

A norm on Y = R
d is polyhedral (or is a block-norm) if its closed unit ball B is a polyhedron, i.e., a

finite intersection of closed affine half-spaces. Examples of polyhedral norms used in data processing

can be found in [29, 49, 51]. In this case, B is bounded, symmetric with respect to the origin, and

it has a finite, even number of extreme points. Let us recall a couple of useful facts.

Fact 3.6 [45, Theorem 1] Let ‖·‖ be a polyhedral norm on Y = R
d and let (bj)16j6m be the extreme

points of its closed unit ball. Then

(∀y ∈ Y) ‖y‖ = min
(ξj)16j6m∈Rm
∑m

j=1
ξjbj=y

m
∑

j=1

|ξj|. (3.6)
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Fact 3.7 [45, Theorem 2] Let ‖ · ‖ be a polyhedral norm on Y = R
d, let B be its closed unit ball, and

let B⊙ =
{

y∗ ∈ R
d
∣

∣ (∀y ∈ B) y⊤y∗ 6 1
}

be the polar set of B. Then B⊙ is a bounded polyhedron

and, if (b∗j)16j6r denote its extreme points,

(

∀y ∈ R
d
)

‖y‖ = max
16j6r

y⊤b∗j . (3.7)

It follows from Fact 3.6 that polyhedral norms are special cases of (2.7). Indeed, (3.6) is derived

from (2.7) by choosing ||| · ||| = | · |1 and (∀j ∈ {1, . . . ,m}) Xj = R, ‖ · ‖j = | · |, and Lj : ξ 7→ ξbj .
In addition, since a linear function on a nonempty compact convex set attains its maximum at an

extreme point of the set [36, Corollary 32.3.2], the dual norm is given by
(

∀y∗ ∈ R
d
)

‖y∗‖∗ = max
y∈B

y⊤y∗ = max
16j6m

b⊤j y
∗. (3.8)

Note that (3.8) is the dual counterpart of (3.7).

3.4 Θ-norms

Assume that Y = R
d. Families of norms parameterized by a nonempty, convex, and bounded set

Θ ⊂ R
d
++ were considered in [6, 28, 31]. As shown in [30, Proposition 2], the expressions

(

∀y ∈ R
d
)

‖y‖Θ = inf
θ∈Θ

√

〈y | diag(θ)−1y〉 (3.9)

and
(

∀y∗ ∈ R
d
)

‖y∗‖Θ∗ = sup
θ∈Θ

√

〈y∗ | diag(θ)y∗〉 (3.10)

define dual norms. Examples of norms which are included in this family are the ℓp-norms, and the

k-support norm mentioned above [2]. Next, we relate Θ-norms to our framework.

Proposition 3.8 Let (θj)16j6m be vectors in R
d
+ and let Θ be a subset of R

d
++ such that Θ =

conv{θ1, . . . , θm}. Then the norms defined in (3.9) and (3.10) can be written in the form (2.7) and

(2.16) respectively, with ||| · ||| = | · |1 and (∀j ∈ {1, . . . ,m}) ‖ · ‖j = | · |2 and Lj = diag(
√

θj), where

the
√· operator is understood componentwise.

Proof. We have ||| · |||∗ = | · |∞ and (∀j ∈ {1, . . . ,m}) ‖ · ‖j∗ = | · |2. Now set (∀j ∈ {1, . . . ,m})
Lj = diag(

√

θj) and Xj = R
d. Then we derive from (2.16) that

(

∀y∗ ∈ R
d
)

‖y∗‖2∗ = max
16j6m

|L⊤

j y
∗|22

= max
16j6m

〈y∗ | diag(θj)y∗〉

= max
θ∈Θ

〈y∗ | diag(θ)y∗〉 (3.11)

= sup
θ∈Θ

〈y∗ | diag(θ)y∗〉, (3.12)

where equality (3.11) results from the fact that, in R
d, a linear function on a nonempty compact

convex set attains its maximum at an extreme point of the set [36, Corollary 32.3.2]. This establishes

(3.10). As noted above, (3.10) is the dual of (3.9). It follows that (3.9) is of the form (2.7).
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3.5 Tensor norms

A number of regularizers have been proposed to learn low rank tensors; see [16, 37, 38, 43, 46] and

the references therein. In this section, we discuss two prominent examples that fit our framework.

