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Abstract

In this contribution we consider the sequence {Qλ
n
}n≥0 of monic polynomials orthogonal

with respect to the following inner product involving differences

〈p, q〉λ =

∫ ∞

0

p (x) q (x) dψ(a)(x) + λ∆p(c)∆q(c),

where λ ∈ R+, ∆ denotes the forward difference operator defined by ∆f (x) = f (x+ 1) −
f (x), ψ(a) with a > 0 is the well known Poisson distribution of probability theory

dψ(a)(x) =
e−aax

x!
at x = 0, 1, 2, . . . ,

and c ∈ R is such that ψ(a) has no points of increase in the interval (c, c + 1). We derive
its corresponding hypergeometric representation. The ladder operators and two different
versions of the linear difference equation of second order corresponding to these polynomials
are given. Recurrence formulas of five and three terms, the latter with rational coefficients,
are presented. Moreover, for real values of c such that c+ 1 < 0, we obtain some results on
the distribution of its zeros as decreasing functions of λ, when this parameter goes from zero
to infinity.

AMS Subject Classification: 33C47

Key Words and Phrases: Charlier polynomials, Sobolev-type polynomials, Discrete
kernel polynomials, Discrete quasi-orthogonal polynomials.

1 Introduction

Let P be the linear space of polynomials with real coefficients. In this contribution we analyze the
sequence {Qλ

n}n≥0 of monic polynomials orthogonal with respect to the following inner product
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on P involving differences

〈p, q〉λ =

∫ ∞

0
p (x) q (x) dψ(a)(x) + λ∆p(c)∆q(c), (1)

where λ ∈ R+, ∆ denotes the forward difference operator defined by ∆f (x) = f (x+ 1)− f (x).
Concerning dψ(a) we consider the well known Poisson distribution of probability theory where
a > 0, and ψ(a)(x) is the step function with the jump

e−aax

x!
at the point x = 0, 1, 2, . . . . (2)

All the results presented in this paper (except those in Section 6, where more restrictive
conditions on c will be needed) are valid whenever c ∈ R and ψ(a) has no points of increase in
the interval (c, c + 1). As was already explained in [6], for this particular case it means that
c ∈ R can be chosen as precisely one of the points of the spectrum of ψ(a), or even it can be
chosen in such a way that, if the spectrum of ψ(a) is contained in an interval I, the condition
I ∩ (c, c + 1) = ∅ is verified. These restrictions on the values of c come from the fact that we
require the distribution (x− c)(x− c− 1)dψ(a) to be nonnegative on the positive real semiaxis.

The study of orthogonal polynomials with respect to inner products involving differences as
(1) was introduced by H. Bavinck in a series of seminal papers [6], [7] and [8], by analogy with
the so called discrete Sobolev inner products involving derivatives (see for example [1], [17], [19]
and the recent survey [18]). Because of this analogy, we follow [8] in calling the elements of
the sequence of monic orthogonal polynomials (SMOP in the sequel) {Qλ

n}n≥0 to be Sobolev-
type Charlier orthogonal polynomials. Conjointly, in those three said primary papers is given
a general explicit representation of Qλ

n(x), not only valid on the Charlier case, but also useful
for any other discrete orthogonality measure. It is proved that {Qλ

n}n≥0 satisfy a five term
recurrence relation and an analogue of the Christoffel-Darboux formula is presented, along with
several results on their corresponding zero distribution. Moreover, in the last of the three papers
it is shown that these Sobolev-type Charlier orthogonal polynomials are eigenfunctions of an
infinite order difference operator which, together with the corresponding eigenvalues, are both
linear perturbations of those in the classical Charlier case. The special case c = 0 is deeply
analyzed throughout all these three works.

Since then, and to the best of our knowledge, the Charlier case has remained untouched.
Several researchers have done further work on the Sobolev-type case for discrete orthogonality
measures, but mainly concerning the Meixner case (see [4], [5], [15], [20], [21] and the references
given there).

