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Abstract Recently, the numerical solution of multi-frequency, highly-oscillatory Hamiltonian prob-
lems has been attacked by using Hamiltonian Boundary Value Methods (HBVMs) as spectral meth-
ods in time. When the problem derives from the space semi-discretization of (possibly Hamiltonian)
partial differential equations (PDEs), the resulting problem may be stiffly-oscillatory, rather than
highly-oscillatory. In such a case, a different implementation of the methods is needed, in order to
gain the maximum efficiency.
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1 Introduction

Multi-frequency highly-oscillatory problems have been recently attacked by using Hamiltonian
Boundary Value Methods (HBVMs) as spectral methods in time [8]. The proposed approach has
proven to be very efficient when solving a number of severe highly-oscillatory problems, allowing
to effectively and accurately “resolve” all high-frequency components in the solution. Sometimes,
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however, the problem is only stiffly-oscillatory, rather than highly-oscillatory, which means that
the high-frequency components in the solution all have a very small amplitude. This is the case, for
example, of problems deriving from the space semi-discretization of time-dependent PDEs having
a relatively smooth solution.

In this paper, we shall consider Hamiltonian PDEs with periodic boundary conditions possessing
a soliton-type solution. In such a case, the two implementing criteria devised in [8], which are aimed
at grasping all the high-frequencies, may be too much stringent and, therefore, the approach could
become less efficient. In fact, the highest frequencies with negligible amplitude, could be more
conveniently omitted, since their contribution to the accuracy of the solution is actually marginal.
In order to restore the efficiency of HBVMs used as spectral methods, we here propose an adaptive
implementation of the methods, able to overcome this drawback, still providing a practical spectral
accuracy in time. Coupling this approach with a spectrally accurate space semi-discretization will
result in a spectrally accurate space-time solution of Hamiltonian PDEs.

With this premise, the structure of the paper is as follows: in Section 2 we describe the main
differences with the approach described in [8]; in Section 3 we provide some details on the semi-
discrete problem derived from the space discretization of the considered Hamiltonian PDEs; in
Section 4 some numerical tests are reported; at last, a few conclusions are given in Section 5.

2 Basic facts

We are here concerned with the numerical solution of Hamiltonian problems in the form

ẏ = J [Ay +∇f(y)] ≡ φ(y), y(0) = y0 ∈ R
2m, J =

(

Im
−Im

)

, (1)

where, in general, Ir ∈ R
r×r is the identity matrix, A is a symmetric and positive semi-definite

matrix such that, in a neighbourhood of the solution,

‖A‖ ≡ ω ≫ ‖∇f‖, (2)

where ‖ · ‖ denotes the 2-norm, so that ω = ρ(A). Moreover, hereafter we assume f to be suitably
smooth, e.g., analytical. Problem (1) is clearly Hamiltonian with Hamiltonian

H(y) =
1

2
y⊤Ay + f(y) ( ⇒ φ(y) = J∇H(y) ) . (3)

A differential system in the form (1)–(2) provides an instance of a, possibly multi-frequency,1 highly-
oscillatory problems. We refer to the recent monograph [10] for an account of the various approaches
used so far for dealing with such problems.

More recently, in [8] a spectral method along the Legendre polynomial basis,

deg(Pi) = i,

∫ 1

0

Pi(x)Pj(x)dx = δij , ∀i, j = 0, 1, . . . , (4)

1 Depending on the occurrence of different large eigenvalues of matrix A.
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has been defined, as is sketched below, based on the approach defined in [7]. We start considering
the expansion of the right-hand side of the differential equation in (1), on the interval [0, h], along
the orthonormal basis (4):

ẏ(ch) =
∑

j≥0

Pj(c)γj , c ∈ [0, 1], γj =

∫ 1

0

Pj(τ)φ(y(τh))dτ, j = 0, 1, . . . . (5)

Integrating term by term the first equation in (5), and imposing the initial condition in (1), then
gives:

y(ch) = y0 + h
∑

j≥0

∫ c

0

Pj(x)dx γj , c ∈ [0, 1]. (6)

At this point, two facts have to be taken into account, in order for (6) to become an effective
method, when using a finite precision arithmetic with machine epsilon u:2

1. in the expansion (6) the coefficients γj which are too small can be neglected. By considering
that their norm is approximately decreasing from a certain index on, one has that

y(ch)
.
= y0 + h

s−1
∑

j=0

∫ c

0

Pj(x)dx γj , c ∈ [0, 1], (7)

where
.
= stands for equal within machine precision, with the index s satisfying

ρs ≡
‖γs−1‖

maxi=0,...,s−1 ‖γi‖
≤ u ; (8)

2. with reference to the coefficients γj defined in (5), one has

γj
.
=

k
∑

i=1

biPj(ci)φ(y(cih)), (9)

by using an enough accurate quadrature which, hereafter, we choose as the Gauss-Legendre
quadrature formula of order 2k, for a suitable k > s. Unless better choices are available, we
consider the choice used in [8, Eq. (34)], i.e.,

k = max{s+ 2, 20}. (10)