We first recall some notions from multilinear algebra [23]. Let Y ∈ R
d1×···×dm be an m-mode real

tensor, that is,

Y = [Yi1,...,im ]16i16d1,...,16im6dm
. (3.13)

Now let j ∈ {1, . . . ,m}. A mode-j fiber is a vector composed of elements of Y obtained by fixing all

indices except those corresponding to the jth. Set rj =
∏

k 6=j dk. The mode-j matricization Mj(Y )
of a tensor Y is the dj × rj matrix obtained by arranging the mode-j fibers of Y such that each

of them forms a column of Mj(Y ). By way of example, a 3-mode tensor Y ∈ R
3×4×2 admits the

matricizations: M1(Y ) ∈ R
3×8, M2(Y ) ∈ R

4×6, and M3(Y ) ∈ R
2×12. Note that Mj : R

d1×···×dm →
R
dj×rj is a linear operator. Its adjoint M∗

j : R
dj×rj → R

d1×···×dm is the reverse matricization along

mode j.

Recall that the nuclear norm (or trace norm) of a matrix, ‖·‖nuc, is the sum of its singular values.

Its dual norm is the spectral norm ‖ · ‖sp which provides the largest singular value. The overlapped

nuclear norm [37, 43] is defined as the sum of the nuclear norms of the mode-j matricizations,

namely

(

∀Y ∈ R
d1×···×dm

)

‖Y ‖ONN =

m
∑

j=1

‖Mj(Y )‖nuc. (3.14)

Example 3.9 Let Y = R
d1×···×dm and ||| · ||| = | · |∞. In addition, for every j ∈ {1, . . . ,m}, set

Xj = R
dj×rj , ‖ · ‖j = ‖ · ‖sp, and Lj =M∗

j . Then (2.7) becomes

(

∀Y ∈ R
d1×···×dm

)

‖Y ‖ = inf

{

max
16j6m

‖Xj‖sp

∣

∣

∣

m
∑

j=1

M∗
jXj = Y

}

. (3.15)

In addition, since ||| · |||∗ = | · |1 and, for every j ∈ {1, . . . ,m}, ‖ · ‖j∗ = ‖ · ‖nuc and L∗
j = Mj ,

equation (2.16) yields ‖ · ‖∗ = ‖ · ‖ONN.

Now let {αj}16j6m ⊂ ]0,+∞[. The scaled latent nuclear norm is defined by (see [42] and [46]

for special cases)

(

∀Y ∈ R
d1×···×dm

)

‖Y ‖LNN = inf

{

m
∑

j=1

1

αj
‖Xj‖nuc

∣

∣

∣

m
∑

j=1

M∗
jXj = Y

}

. (3.16)

Our next example captures this norm.

Example 3.10 The latent nuclear norm (3.16) is of the form (2.7) with Y = R
d1×···×dm , ||| · ||| = | · |1

and, for every j ∈ {1, . . . ,m}, Xj = R
dj×rj , ‖ · ‖j = ‖ · ‖nuc/αj , and Lj = M∗

j . Furthermore, (2.16)

yields the dual norm

(

∀Y ∗ ∈ R
d1×···×dm

)

‖Y ∗‖LNN∗ = max
16j6m

αj‖Mj(Y
∗)‖sp. (3.17)
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4 Random block-coordinate algorithm

4.1 Overview

The purpose of this section is to address some of the numerical aspects associated with the class of

norms introduced in Assumption 2.2 in the case when ||| · ||| = | · |1, which reduces (2.7) to

(∀y ∈ Y) ‖y‖ = inf
x1∈X1,...,xm∈Xm

L1x1+···+Lmxm=y

‖x1‖1 + · · · + ‖xm‖m. (4.1)

Since such norms are nonsmooth convex functions, they could in principle be handled via their

proximity operators in the context of proximal splitting algorithms [8, 13]. However, the proximity

operator of the composite norm ‖ · ‖ in (4.1) is usually intractable, which makes this direct approach

unviable. We circumvent this problem by formulating the problem in such a way that it involves

only the proximity operators of the norms (‖ · ‖j)16j6m, which will typically be available in closed

form.