It must be clear that the kind of modification studied here is of quite a different nature to
that considered in [3], where are also considered discrete point masses in the inner product. The
kind of modifications studied there give rise to new families of standard orthogonal polynomials.
They are standard, in the sense that the operator of multiplication by x is symmetric with
respect to such an inner product, i.e. 〈xp, q〉 = 〈p, xq〉, and then the well known nice properties
of standard orthogonal polynomials arise: there exist a three term recurrence relation, the zeros
of consecutive polynomials in the sequence interlace, all the zeros are simple and real, and a
long etcetera. Quite the opposite, the SMOP {Qλ

n}n≥0 considered here is not standard in the
aforementioned way, and we will not find those nice properties anymore. It means that can be
complex zeros, there is no three term recurrence relation in the usual way, etc, etc, and therefore
{Qλ

n}n≥0 is known as a non-standard sequence.
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In this paper, we delve once more into the inner product (1), applying some recent computa-
tional and analytical techniques to obtain fresh results for the Sobolev-type Charlier polynomials
{Qλ

n}n≥0 and their zeros. First, we establish its 3F1 hypergeometric character, which was un-
known so far. Next, we obtain explicit expressions for the ladder difference operators and we
use them to obtain two different versions of the second order difference equation satisfied by the
Sobolev-type Charlier SMOP. We also use the ladder difference operators to obtain a kind of
three term recurrence formula with rational coefficients, which allows us to find every polynomial
Qλ

n+1(x) of precise degree n+1, in terms of only the previous two consecutive polynomials of the
SMOP Qλ

n(x) and Q
λ
n−1(x). In [7] it was proved that this Sobolev-type Charlier SMOP satisfy

a five term recurrence relation, and here we provide the explicit expression for the coefficients in
this high order recurrence formula. Finally, we find a new representation for the Sobolev-type
Charlier orthogonal polynomials which is useful to obtain sharp limits (and the speed of conver-
gence to them) of their zeros in terms of the parameter of the perturbation λ, which somehow
determines how important the Sobolev-type perturbation is on the classical Charlier measure
ψ(a).

The structure of the manuscript is as follows. In the next Section we recall some basic facts
of the classical Charlier polynomials, which will be needed in the sequel. In Section 3 we deal
with some connection formulas and the hypergeometric representation of Qλ

n(x). In Section
4, proceeding directly from the representation of the SMOP {Qλ

n}n≥0 given in [6, eq. (2.13)],
we provide the difference ladder operators and the second linear difference equation that they
satisfy. Section 5 is devoted to the previously mentioned fundamental recurrence formulas for
this Sobolev-type Charlier SMOP. Finally, Section 6, is focused on the behavior of the zeros of
these polynomials in terms of the mass parameter λ.

2 Preliminaries

The forward (∆) and backward (∇) difference operators are defined by

∆f (x) = f (x+ 1)− f (x) , ∇f(x) = f(x)− f(x− 1).

These operators satisfy the following properties, which will be useful in the sequel

∆ [f(x)g(x)] = f(x)∆g(x) + g(x)∆f(x) + ∆f(x)∆g(x),
∇ [f(x)g(x)] = f(x)∇g(x) + g(x − 1)∇f(x)

(3)

∆

[

f(x)

g(x)

]

=
g(x)∆f(x)− f(x)∆g(x)

g(x) [g(x) + ∆g(x)]
. (4)

Let {C
(a)
n }n≥0 be the sequence of monic Charlier polynomials, orthogonal with respect to

the inner product on P (see for instance [10, Ch. VI.1], [13, Ch. 6], [16, Ch. 9], [22, Ch. 2], [23,
Section 6.7], and the references therein)

〈p, q〉 =

∫ ∞

0
p(x)q(x)dψ(a)(x), a > 0,

which can be explicitly given in the following several equivalent ways

C(a)
n (x) = (−a)n 2F0

(

−n,−x;−;
−1

a

)

, (5)
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C(a)
n (x) =

n
∑

k=0

(

n

k

)(

x

k

)

k!(−a)n−k,

or

C(a)
n (x) = (−1)na−xΓ(x+ 1)∆n

[

ax

Γ(x− n+ 1)

]

.

Here, rFs denotes the ordinary hypergeometric series defined by

rFs (a1, a2, . . . , ar; b1, b2, . . . , bs;x) =
∞
∑

k=0

(a1)k(a2)k · · · (ar)k
(b1)k(b2)k · · · (bs)k

xk

k!
,

(a)0 := 1, (a)k := a(a+ 1)(a+ 2) · · · (a+ k − 1), k = 1, 2, 3, . . .

Next, we summarize some basic properties of Charlier orthogonal polynomials to be used in the
sequel.