Next, by considering that:

– by setting Yi
.
= y(cih), from (7) and (9) one obtains

Yi = y0 + h

k
∑

j=1

[

bj

s−1
∑

ℓ=0

∫ ci

0

Pℓ(x)dxPℓ(cj)

]

φ(Yj), i = 1, . . . , k,

– the new approximation, by virtue of the orthogonality conditions (4), is defined as

y(h)
.
= y1 = y0 + h

k
∑

i=1

biφ(Yi), (11)

2 E.g., u ≈ 10−16, for the double precision IEEE.
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one eventually arrives at the k-stage Runge-Kutta method defined by the following Butcher tableau,

c IsP⊤
s Ω

b⊤
, (12)

with

c = (c1, . . . , ck)
⊤, b = (b1, . . . , bk)

⊤, Ω =







b1
. . .

bk






,

(13)

Is =







∫ c1

0 P0(x)dx . . .
∫ c1

0 Ps−1(x)dx
...

...
∫ ck

0
P0(x)dx . . .

∫ ck

0
Ps−1(x)dx






, Ps =







P0(c1) . . . Ps−1(c1)
...

...
P0(ck) . . . Ps−1(ck)






.

Definition 1 The k-stage Runge-Kutta method (12)–(13) is called Hamiltonian Boundary Value
Method with parameters (k, s). In short, HBVM(k, s).

It is quite clear that, by choosing k large enough, the method is able to conserve, either exactly or
within the round-off error level, the Hamiltonian H along the numerical solution. We also mention
that the HBVM(k, s) family may be thought of as a generalization of Gauss-Legendre collocation
methods in that HBVM(s, s) coincides with the s-stage Gauss integrator. We refer to the monograph
[4], and to the recent review paper [5], for full details about HBVMs.

Moreover, we observe that, when the parameters k and s are chosen such that (7) and (9) hold
true, they provide a spectrally accurate in time method for the solution of (1)–(2).

It is also worth mentioning that the discrete problem generated by a HBVM(k, s) method can
be cast in terms of the s coefficients γ0, . . . , γs−1 in (5), thus leading to a nonlinear system having
(block) dimension s independently of k [6]. In fact, by setting (see (3))

γ =







γ0
...

γs−1






, Y =







Y1

...
Yk






, φ(Y ) =







φ(Y1)
...

φ(Yk)






≡ (Ik ⊗ J)∇H(Y ), e =







1
...
1






∈ R

k,

from (7)–(9) one obtains

Y = e⊗ y0 + hIs ⊗ I2mγ, γ = P⊤
s Ω ⊗ J ∇H(Y ),

which, combined together, provide us with the discrete problem

γ = P⊤
s Ω ⊗ J ∇H (e⊗ y0 + hIs ⊗ I2mγ) . (14)

Once it has been solved, the new approximation (11) is easily seen to be given by

y1 = y0 + hγ0. (15)

In [8] two criteria for a priori selecting two integer parameters s0 and s, s0 ≤ s, are given so
that:
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– HBVM(s0, s0) solves, up to the round-off error level, the homogeneous linear problem associated
with (1),

ẏ = JAy, y(0) = y0, (16)

on the interval [0, h];
– HBVM(k, s) then solves (1), by using the solution of (16) to obtain the initial guess for the non-

linear iteration solving (14). This was indeed paramount, to guarantee its convergence, because
of the high-oscillatory nature of the solution;

– in addition to this, the parameter k defined in (10) was considered, in order to guarantee (9).

The resulting method was named SHBVM(k, s, s0) in [8], which stands for spectral HBVM with
parameters (k, s, s0).

The parameters s0 and s were derived by imposing that the ratio (8) essentially holds for
each frequency component contributing to the solution. It has to be noticed that, according to the
analysis in [8], the larger the frequencies involved, the larger the parameters s0 and s. Consequently,
when ω in (2) is large, s0 and s are large as well.

The strategy devised in [8] is finely tuned for highly-oscillatory systems. However, when the
solution of problem (1)–(2) is stiffly-oscillatory, i.e., only the lowest frequencies contribute to it,
whereas the contribution of the highest-frequency components is essentially negligible, the two a
priori criteria defined in [8] are generally too restrictive, since they would select much larger values
for s and s0 than actually needed.

In addition, the solution of a stiffly-oscillatory problem is often smooth enough that the con-
vergence of the nonlinear iteration for solving (14) will not require an accurate choice of the initial
guess. Consequently, the solution of the associated homogeneous problem (16) is no more needed
and the role of the parameter s0 becomes quite marginal. As a result, we only need to define an
implementation of the HBVM(k, s) method, such that s satisfies

ρs ≡
‖γs−1‖

maxi=0,...,s−1 ‖γi‖
≤ tol , (17)

for a suitably small tolerance tol ∼ u. This could be in principle done adaptively, by checking the
coefficients γj at runtime.