The main features of the algorithmic approach we propose are the following:

• It can handle general nonsmooth formulations: the functions present in the model need not

be differentiable.

• It adapts the recent approach proposed in [14, 15] to devise a block-coordinate algorithm

which allows us to select arbitrarily the blocks of norms (‖ · ‖j)16j6m to be activated over the

course of the iterations. This makes the method amenable to the processing of very large data

sets in a flexible manner by adapting the computational load of each iteration to the available

computing resources.

• The computations are broken down to the evaluation of simple proximity operators of the

norms (‖ · ‖j)16j6m and of those appearing in the loss function, while the linear operators

(Lj)16j6m are applied separately.

• Knowledge of the norms of the operators (Lj)16j6m is not required.

• Convergence of the iterates to a solution of the minimization problem under consideration is

guaranteed.

4.2 Problem formulation

We consider the standard linear problem in which a vector y in a real Hilbert space Y is to be inferred

from n noisy linear observations















β1 = 〈y, a∗1〉+ ζ1
...

βn = 〈y, a∗n〉+ ζn,

(4.2)

12



where (a∗i )16i6n ∈ (Y∗)n are known and (ζi)16i6n ∈ R
n model unknown perturbations. This model

captures various problems in supervised learning and in inverse problems. A common variational

formulation associated with (4.2) is the regularized convex minimization problem

minimize
y∈Y

n
∑

i=1

ℓi(〈y, a∗i 〉, βi) + λ‖y‖, (4.3)

where ‖ · ‖ is a norm fulfilling Assumption 2.2 with ||| · ||| = | · |1 (see (4.1)), λ ∈ ]0,+∞[ is a

regularization parameter, and, for every i ∈ {1, . . . , n} and every β ∈ R, ℓi(·, β) ∈ Γ0(R). We also

assume that each Xj is finite-dimensional and can be equipped with a norm ‖ · ‖j that makes it a

Euclidean space. We designate by H the Euclidean space obtained by renorming X = X1 × · · · ×Xm
with the norm x = (xj)16j6m 7→

√

∑m
j=1 ‖xj‖2j . In this setting, (4.3) becomes

minimize
y∈Y

x1∈X1,...,xm∈Xm∑m
j=1

Ljxj=y

n
∑

i=1

ℓi(〈y, a∗i 〉, βi) + λ

m
∑

j=1

‖xj‖j . (4.4)

One can therefore first obtain a solution (xj)16j6m to the problem

minimize
x1∈X1,...,xm∈Xm

n
∑

i=1

ℓi

(

m
∑

j=1

〈Ljxj , a∗i 〉, βi
)

+ λ

m
∑

j=1

‖xj‖j (4.5)

and set y =
∑m

j=1Ljxj to obtain a solution to (4.4). To make the structure of (4.5) more apparent,

let us introduce the functions

Φ: X → ]−∞,+∞] : x 7→ λ
m
∑

j=1

‖xj‖j (4.6)

and

Ψ: Rm → ]−∞,+∞] : (η1, . . . , ηn) 7→
n
∑

i=1

ψi(ηi), (4.7)

where, for every i ∈ {1, . . . , n},

ψi : R → ]−∞,+∞] : ηi 7→ ℓi(ηi, βi). (4.8)

Let us also define

A : Y → R
n : y 7→ (〈y, a∗i 〉)16i6n and B : H → R

n : x 7→
m
∑

j=1

Bjxj, (4.9)

where, for every j ∈ {1, . . . ,m},

Bj = ALj ∈ B (Xj ,Rn). (4.10)