Proposition 1 Let {C
(a)
n }n≥0 be the classical Charlier SMOP. The following statements hold.

1. Three term recurrence relation. For every n ≥ 0,

C
(a)
n+1(x) = (x− βn)C

(a)
n (x)− γnC

(a)
n−1(x), (6)

with initial conditions C
(a)
−1 (x) = 0, C

(a)
0 (x) = 1, and coefficients βn = n+ a, γn = na.

2. Structure relation. For every n ∈ N,

x∇C(a)
n (x) = nC(a)

n (x) + naC
(a)
n−1(x). (7)

3. Norm. For every n ∈ N,

||C(a)
n ||2 =

∫ ∞

0

(

C(a)
n (x)

)2
dψ(a)(x) = n!an, (8)

and therefore

||C
(a)
n ||2

||C
(a)
n−1||

2
= γn = na. (9)

4. Second order difference equations. For every n ∈ N (see [10, Ch. VI.1]),

a∆2C(a)
n (x)− (x+ 1− a− n)∆C(a)

n (x) + nC(a)
n (x) = 0, (10)

and also we have the hypergeometric type equation (see [2, Ch. 4] and [22, § 2.1]),

x∆∇C(a)
n (x) + (a− x)∆C(a)

n (x) + nC(a)
n (x) = 0. (11)

5. First order difference relation. For every n ∈ N (see [10, Ch. VI.1]),

∆C(a)
n (x) = nC

(a)
n−1(x). (12)
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We denote the n-th reproducing kernel by

Kn(x, y) =

n
∑

k=0

C
(a)
k (x)C

(a)
k (y)

||C
(a)
k ||2

.

Then, for all n ∈ N,

Kn(x, y) =
1

||C
(a)
n ||2

C
(a)
n+1(x)C

(a)
n (y)− C

(a)
n+1(y)C

(a)
n (x)

x− y
.

Provided ∆kf(x) = ∆
[

∆k−1f(x)
]

, for the partial finite difference of Kn(x, y) we will use the
following notation

K(i,j)
n (x, y) = ∆i

x

[

∆j
y [Kn (x, y)]

]

=

n
∑

k=0

∆iC
(a)
k (x)∆jC

(a)
k (y)

||C
(a)
k ||2

(13)

and we observe the following consequence, provided that c is not a zero of C
(a)
n (x) for any n

[∆C
(a)
n (c)]2

||C
(a)
n ||2

= K(1,1)
n (c, c) −K

(1,1)
n−1 (c, c) > 0. (14)

Finally, the following assumption will be needed throughout the paper. A straightforward
consequence of (1), is that the multiplication operator by (x − c)(x − c − 1) is symmetric with
respect to such a discrete Sobolev inner product. Indeed, for any p, q ∈ P we have

〈(x− c)(x − c− 1)p(x), q(x)〉λ = 〈p(x), (x− c)(x− c− 1)q(x)〉λ
= 〈(x− c)(x − c− 1)p(x), q(x)〉 (15)

= 〈p(x), (x− c)(x− c− 1)q(x)〉 .

3 Connection formulas and hypergeometric representation

In this Section, we modify the connection formula for the Sobolev-type Charlier polynomials
given in [6, (2.13)], in order to obtain alternative representations for Qλ

n(x) in terms of several

consecutive polynomials from the SMOP {C
(a)
n }n≥0. In the first of these new representations,

we show that every coefficient can be found in a very compact way, and directly related to the
following parameters

an =
C

(a)
n+1(c)

C
(a)
n (c)

, bn =
1 + λK

(1,1)
n (c, c)

1 + λK
(1,1)
n−1 (c, c)

, n ≥ 1. (16)

From (14) we get

bn =

1 + λ

(

K
(1,1)
n−1 (c, c) +

[∆C
(a)
n (c)]2

||C
(a)
n ||2

)

1 + λK
(1,1)
n−1 (c, c)

= 1 + λ
[∆C

(a)
n (c)]2

||C
(a)
n ||2

(

1 + λK
(1,1)
n−1 (c, c)

)
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which will be always positive, because λ, [∆C
(a)
n (c)]2, ||C

(a)
n ||2 are always positive and from (13)

we observe K
(1,1)
n−1 (c, c) > 0 as well. Notice that

bn − 1 = λ
[∆C

(a)
n (c)]2

||C
(a)
n ||2

(

1 + λK
(1,1)
n−1 (c, c)

) > 0.