In the remaining part of this paper, we shall provide numerical evidence that this can be
effectively done for the stiffly-oscillatory Hamiltonian problems deriving from the space semi-
discretization of Hamiltonian PDEs, even though we defer to a future paper a thorough analysis
for deriving a general criterion.

3 Space discretization

When solving an Hamiltonian PDE defined in the domain [a, b] × [0, T ], with prescribed initial
conditions at t = 0 and periodic boundary conditions, we shall consider a semi-discretization in
space along the Fourier basis:

c0(x) =
1√
b− a

,

cj(x) =

√

2

b− a
cos

(

2πj
x− a

b− a

)

, (18)

sj(x) =

√

2

b− a
sin

(

2πj
x− a

b− a

)

, j = 1, 2, . . . ,
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which is orthonormal, since, for all allowed i, j:

∫ b

a

ci(x)cj(x)dx = δij =

∫ b

a

si(x)sj(x)dx,

∫ b

a

ci(x)sj(x)dx = 0.

For simplicity, we confine ourselves to the 1D case, even though the used arguments could in
principle be generalized to the case of higher-dimensional space domains.

The use of the Fourier basis (18) for the space discretization has been considered in a series of
papers [1,2,3,9] (see also [4,5]), and we collect here some significant examples, i.e., the semilinear
wave equation [2], which in first order form reads

ut = v, vt = uxx − f ′(u), (x, t) ∈ [a, b]× [0, T ], (19)

and the nonlinear Schrödinger equation [1], which we write in real form as

ut = −vxx − f ′(u2 + v2)v,

vt = uxx + f ′(u2 + v2)u, (x, t) ∈ [a, b]× [0, T ].
(20)

Here, u, v, f are real scalar functions, and f ′ is the derivative of f . All the equations are equipped
with initial and periodic boundary conditions. The initial conditions, say u0(x) and v0(x), as well as
f , will be assumed to provide a solution which is suitably regular in space (as a periodic function).

For equations (19) and (20), the solution is expanded in space along the basis (18), so that, for
time dependent coefficients αj(t), βj(t), θj(t), ηj(t), one has

u(x, t) = α0(t)c0(x) +
∑

j≥1

αj(t)cj(x) + βj(t)sj(x), (21)

v(x, t) = θ0(t)c0(x) +
∑

j≥1

θj(t)cj(x) + ηj(t)sj(x). (22)

The previous expansions can be written in vector form, by introducing the infinite vectors

w(x) =











c0(x)
s1(x)
c1(x)
...











, q(t) =











α0(t)
β1(t)
α1(t)
...











, p(t) =











θ0(t)
η1(t)
θ1(t)
...











, (23)

as
u(x, t) = w(x)⊤q(t), v(x, t) = w(x)⊤p(t). (24)

As a result, by introducing the infinite matrix

D =
2π

b− a











0
1 · J2

2 · J2
. . .











, J2 =

(

1
−1

)

, (25)

and considering that
∫ b

a

w(x)w(x)⊤dx = I,
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the identity operator, one verifies that equation (19) reads

q̇ = p, ṗ = −D⊤Dq −
∫ b

a

w(x)f ′(w(x)⊤q)dx, t ∈ [0, T ], (26)

whereas (20) becomes

q̇ = D⊤Dp−
∫ b

a

w(x)f ′
(

(w(x)⊤q)2 + (w(x)⊤p)2
)

w(x)⊤p dx, (27)

ṗ = −D⊤Dq +

∫ b

a

w(x)f ′
(

(w(x)⊤q)2 + (w(x)⊤p)2
)

w(x)⊤q dx, t ∈ [0, T ].

It is quite straightforward to prove the following result.

Theorem 1 Problem (26) is Hamiltonian with Hamiltonian

H(q,p) =
1

2

[

p⊤p+ q⊤D⊤Dq + 2

∫ b

a

f(w(x)⊤q)dx

]

. (28)

Similarly, problem (27) is Hamiltonian with Hamiltonian

H(q,p) =
1

2

[

p⊤D⊤Dp+ q⊤D⊤Dq −
∫ b

a

f
(

(w(x)⊤q)2 + (w(x)⊤p)2
)

dx

]

. (29)

We also consider the Korteweg-de Vries equation [3],

ut = ν uxxx + µuux, (x, t) ∈ [a, b]× [0, T ], (30)

where ν, µ are nonzero real scalars, equipped with initial condition u0(x) and periodic boundary
conditions. The initial condition, as before, is assumed to provide a suitably regular solution in
space (as a periodic function). Also the solution of this equation can be expanded along the basis
(18) in the form (21). In such a case, however, it is known that

α0(t)c0(x) ≡
∫ b

a

u0(x)dx ≡ û0.