Then, recalling from Assumption 2.2 that L : H → Y : x 7→∑m
j=1 Ljxj, we haveB = AL ∈ B (H,Rn)

and we can thus rewrite (4.4) as

minimize
x∈H

Φ(x) + Ψ(Bx). (4.11)

Note that our hypotheses imply that Φ ∈ Γ0(H) and Ψ ∈ Γ0(R
n).
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4.3 Douglas-Rachford splitting in a product space

We work in the direct Hilbert sum H = H⊕ R
n. Let us introduce the functions

{

F : H → ]−∞,+∞] : (x, r) 7→ Φ(x) + Ψ(r)

G = ιV , where V = graB =
{

(x, r) ∈ H
∣

∣ Bx = r
}

.
(4.12)

Using the variable x = (x, r), we reduce (4.11) to the problem

minimize
x∈H

F (x) +G(x) (4.13)

involving the sum of two functions in Γ0(H) and which can be solved with the Douglas-Rachford

algorithm [8, Section 27.2]. Let y0 ∈ H, let γ ∈ ]0,+∞[, and let (µk)k∈N be a sequence in ]0, 2[ such

that
∑

k∈N µk(2− µk) = +∞. The Douglas-Rachford algorithm

for k = 0, 1, . . .








xk = proxγGyk
zk = proxγF (2xk − yk)

yk+1 = yk + µk(zk − xk)

(4.14)

produces a sequence (xk)k∈N which converges to a solution to (4.13) [8, Corollary 27.4]. However,

by [8, Proposition 24.11 and Example 29.19(i)],

prox
F
: (x, r) 7→

(

proxΦx,proxΨr
)

, (4.15)

and

prox
G
: (u, s) 7→ (x,Bx), where x = u−B∗(Id +BB∗)−1(Bu− s) (4.16)

is the projection operator onto V . Hence, upon setting R = B∗(Id +BB∗)−1, we can rewrite (4.14)

as

for k = 0, 1, . . .
























qk = Buk − sk
xk = uk −Rqk
rk = Bxk
vk = proxγΦ(2xk − uk)

tk = proxγΨ(2rk − sk)

uk+1 = uk + µk(vk − xk)
sk+1 = sk + µk(tk − rk),

(4.17)

where we have set xk = (xk, rk), yk = (uk, sk), and zk = (vk, tk). It follows from the above result

that (xk)k∈N converges to a solution to (4.11). Let us now express (4.17) in terms of the original

variables of problem (4.5). To this end set, for every j ∈ {1, . . . ,m},

Rj = B∗
j (Id +BB∗)−1 = B∗

j

(

Id +

m
∑

j=1

BjB
∗
j

)−1

. (4.18)

Moreover, let us denote by xj,k ∈ Xj the jth component of xk, by uj,k ∈ Xj the jth component of uk,
and by vj,k ∈ Xj the jth component of vk. Furthermore, we denote by ρi,k ∈ R the ith component

14



of rk, by σi,k ∈ R the ith component of sk, and by τi,k ∈ R the ith component of tk. Then (4.17)

becomes

for k = 0, 1, . . .




























qk =
∑m

j=1Bjuj,k − sk
for j = 1, . . . ,m
⌊

xj,k = uj,k −Rjqk
uj,k+1 = uj,k + µk

(

proxγλ‖·‖j (2xj,k − uj,k)− xj,k
)

rk =
∑m

j=1Bjxj,k
for i = 1, . . . , n
⌊

σi,k+1 = σi,k + µk
(

proxγψi
(2ρi,k − σi,k)− ρi,k

)

.

(4.19)

In large-scale problems, a possible drawback of this approach is that m+n proximity operators must

be evaluated at each iteration, which can lead to impractical implementations in terms of compu-

tations and/or memory requirements. The analysis of [14, Corollary 5.5] shows that the proximity

operators in (4.19) can be sampled by sweeping through the indices in {1, . . . ,m} and {1, . . . , n}
randomly while preserving the convergence of the iterates. This results in partial updates of the

variables which lead to significantly lighter iterations and remarkable flexibility in the implementa-

tion of the algorithm. Thus, a variable uj,k is updated at iteration k depending on whether a random

activation variable εj,k takes on the value 1 or 0 (each component σi,k of the vector sk is randomly

updated according to the same strategy). The method resulting from this random sampling scheme

is presented in the next theorem.