Having said that, we begin with the connection formula provided in [6, (2.13)]

Qλ
n(x) = A1(x;n)C

(a)
n (x) +B1(x;n)C

(a)
n−1(x), n ≥ 1, (17)

where the coefficients are the rational functions

A1(x;n) = 1− λ
∆Qλ

n(c)

||C
(a)
n−1||

2

C
(a)
n−1(c) + (x− c)∆C

(a)
n−1(c)

(x− c)(x− c− 1)
,

B1(x;n) = λ
∆Qλ

n(c)

||C
(a)
n−1||

2

C
(a)
n (c) + (x− c)∆C

(a)
n (c)

(x− c)(x − c− 1)
,

and ∆Qλ
n(c) is given by (see [6, (2.4)])

∆Qλ
n(c) =

∆C
(a)
n (c)

1 + λK
(1,1)
n−1 (c, c)

. (18)

By straightforward calculation, from (17) we can write

(x− c)(x− c− 1)A1(x;n) = (x− c)(x− c− 1) +A11(n; c)(x − c) +A10(n; c), (19)

(x− c)(x− c− 1)B1(x;n) = B11(n; c)(x − c) +B10(n; c), (20)

where

A11(n; c) = −λ
∆Qλ

n(c)

||C
(a)
n−1||

2
∆C

(a)
n−1(c), A10(n; c) = −λ

∆Qλ
n(c)

||C
(a)
n−1||

2
C

(a)
n−1(c),

B11(n; c) = λ
∆Qλ

n(c)

||C
(a)
n−1||

2
∆C(a)

n (c), B10(n; c) = λ
∆Qλ

n(c)

||C
(a)
n−1||

2
C(a)
n (c).

Thus
(x− c)(x− c− 1)Qλ

n(x) =

(x− c)(x− c− 1)C(a)
n (x) +A11(n; c)(x − c)C(a)

n (x) +A10(n; c)C
(a)
n (x) (21)

+B11(n; c)(x − c)C
(a)
n−1(x) +B10(n; c)C

(a)
n−1(x).

From (18), and (9) we get

A11(n; c) = −λ
γn

||C
(a)
n ||2

∆C
(a)
n (c)

1 + λK
(1,1)
n−1 (c, c)

∆C
(a)
n−1(c)

∆C
(a)
n (c)

∆C
(a)
n (c)

=
−γn

1 + λK
(1,1)
n−1 (c, c)

∆C
(a)
n−1(c)

∆C
(a)
n (c)

λ[∆C
(a)
n (c)]2

||C
(a)
n ||2

.
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Next, from (12) and (14) we deduce

A11(n; c) = −γn−1
1

C
(a)
n−1(c)

C
(a)
n−2(c)

(

1 + λK
(1,1)
n (c, c)

)

−
(

1 + λK
(1,1)
n−1 (c, c)

)

1 + λK
(1,1)
n−1 (c, c)

,

and taking into account (16) and the coefficients in (6), we observe

A11(n; c) = −
γn−1

an−2
(bn − 1) = −a

n− 1

an−2
(bn − 1) .

Concerning A10(n; c), combining (18), (9), (12) and (14) in the same way yields

A10(n; c) = −λ
1

1 + λK
(1,1)
n−1 (c, c)

[∆C
(a)
n (c)]2

||C
(a)
n ||2

γn

a

na

= −

(

1 + λK
(1,1)
n (c, c)

)

−
(

1 + λK
(1,1)
n−1 (c, c)

)

1 + λK
(1,1)
n−1 (c, c)

a

= −a(bn − 1).

By proceeding with few more steps in the same fashion, we obtain

B11(n; c) = an(bn − 1) and B10(n; c) = a an−1(bn − 1).

Thus, we have proved the following result

Proposition 2 For every n ≥ 1, λ ∈ R+, c ∈ R such that ψ(a) has no points of increase in the
interval (c, c + 1), and a > 0, the four coefficients A11(n; c), A10(n; c), B11(n; c), and B10(n; c)
can be expressed in terms of an, bn given in (16) as follows

A11(n; c) = −a n−1
an−2

(bn − 1) , A10(n; c) = −a(bn − 1),

B11(n; c) = an(bn − 1), B10(n; c) = a an−1(bn − 1).

and therefore
(x− c)(x− c− 1)Qλ

n(x) =

(x− c)(x− c− 1)C(a)
n (x)− a

n− 1

an−2
(bn − 1) (x− c)C(a)

n (x)− a(bn − 1)C(a)
n (x) (22)

+an(bn − 1)(x− c)C
(a)
n−1(x) + a an−1(bn − 1)C

(a)
n−1(x).