Consequently, by setting the infinite vectors and matrix

ŵ(x) =















c1(x)
s1(x)
c2(x)
s2(x)
...















, y(t) =















α1(t)
β1(t)
α2(t)
β2(t)
...















, D̂ =







1
2

. . .






, (31)

the following result can be proved [3].
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Theorem 2 With reference to (31) and matrix J2 defined in (25), problem (30) can be written in
Hamiltonian form as

ẏ = D̂ ⊗ J2 ∇H(y) (32)

with Hamiltonian

H(y) =
1

2

[

−ν
(

y⊤D̂2 ⊗ I2y
)

+
µ

3

∫ b

a

(

û0 + ŵ(x)⊤y
)3

dx

]

. (33)

Remark 1 It can be shown that the Hamiltonian functions (28), (29), and (33) are equivalent to
the corresponding Hamiltonian functionals defining the corresponding equations [1,2,3].

For all problems, the Hamiltonian is a constant of motion. For the nonlinear Schrödinger equa-
tion, there are also the following quadratic invariants [1], with reference to (23)–(25):

M1(q,p) =

∫ b

a

[

(w(x)⊤q)2 + (w(x)⊤p)2
]

dx, M2(q,p) = 2
[

q⊤Dp
]

. (34)

In order to derive a numerical method, the expansions (21)–(22) need to be truncated at a con-
venient number N of terms. In so doing, the vectors (23) and the matrix (25) becomes of dimension
2N + 1, whereas the vectors and the matrix in (31) becomes of dimension 2N and N , respectively.
Upon regularity assumptions on the solution, the truncated expansions (21)–(22) converge expo-
nentially to the respective limits, thus providing a spectrally accurate space discretization. We shall
always assume that this will be done, hereafter.

We also mention that the integrals in space, occurring in (26)–(33), can be computed (either
exactly or approximately within machine precision) by a composite trapezoidal rule based at the
points

xi = a+ i
b− a

m
, i = 0, . . . ,m, (35)

by using a suitably large value of m [1,2,3].
At last, we mention that the numerical solution of the discrete problem (14) derived from the

application of a HBVM(k, s) to any of the considered problems (26), (27), (32) can be made very
efficient by using a blended implementation of the methods [4,5,6] and considering an approximation
of the Jacobian of the right-hand side provided by the linear part only. This latter, in turn, is the
same for all time-steps and has a block diagonal structure with diagonal blocks. As a consequence,
a very efficient nonlinear iteration can be devised for all the considered PDE problems (we refer to
[1,2,3] for full details).

4 Numerical tests

We here compare the following methods:

– HBVM(s, s) methods, s = 1, 2, 3, i.e., the symplectic s-stage Gauss methods of order 2,4,6;
– HBVM(k, s), s = 1, 2, 3, and k chosen so that the method is energy-conserving, for the used

time-step ∆t;
– HBVM(k, s), where s is chosen according to (8) and k according to either (10) or to gain exact

approximation of the integrals (9). For sake of clarity, we shall refer to such a method as spectral
HBVM.
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It is worth mentioning that the same code, implemented in Matlab (R 2017b, running on a 2.8GHz
Intel i7 quad-core computer with 16GB of memory), is used for all the above methods. Consequently,
the benchmark will be quite homogeneous, both from the software and hardware point of view. All
the reported execution times are in seconds.

We shall apply the methods to particular instances of the equations (19), (20), and (30) pos-
sessing a (known) soliton solution. In all cases, this latter solution is suitably smooth so that the
resulting semi-discrete problem is stiffly-oscillatory.

The expansions (21)–(22) are truncated at an index N such that the initial conditions are
accurately reproduced within a round-off error level, thus providing a spectrally accurate space
discretization. Concerning the integration in time provided by a HBVM, choosing s according to
the ratio (17) yields a practical spectral accuracy in time. The tolerance tol is chosen in order to
truncate the expansion (6) when the norm of the last coefficients becomes small and/or “stagnates”
(meaning that a round-off error level has been reached).

4.1 Sine-Gordon equation

In this example, taken from [2],

utt = uxx − sin(u), (x, t) ∈ [−50, 50]× [0, 100], (36)

the initial condition at t = 0 is obtained from the known solution,

u(x, t) = 4 atan(t sech(x)), (37)

plus periodic boundary conditions. The solution is depicted in Figure 1. In this case, a valueN = 300
has been used for the space discretization, with m = 601 (see (35)) for computing the integrals in
space. The corresponding semi-discretization error, measured on the initial condition, is 6.21 ·10−14.
The obtained numerical results are shown in Tables 1–3, where we list the solution error eu and the
Hamiltonian error eH , together with the used time-step and the execution times. As is expected,
from Table 2 one sees that the energy conserving HBVMs conserve the Hamiltonian. In Table 3 we
list the results obtained by the spectral HBVM used with parameters s and k computed according
to (17) and (10), with a tolerance tol of the order of 10−11, able to provide energy conservation and
a uniformly small solution error. In the same table, we also report the results obtained by using
the original SHBVM(k∗, s∗, s∗0) method, whose parameters k∗, s∗, s∗0 are computed according to the
two criteria given in [8]. It turns out that both methods have a comparable accuracy but, as was
expected, the value s for stiff oscillatory systems is smaller than s∗0 and s∗ corresponding to highly
oscillatory problems and, consequently, the new method is less time consuming. From the obtained
results, one infers that the spectral HBVM method here described is the most effective method,
with an almost uniform execution time.

