Skip to main content
Log in

A new combined characteristic mixed finite element method for compressible miscible displacement problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A new combined characteristic mixed finite element method is developed for solving compressible miscible displacement in porous media. In this algorithm, the splitting mixed finite element (SMFE) method is applied for solving the parabolic-type pressure equation, and the mass-conservative characteristic (MCC) finite element method is applied for solving the convection-diffusion type concentration equation. The application of the splitting mixed element method results in a symmetric positive definite coefficient matrix of the separated mixed element system, while the mass-conservative characteristic finite element method not only does well in handling convection-dominant diffusion problem but also keeps mass balance. The convergence of this method is considered and the optimal L2-norm error estimate is also derived. Finally, some numerical examples are provided to confirm our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Douglas, J. Jr., Roberts, J.E.: Numerical methods for a model for compressible miscible displacement in porous media. Math. Comp. 41, 441–459 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Douglas, J. Jr.: Finite difference methods for two-phase incompressible flow in porous media. SIAM J. Numer. Anal. 20, 681–696 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Douglas, J. Jr.: In: Oden, J.T. (ed.) The Numerical Simulation of Miscible Displacement. Computational Methods in Nonlinear Mechanics. North Holland, Amsterdam (1980)

  4. Peaceman, D.W.: Fundamentals of numerical reservoir simulation. Elsevier, New York (1977)

    Google Scholar 

  5. Chou, S.H., Li, Q.: Mixed finite element methods for compressible miscible displacement in porous media. Math. Comp. 57, 507–527 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Douglas, J. Jr., Ewing, R.E., Wheeler, M.F.: A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal. Numer. 17, 249–256 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Douglas, J. Jr., Ewing, R.E., Wheeler, M.F.: The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO Anal. Numer. 17, 17–33 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yuan, Y.R.: Characteristic mixed finite element method for enhanced oil recovery simulation and optimal order error estimate. Chin. Sci. Bull 21, 1761–1766 (1993)

    MATH  Google Scholar 

  9. Zhang, J.S., Zhu, J., Zhang, R., Yang, D.P., Loula, A.F.D.: A combined discontinuous Galerkin finite element method for miscible displacement problem. J. Comput. Appl. Math. 309, 44–55 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang, D.P.: A splitting positive definite mixed element method for miscible displacement of compressible flow in porous media. Numer. Meth. Part. Differ. Eq. 17, 229–249 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, J.S., Yang, D.P.: A fully-discrete splitting positive definite mixed finite element scheme for compressible miscible displacement in porous media. J. Shandong Univ. (Nat. Sci.) 41, 1–10 (2006)

    Google Scholar 

  12. Zhang, J.S., Yang, D.P.: A splitting positive definite mixed element method for second order hyperbolic equations. Numer. Meth. Part. Differ. Eq. 25:3, 622–636 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, J.S., Guo, H.: A split least-squares characteristic mixed element method for nonlinear nonstationary convection-diffusion problem. Inter. J. Comput. Math. 89:7, 932–943 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, J.S., Yang, D.P., Shen, S.Q., Zhu, J.: A new MMOCAA-MFE method for compressible miscible displacement in porous media. Appl. Numer. Math. 80, 65–80 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, J.S., Zhu, J., Yang, D.P., Guo, H.: A characteristic splitting mixed finite element method for three-dimensional saltwater intrusion problem. J. Nonlinear Sci. Appl. 9, 5806–5820 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bell, J.B., Dawson, C.N., Shubin, G.R.: An unsplit high-order Godunov scheme for scalar conservation laws in two dimensions. J. Comput. Phys. 74, 1–24 (1988)

    Article  MATH  Google Scholar 

  17. Johnson, C.: Streamline Diffusion Methods for Problems in Fluid Mechanics. Finite Element in Fluids VI. Wiley, New York (1986)

  18. Yang, D.P.: Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems. Math. Comput. 69, 929–963 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Douglas, J. Jr., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun, T.J., Yuan, Y.R.: An approximation of incompressible miscible displacement in porous media by mixed finite element method and characteristics-mixed finite element method. J. Comput. Appl. Math. 228, 391–411 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cella, M.A., Russell, T.F., Herrera, I., Ewing, R.E.: An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equations. Adv. Water Res. 13, 187–206 (1990)

    Article  Google Scholar 

  22. Wang, H.: An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow. SIAM J. Numer. Anal. 46, 2133–2152 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Douglas, J. Jr., Huang, C.S., Pereira, F.: The modified method of characteristics with adjusted advection. Numer. Math. 83, 353–369 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rui, H. , Tabata, M.: A mass-conservative finite element scheme for convection-diffusion problems. J. Sci. Comput. 43, 416–432 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, X., Rui, H.: A MCC finite element approximation of incompressible miscible displacement in porous media. Comput. Math. Appl. 70, 750–764 (2015)

    Article  MathSciNet  Google Scholar 

  26. Li, X., Rui, H., Xu, W.: A new MCC-MFE method for compressible miscible displacement in porous media. J. Comput. Appl. Math. 302, 139–156 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Adams, R.A.: Sobolev Spaces. Academic, New York (1975)

    MATH  Google Scholar 

  28. Sun, S., Riviera, B., Wheeler, M.F.: A Combined Mixed Finite Element and Discontinuous Galerkin Method for Miscible Displacement Problem in Porous Media. Recent Progress in Computational and Applied PDES, pp. 323–351 (2002)

  29. Ciarlet, P.G.: The finite element methods for elliptic problems. North-Holland, New York (1978)

  30. Brezzi, F., Douglas, J. Jr., Duran, R., Fortin, M.: Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51, 237–250 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  31. Breezi, F., Douglas, J. Jr., Fortin, M., Marini, L.D.: Efficient rectangular mixed finite elements in two and three space variables. RAIRO Model Math. Anal. Numer. 4, 581–604 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. Breezi, F., Douglas, J. Jr., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)

    Article  MathSciNet  Google Scholar 

  33. Nedelec, J.C.: Mixed finite element in r3. Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Raviart, P.A., Thomas, J.M.: A Mixed Finite Element Method for 2Nd Order Elliptic Problems. Mathematical Aspects of Finite Element Methods, Lecture Notes in Math (606), pp. 292–315. Springer Verlag, Berlin (1977)

    Google Scholar 

  35. Wheeler, M.F.: A priori error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported partially by the National Natural Science Foundation of China (grant number 11401588), the Natural Science Foundation of Shandong Province (grant number ZR2014AQ005), and the Fundamental Research Funds for the Central Universities(grant number 17CX02043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J. A new combined characteristic mixed finite element method for compressible miscible displacement problem. Numer Algor 81, 1157–1179 (2019). https://doi.org/10.1007/s11075-018-0590-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0590-3

Keywords

Mathematics Subject Classification (2010)

Navigation