Concerning the norm of the polynomials Qλ
n(x) we can state the following

Theorem 1 Let
{

Qλ
n

}

n≥0
be the sequence of Sobolev-type Charlier orthogonal polynomials de-

fined by (17). Then, for every n ≥ 1, λ ∈ R+, c ∈ R such that ψ(a) has no points of increase in
the interval (c, c + 1), and a > 0, the norm of these polynomials, orthogonal with respect to (1)
is

||Qλ
n||

2
λ = ||C(a)

n ||2 + γn(bn − 1)||C
(a)
n−1||

2. (23)
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Proof. Clearly
||Qλ

n||
2
λ = 〈Qλ

n(x), (x − c)(x− c− 1)πn−2(x)〉λ,

for every monic polynomial πn−2 of degree n− 2. From (15) we have

||Qλ
n||

2
λ = 〈(x− c)(x− c− 1)Qλ

n(x), πn−2(x)〉.

Taking into account (22) and again (15), by orthogonality we deduce

||Qλ
n||

2
λ = 〈C(a)

n (x), (x− c)(x− c− 1)πn−2(x)〉

+γn(bn − 1)〈(x− c)C
(a)
n−1(x), πn−2(x)〉

= ||C(a)
n ||2 + γn(bn − 1)||C

(a)
n−1||

2.

This completes the proof.
This can be used to derive the following result

Corollary 1 Under the assumptions of Theorem 1, the following expression

||Qλ
n||

2
λ

||C
(a)
n ||2

=
1 + λK

(1,1)
n (c, c)

1 + λK
(1,1)
n−1 (c, c)

holds.

Remark 1 Combining (8) with (23), one can obtain the following explicit expression for the
norm of the Sobolev-type Charlier polynomials

||Qλ
n||

2
λ = n!anbn

This expression can be used to simplify and make more explicit other expressions throughout the
paper.

In the framework of signal theory, the above gives the ratio of the energy of polynomials

Qλ
n(x) and C

(a)
n (x) with respect to the norms associated with their corresponding inner products.

The proof follows immediately from (23) and (9).
It is known that connection formulas are the main tool to study the analytical properties of

new families of OPS, in terms of other families of OPS with well-known analytical properties.
With this in view, we next present the Sobolev-type Charlier polynomials Qλ

n(x) in terms of only
five consecutive monic Charlier polynomials. Notice that in [6, Lemma 2.2] is already proven
that such an expansion exist, but there, the corresponding coefficients for the Charlier case are
not explicitly given.

Proposition 3 For every n ≥ 1, λ ∈ R+, c ∈ R such that ψ(a) has no points of increase in
the interval (c, c+1), and a > 0, the monic Sobolev-type Charlier orthogonal polynomials Qλ

n(x)
have the following representation in terms of only five consecutive classical Charlier polynomials

(x− c)(x− c− 1)Qλ
n(x) =

C
(a)
n+2(x) + σn,1C

(a)
n+1(x) + σn,0C

(a)
n (x) + σn,−1C

(a)
n−1(x) + σn,−2C

(a)
n−2(x) (24)
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where

σn,1 = 2(n + a− c) +A11(n; c),

σn,0 = a2 + (c− n)(n − 2a+ c+ 1) + (n+ a− c) [2n+A11(n; c)]

+A10(n; c) +B11(n; c),

σn,−1 = A11(n; c)na+ (n− 1 + a− c) [2an+B11(n; c)] +B10(n; c),

σn,−2 = a(n− 1) [na+B11(n; c)] .

An alternative more explicit expression for these coefficients is

σn,1 = 2(n + a− c)− a
n− 1

an−2
(bn − 1) ,

σn,0 = a2 + (c− n)(n− 2a+ c+ 1) + a(n− 1)(bn − 1)

+ (n+ a− c)

(

2n− a
n− 1

an−2
(bn − 1)

)

, (25)

σn,−1 = an (n+ a− c− 1) (bn + 1) + a(bn − 1)

(

an−1 − an
n− 1

an−2

)

,

σn,−2 = a2n(n− 1)bn.