4.2 Nonlinear Schödinger Equation (NLSE)

In this example, taken from [1],

ut = −vxx − 2(u2 + v2)v, (38)

vt = uxx + 2(u2 + v2)u, (x, t) ∈ [−40, 80]× [0, 10],
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the initial condition at t = 0 is obtained from the known solution,

u(x, t) = sech(x− 4t) cos(2x− 3t), v(x, t) = sech(x− 4t) sin(2x− 3t), (39)

plus (approximate) periodic boundary conditions. The modulus of the solution (u2+v2) is depicted
in Figure 2. A value N = 300 has been used for the space discretization, withm = 601 for computing
the integrals in space. The corresponding semi-discretization error is 1.00 · 10−14. The obtained
numerical results are listed in Tables 4–6, where we list the solution error euv, the Hamiltonian
error eH , the errors on the quadratic invariants (34) (e1 and e2, respectively) together with the
used time-step and the execution times. As was expected, the symplectic Gauss methods conserve
the two quadratic invariants but not the Hamiltonian (see Table 4), whereas the energy conserving
HBVMs conserve the Hamiltonian but not the quadratic invariants (see Table 5). In Table 6 we give
the parameters k∗, s∗, s∗0 used by the spectral method SHBVM(k∗, s∗, s0), as defined in [8], as well
as the parameters k, s, obtained by (10) and (17), used by the spectral HBVM here described, where
tol turns out to be of the order of 10−14, and is able to provide the conservation of all invariants
and a uniformly small solution error. It is worth mentioning that, for the larger time-step used, the
SHBVM(78,76,40) does not converge at all. Form the above results, one infers that also in this case
the spectral HBVM here described is the most effective method, with a uniformly small execution
time.

4.3 Korteweg-de Vries (KdV) equation

In this example, taken from [3],

ut(x, t) + ǫuxxx(x, t) + u(x, t)ux(x, t) = 0, (x, t) ∈ [−3, 5]× [0, 24],

ǫ = 0.0013020833, (40)

the initial condition at t = 0 is derived from the known solution of the problem, i.e.,

u(x, t) = 3c

[

sech

(√

c

4ǫ
(x − ct)[−3,5]

)]2

, c =
1

3
, (41)

where, in general,

(ξ)[a,b] :=











ξ, if ξ ∈ [a, b],

a+ rem(ξ − a, b− a), if ξ > b,

b− rem(b − ξ, b− a), if ξ < a,

(42)

with rem the remainder in the integer division between the two arguments, plus periodic boundary
conditions. As a result, one verifies that the solution (41) is periodic in time with period T = 24.
The solution is depicted in Figure 3. A value N = 300 has been used for the space discretization,
with m = 901 for (exactly) computing the integrals in space. The corresponding semi-discretization
error is 2.19 · 10−14. The obtained numerical results are listed in Tables 7–9, where we list the
solution error eu and the Hamiltonian error eH , together with the used time-step and the execution
times. Again, from Table 8 one sees that HBVMs conserve the Hamiltonian function. Moreover, in
Table 9 we also list the parameters k and s provided by (10) and the ratio (17), where tol turns
out to be of the order of 10−11, and is able to provide energy conservation and a uniformly small
solution error. In this case, the corresponding values of the parameters k∗, s∗, s∗0 for the SHBVM
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method described in [8] would be impractically high and, therefore, we do not consider them in the
table. Also in this case, one infers that the spectral HBVM is the most effective method, especially
when using the largest time-step.

5 Conclusions

In this paper, we have provided numerical evidence that spectral HBVMs, formerly devised for
numerically solving highly-oscillatory problems, can be adapted to efficiently handle the stiffly-
oscillatory problems deriving from a spectrally accurate space discretization of Hamiltonian PDEs.
This is achieved by defining an adaptive strategy to obtain the correct parameters for the method.
Numerical tests on the sine-Gordon equation, the nonlinear Schrödinger equation, and the Korteweg-
de Vries equation duly confirm the effectiveness of the approach, resulting in a spectrally accurate
space-time numerical method. It is also worth mentioning that, in principle, this approach could be
also used for solving, with spectral accuracy in time, larger classes of problems than that considered
here.