Theorem 4.1 Let D = {0, 1}m+n
r {0}, let γ ∈ ]0,+∞[, let (µk)k∈N be a sequence in ]0, 2[ such

that infk∈N µk > 0 and supk∈N µk < 2, let (uj,0)16j6m ∈ H, let s0 = (σi,0)16i6n ∈ R
n, and let

(εk)k∈N = (ε1,k . . . , εm+n,k)k∈N be identically distributed D-valued random variables such that, for

every i ∈ {1, . . . ,m+ n}, Prob[εi,0 = 1] > 0. Iterate

for k = 0, 1, . . .






























qk =
∑m

j=1Bjuj,k − sk
for j = 1, . . . ,m
⌊

xj,k = uj,k −Rjqk

uj,k+1 = uj,k + εj,kµk
(

proxγλ‖·‖j (2xj,k − uj,k)− xj,k
)

rk =
∑m

j=1Bjxj,k
for i = 1, . . . , n
⌊

σi,k+1 = σi,k + εm+i,kµk
(

proxγψi
(2ρi,k − σi,k)− ρi,k

)

.

(4.20)

Suppose that the random sequences (εk)k∈N and (uk, sk)k∈N are independent. Then, for every j ∈
{1, . . . ,m}, (xj,k)k∈N converges almost surely to a vector xj and y =

∑m
j=1 Ljxj is a solution to (4.3).

Proof. It follows from [14, Corollary 5.5] that (x1,k, . . . , xm,k)k∈N converges almost surely to a solu-

tion to (4.5). In turn, y solves (4.3).

Remark 4.2 The operators (Rj)16j6m of (4.18) are computed off-line only once and they intervene

in algorithm (4.20) only via matrix-vector multiplications.
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Remark 4.3 It follows from the result of [14] that, under suitable qualification conditions, the con-

clusions of Theorem 4.1 remain true for a general choice of the functions fj ∈ Γ0(Xj) instead of

‖ · ‖j , and when L does not have full rank. This allows us to solve the more general versions of (4.4)

in which the regularizer is not a norm but a function of the form (2.3).

5 Numerical experiments

In this section we present numerical experiments applying the random sweeping stochastic block

algorithm outlined in Section 4 to sparse problems in which the regularization penalty is a norm

fitting our framework, as described in Assumption 2.2. The goal of these experiments is to show

concrete applications of the class of norms discussed in the paper and to illustrate the behavior of the

proposed random block-iterative proximal splitting algorithm. Let us stress that these appear to be

the first numerical experiments on this kind of block-coordinate method for completely nonsmooth

optimization problems with converging sequence of iterates.

The setting we consider is binary classification with the hinge loss and a latent group lasso

penalty [19]. Each data matrix A ∈ R
n×d is generated with i.i.d. Gaussian entries and each row ai

of A is normalized to have unit ℓ2 norm. Similarly, the true model vector y ∈ R
d is sparse and its

nonzero entries are generated randomly on the unit ℓ2 sphere. The n observations are then obtained

as βi = sign(〈ai | y〉). To induce classification errors, a randomly chosen subset of the observations

have their sign reversed, with the value of the noise determining the size of the subset, expressed

as a percentage of the total observations. For the implementation of the algorithm, we require the

proximity operators of the functions ‖ · ‖j and ψi in Theorem 4.1. In this case, these are the ℓ2-norm

and the hinge loss, which have straightforward proximity operators [8].