Acknowledgements The idea of combining spectral accurate discretizations in space and time resulted from in-
teresting discussions of the first author with Volker Mehrmann at the ANODE 2018 Conference.
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Fig. 1 Plot of u(x, t), solution of the Sine-Gordon problem (36)-(37).

Fig. 2 Plot of u(x, t)2 + v(x, t)2, solution of the NLSE problem (38)-(39).

Fig. 3 Plot of u(x, t), solution of the KdV problem (40)–(42).
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Table 1 s-stage Gauss method (Gauss s), for solving the Sine-Gordon problem (36)-(37) with time-step ∆t = 100/n.

Gauss 1
n CPU-time eu rate eH rate

100 0.4 1.04e 01 — 1.81e 00 —
200 0.5 1.14e 01 ** 4.47e-01 2.0
400 0.7 1.20e 01 ** 1.12e-01 2.0
800 1.2 1.23e 01 ** 2.79e-02 2.0

1600 2.2 4.27e 00 1.5 6.98e-03 2.0
3200 4.0 7.78e-01 2.5 1.75e-03 2.0
6400 7.1 1.84e-01 2.1 4.36e-04 2.0

12800 15.5 4.53e-02 2.0 1.09e-04 2.0
25600 26.1 1.13e-02 2.0 2.73e-05 2.0

Gauss 2
n CPU-time eu rate eH rate

100 0.9 5.55e 00 — 5.56e-02 —
200 1.6 1.43e 00 2.0 8.00e-03 2.8
400 2.5 6.02e-02 4.6 3.77e-04 4.4
800 3.3 3.34e-03 4.2 2.22e-05 4.1

1600 4.9 2.02e-04 4.0 1.37e-06 4.0
3200 8.3 1.26e-05 4.0 8.52e-08 4.0
6400 14.7 7.83e-07 4.0 5.32e-09 4.0

12800 28.9 4.89e-08 4.0 3.33e-10 4.0
25600 57.7 3.07e-09 4.0 2.08e-11 4.0

Gauss 3
n CPU-time eu rate eH rate

100 1.7 5.34e-01 — 1.83e-03 —
200 2.7 8.74e-02 2.6 2.29e-04 3.0
400 3.0 9.35e-04 6.5 2.59e-06 6.5
800 3.4 1.35e-05 6.1 3.85e-08 6.1

1600 5.3 2.08e-07 6.0 5.97e-10 6.0
3200 9.8 3.23e-09 6.0 9.27e-12 6.0
6400 16.7 4.01e-11 6.3 1.49e-13 6.0

12800 32.9 2.15e-11 ** 4.26e-14 **
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Table 2 Energy-conserving HBVMs, for solving the Sine-Gordon problem (36)-(37) with time-step ∆t = 100/n.

HBVM(5,1)
n CPU-time eu rate eH

100 1.1 1.19e 01 — 1.21e-07
200 1.4 2.99e 00 2.0 1.42e-14
400 2.2 1.71e-01 4.1 1.60e-14
800 3.5 1.10e-02 4.0 1.42e-14

1600 6.0 7.54e-04 3.9 1.07e-14
3200 10.6 1.76e-04 2.1 1.60e-14
6400 18.6 4.40e-05 2.0 1.07e-14

12800 36.3 1.10e-05 2.0 1.60e-14
25600 72.7 2.75e-06 2.0 1.07e-14

HBVM(6,2)
n CPU-time eu rate eH

100 1.2 2.81e-01 — 4.85e-08
200 2.3 2.31e-03 6.9 1.42e-14
400 3.6 6.55e-05 5.1 1.07e-14
800 4.9 4.24e-06 3.9 1.42e-14

1600 7.1 2.68e-07 4.0 1.07e-14
3200 12.3 1.68e-08 4.0 1.07e-14
6400 21.7 1.05e-09 4.0 1.07e-14

12800 41.2 6.56e-11 4.0 1.07e-14
25600 83.8 1.27e-11 ** 1.60e-14

HBVM(6,3)
n CPU-time eu rate eH

100 2.0 2.31e-03 — 1.36e-07
200 3.3 1.91e-05 6.9 7.11e-15
400 3.7 3.60e-07 5.7 7.11e-15
800 4.2 5.88e-09 5.9 1.07e-14

1600 6.7 9.28e-11 6.0 1.07e-14
3200 12.4 1.22e-11 ** 1.07e-14
6400 21.4 1.21e-11 ** 1.07e-14

12800 41.9 1.20e-11 ** 1.07e-14

Table 3 Spectral HBVM(k, s), for solving the Sine-Gordon problem (36)-(37) with time-step ∆t = 100/n (left),
along with the obtained result by using the original SHBVM(k∗, s∗, s∗

0
) method (right).

n CPU-time eu eH k s CPU-time eu eH k∗ s∗ s∗
0

100 2.4 1.23e-11 7.11e-15 22 20 3.8 5.56e-12 8.88e-15 38 36 36
150 1.8 1.19e-11 7.11e-15 20 16 3.6 5.50e-12 8.88e-15 31 29 29
200 1.9 1.26e-11 7.11e-15 20 14 3.2 5.56e-12 8.88e-15 28 26 26
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Table 4 s-stage Gauss method (Gauss s), for solving the NLSE problem (38)-(39) with time-step ∆t = 10/n.

Gauss 1
n CPU-time euv rate eH rate e1 e2

100 1.2 8.86e-01 — 4.76e-02 — 7.84e-14 2.48e-15
200 1.6 2.63e-01 1.8 9.58e-04 5.6 1.53e-14 3.96e-16
400 3.7 6.60e-02 2.0 5.55e-05 4.1 1.18e-14 9.02e-17
800 7.1 1.64e-02 2.0 3.41e-06 4.0 1.27e-14 7.63e-17

1600 12.1 4.10e-03 2.0 2.12e-07 4.0 1.29e-14 6.94e-17
3200 23.0 1.03e-03 2.0 1.32e-08 4.0 1.35e-14 1.18e-16

Gauss 2
n CPU-time euv rate eH rate e1 e2

100 2.7 1.30e-02 — 1.09e-05 — 9.99e-15 2.07e-15
200 5.0 8.79e-04 3.9 5.20e-08 7.7 1.09e-14 2.08e-17
400 8.5 5.58e-05 4.0 2.18e-10 7.9 8.66e-15 2.78e-17
800 14.9 3.50e-06 4.0 8.75e-13 8.0 1.02e-14 2.78e-17

1600 25.5 2.19e-07 4.0 1.29e-14 6.1 1.11e-14 4.86e-17
3200 42.0 1.37e-08 4.0 1.47e-14 ** 1.02e-14 2.78e-17

Gauss 3
n CPU-time euv rate eH rate e1 e2

100 3.4 1.19e-04 — 1.03e-08 — 9.10e-15 2.78e-17
200 7.3 2.02e-06 5.9 3.99e-12 11.3 1.22e-14 2.78e-17
400 11.1 3.25e-08 6.0 1.47e-14 8.1 9.55e-15 2.78e-17
800 18.6 5.67e-10 5.8 1.47e-14 ** 9.55e-15 3.47e-17

1600 29.7 1.47e-10 ** 1.51e-14 ** 9.77e-15 2.78e-17

Table 5 Energy-conserving HBVM(2s, s) method, for solving the NLSE problem (38)-(39) with time-step ∆t = 10/n
.

HBVM(2,1)
n CPU-time euv rate eH e1 rate e2 rate

100 2.5 9.10e-01 — 2.66e-15 3.64e-03 — 1.93e-04 —
200 4.4 2.82e-01 1.7 3.11e-15 1.40e-04 4.7 5.67e-06 5.1
400 7.4 7.00e-02 2.0 3.55e-15 8.23e-06 4.1 3.30e-07 4.1
800 12.9 1.75e-02 2.0 4.88e-15 5.07e-07 4.0 2.03e-08 4.0

1600 22.0 4.37e-03 2.0 4.44e-15 3.16e-08 4.0 1.26e-09 4.0
3200 36.8 1.09e-03 2.0 5.33e-15 1.97e-09 4.0 7.88e-11 4.0

HBVM(4,2)
n CPU-time euv rate eH e1 rate e2 rate

100 2.3 1.35e-02 — 3.11e-15 1.46e-06 — 5.24e-08 —
200 5.4 8.95e-04 3.9 4.88e-15 6.66e-09 7.8 2.44e-10 7.7
400 9.4 5.68e-05 4.0 3.55e-15 2.74e-11 7.9 1.02e-12 7.9
800 15.8 3.56e-06 4.0 4.88e-15 1.13e-13 7.9 4.05e-15 8.0

1600 27.2 2.23e-07 4.0 4.44e-15 1.11e-14 ** 1.11e-16 **
3200 44.8 1.39e-08 4.0 4.44e-15 1.49e-14 ** 1.39e-16 **

HBVM(6,3)
n CPU-time euv rate eH e1 rate e2 rate

100 4.2 1.20e-04 — 4.44e-15 6.88e-10 — 3.48e-11 —
200 8.1 2.03e-06 5.9 4.00e-15 2.52e-13 11.4 1.30e-14 11.4
400 14.0 3.26e-08 6.0 4.00e-15 1.09e-14 4.5 1.11e-16 6.9
800 23.0 5.65e-10 5.9 4.88e-15 1.22e-14 ** 1.04e-16 **

1600 36.9 1.47e-10 ** 4.44e-15 1.18e-14 ** 1.32e-16 **
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Table 6 Spectral HBVM(k, s), for solving the NLSE problem (38)-(39) with time-step ∆t = 10/n (left), along with
the obtained result by using the original SHBVM(k∗, s∗, s∗

0
) method (right).

n CPU euv eH e1 e2 k s CPU euv eH e1 e2 k∗ s∗ s∗
0

time time
100 17.0 1.06e-10 3.55e-15 1.09e-14 1.04e-16 28 26 ** ** ** ** ** 78 76 40
150 17.8 1.06e-10 3.11e-15 1.18e-14 1.11e-16 22 20 44.6 1.06e-10 3.11e-15 8.66e-15 9.71e-17 61 59 33
200 16.9 1.06e-10 3.55e-15 9.99e-15 1.04e-16 20 16 36.6 1.06e-10 3.55e-15 1.22e-14 1.25e-16 52 50 29

Table 7 s-stage Gauss method (Gauss s), for solving the KdV problem (40)-(42) with time-step ∆t = 24/n.