In large-scale applications it is not possible to activate all the functions and all the blocks due to

computing and memory limitations. The random sweeping algorithm (4.20) allows us to activate

only some of the blocks by toggling the activation variables (εj,k)16j6m and (εm+i,k)16i6n. The vec-

tors are updated only when the corresponding activation variable is equal to 1; otherwise it is equal

to 0 and no update takes place. In our experiments we always activate the variables (εm+i,k)16i6n as

they are associated to the set of training points which is small in sparsity regularization problems.

On the other hand, only a fraction α of the variables (εj,k)16j6m are activated, which is achieved

by sampling, at each iteration k, a subset of ⌈mα⌉ distinct indices in {1, . . . ,m}. In light of Theo-

rem 4.1, convergence of the iterates is guaranteed for every α ∈ ]0, 1]. It is natural to ask to what

extent these partial updates slow down the algorithm with respect to the hypothetical fully updated

version in which sufficient computational power and memory are available.

To investigate this question, in our first experiment A ∈ R
1000×10000, the true model vector y has

sparsity 95%, and we apply a 25% classification error rate. The relaxation parameters (µk)k∈N are

all set to 1.99, the proximal parameter γ is set to 0.01, and the regularization parameter λ is set to

0.1. As a stopping rule for the algorithm we use

|xk+1 − xk|2
|xk|2

6 10−6. (5.1)

We employ the chain latent group lasso penalty, whereby the groups define contiguous sequences

of length 10, with an overlap of length 3, and the number of groups is 1429. Table 1 presents the

16



Table 1: Time, iterations, and normalized iterations for hinge loss classification with the latent group

lasso. A ∈ R
1000×10000, m = 1429.

activation time (s) actual normalized

rate iterations iterations

1.0 24912 14515 14515

0.9 24517 16047 14443
0.8 26124 18080 14464

0.7 28975 20633 14443

0.6 28223 23872 14323
0.5 29304 28308 14154

0.4 36983 34392 13757
0.3 38100 44080 13224

0.2 50484 62664 12533

0.1 62213 100829 10083

time, number of iterations, and number of iterations normalized by the activation rate for the hinge

loss and latent group lasso penalty for values of the activation parameter α in {0.1, 0.2, . . . , 1.0}.

The normalized iteration numbers are obtained by multiplying the actual iteration number by the

activation rate α in order to fairly quantify the global computational effort. Indeed, scaling the iter-

ations by the activation rate allows for a fair comparison between regimes since the computational

load of the algorithm per iteration is proportional to the number of activated blocks. We observe

that, while the absolute number of iterations naturally increases as the activation rate decreases, the

normalized number of iterations is remarkably stable across the different regimes. Thus, in large

scale problems in which memory space and processing power are limited, the standard optimization

algorithm (4.19) with full activation rate is not suitable, whereas our random sweeping procedure

can be easily implemented. Interestingly, Table 1 indicates that the normalized number of iterations

is not affected. Figure 1 depicts (top) the objective values for the problem and (bottom) the distance

to the limiting solution for various activation rates. We note that the paths are similar for all activa-

tion rates, and the convergence is similarly fast. This reinforces our findings that partial activation

of the blocks does not lead to any deterioration in normalized performance.

As a second experiment, we revisit the above problem using the k-support norm penalty

of [2], which is a special case of Example 3.2. Here, A ∈ R
20×25, k = 4, and α ∈

{0.005, 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0}. The number of groups is m = d!/(k!(d − k)!) = 12650.

Even in this relatively small size problem, the number of groups m considerably exceeds both d and

n. Table 2 shows the same metrics as the first experiment. We again observe that performance is

stable as α varies.
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Figure 1: Objective for hinge loss classification with the latent group lasso (top), and distance to

solution for the same (bottom).
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Table 2: Time, iterations, and normalized iterations for hinge loss classification with the k-support

norm. A ∈ R
20×25, k = 4, m = 12650.

activation time (s) actual normalized

rate iterations iterations

1.0 388 463 463

0.8 446 681 544
0.6 454 894 536

0.4 482 1281 512

0.2 423 2557 511
0.1 469 4851 485

0.05 1054 9402 470
0.010 1625 41633 416

0.005 1907 77066 385
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