Gauss 1
n CPU-time eu rate eH rate
60 3.9 1.07e 00 — 1.12e-02 —

120 2.3 1.01e 00 0.1 2.97e-04 5.2
240 2.5 6.90e-01 0.5 1.07e-06 8.1
480 3.5 2.11e-01 1.7 6.28e-08 4.1
960 5.2 5.37e-02 2.0 3.92e-09 4.0

1920 8.7 1.35e-02 2.0 2.57e-10 3.9
3840 13.3 3.37e-03 2.0 1.54e-11 4.1
7680 23.4 8.43e-04 2.0 9.42e-13 4.0

15360 43.3 2.11e-04 2.0 5.85e-14 4.0

Gauss 2
n CPU-time eu rate eH rate
60 3.8 9.12e-01 — 2.51e-03 —

120 3.9 1.39e-01 2.7 4.80e-04 2.4
240 4.9 7.61e-03 4.2 1.90e-05 4.7
480 7.7 3.00e-04 4.7 3.49e-09 12.4
960 13.0 1.86e-05 4.0 7.39e-12 8.9

1920 22.3 1.14e-06 4.0 9.09e-16 13.0
3840 37.2 7.14e-08 4.0 5.55e-17 4.0
7680 68.9 4.45e-09 4.0 7.63e-17 **

15360 119.5 2.78e-10 4.0 7.63e-17 **

Gauss 3
n CPU-time eu rate eH rate
60 3.0 1.82e-01 — 7.86e-04 —

120 4.2 2.12e-03 6.4 2.04e-06 8.6
240 6.3 5.04e-05 5.4 3.46e-09 9.2
480 10.2 1.90e-06 4.7 1.04e-11 8.4
960 18.0 5.57e-08 5.1 1.34e-14 9.6

1920 31.2 6.17e-10 6.5 6.25e-17 7.7
3840 56.2 5.78e-12 6.7 4.16e-17 **
7680 94.1 8.38e-14 6.1 1.25e-16 **
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Table 8 Energy-conserving HBVMs, for solving the KdV problem (40)-(42) with time-step ∆t = 24/n.

HBVM(2,1)
n CPU-time eu rate eH
60 18.2 1.03e 00 — 1.39e-17

120 6.4 9.92e-01 0.1 1.39e-17
240 7.0 5.98e-01 0.7 1.39e-17
480 8.9 1.74e-01 1.8 1.39e-17
960 13.6 4.42e-02 2.0 1.73e-17

1920 22.3 1.11e-02 2.0 1.73e-17
3840 37.5 2.77e-03 2.0 1.73e-17
7680 65.1 6.93e-04 2.0 2.08e-17

15360 108.7 1.73e-04 2.0 2.08e-17

HBVM(3,2)
n CPU-time eu rate eH
60 4.4 4.29e-01 — 2.08e-17

120 4.7 2.89e-02 3.9 1.39e-17
240 6.0 3.16e-03 3.2 1.39e-17
480 9.5 2.56e-04 3.6 1.39e-17
960 16.1 1.61e-05 4.0 2.08e-17

1920 27.3 9.89e-07 4.0 2.08e-17
3840 45.8 6.20e-08 4.0 2.08e-17
7680 85.6 3.87e-09 4.0 1.73e-17

15360 146.7 2.42e-10 4.0 2.08e-17

HBVM(5,3)
n CPU-time eu rate eH
60 3.1 5.40e-02 — 2.08e-17

120 4.1 9.18e-04 5.9 1.39e-17
240 6.2 3.00e-05 4.9 1.73e-17
480 10.6 1.01e-06 4.9 1.39e-17
960 19.1 3.06e-08 5.1 1.39e-17

1920 35.1 3.53e-10 6.4 1.39e-17
3840 60.9 3.41e-12 6.7 2.08e-17
7680 98.6 5.14e-14 6.1 2.08e-17

Table 9 Spectral HBVM(k, s), for solving the KdV problem (40)-(42) with time-step ∆t = 24/n.

n CPU-time eu eH k s
60 12.8 3.98e-13 1.39e-17 20 18
90 17.0 9.98e-14 1.39e-17 20 16

120 20.0 4.71e-14 1.39e-17 20 14
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