Proof. After some cumbersome, but doable computations, using (6) we obtain

(x− c)(x− c− 1)C(a)
n (x) = C

(a)
n+2(x) + 2(n+ a− c)C

(a)
n+1(x)

+
[

(a− c)2 + c− n+ 4an − 2cn+ n2
]

C(a)
n (x)

+2an (a− c+ n− 1)C
(a)
n−1(x) + na2(n− 1)C

(a)
n−2(x),

A11(n; c)(x− c)C(a)
n (x) = A11(n; c)C

(a)
n+1(x) +A11(n; c) (n+ a− c)C(a)

n (x)

+A11(n; c)naC
(a)
n−1(x),

B11(n; c)(x − c)C
(a)
n−1(x) = B11(n; c)C

(a)
n (x) +B11(n; c) [n− 1 + a− c]C

(a)
n−1(x)

+B11(n; c)(n − 1)aC
(a)
n−2(x).

Combining all the above expressions into (21) we obtain the desired coefficients in (24). To
obtain (25), it is enough to consider Proposition 2. This completes the proof.

In the remaining of this Section, we derive a representation of the Sobolev-type Charlier
polynomials Qλ

n(x) as hypergeometric functions.

Proposition 4 For every n ≥ 1, λ ∈ R+, c ∈ R such that ψ(a) has no points of increase in
the interval (c, c+1), and a > 0, the monic Sobolev-type Charlier orthogonal polynomials Qλ

n(x)
have the following hypergeometric representation

Qλ
n(x) = (−a)n−1 [B1(x;n)− aA1(x;n)] 3F1

(

−n,−x, 1− φn,a(x);−φn,a(x);
−1

a

)

(26)

where

φn,a(x) = n

(

1− a
A1(x;n)

B1(x;n)

)

.
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Proof. Substituting (5) into (17) yields

Qλ
n(x) = (−a)nA1(x;n)

∞
∑

k=0

(−n)k (−x)k

(

−a−1
)k

k!

+ (−a)n−1B1(x;n)

∞
∑

k=0

(1− n)k (−x)k

(

−a−1
)k

k!
.

Note that although the sums above are up to infinity, these are terminating hypergeometric
series, because the Pochhammer symbol (−n)k becomes zero if k > n+1. By a straightforward
calculation, we have

Qλ
n(x) = (−a)n

∞
∑

k=0

[

A1(x;n)−
(n− k)B1(x;n)

an

]

(−n)k (−x)k

(

−a−1
)k

k!
.

Now we write the expression in square brackets as a rational function in the variable k

B1(x;n)

an
(k − φn,a(x))

with

φn,a(x) = n

(

1− a
A1(x;n)

B1(x;n)

)

,

and therefore

Qλ
n(x) = − (−a)n−1 B1(x;n)

n

∞
∑

k=0

[k − φn,a(x)] (−n)k (−x)k

(

−a−1
)k

k!
.

Now, using some properties of the Pochhammer symbol, we can assert

k − φn,a(x) = −φn,a(x)
(1− φn,a(x))k
(−φn,a(x))k

which gives

Qλ
n(x) = (−a)n−1 [B1(x;n)− aA1(x;n)]

∞
∑

k=0

(−n)k (−x)k (1− φn,a(x))k
(−φn,a(x))k

(

−a−1
)k

k!
.

This completes the proof.

4 Ladder operators and second order linear difference equations

Our next result concerns the ladder (creation and annihilation) operators, and the second order
linear difference equation satisfied by the elements of the family {Qλ

n}n≥0. In the literature, we
can find two versions of the second order difference equation satisfied by the classical Charlier
polynomials. The first one (10) appears, for example in (see [10, p. 171, eq. (1.8)]). The other
one (11) is known as the second order difference equation of hypergeometric type, and appears
in [2, Ch. 4] and [22, § 2.1]. As the authors claimed in [22, § 2.1, p. 20], this equation “...arises
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also in some other problems and has its own meaning” [sic]. Thus as it is proven, for example,

in [2, p. 101], the polynomial solutions of (11) satisfy that their k-th finite differences ∆k
xC

(a)
n (x)

are in turn polynomial solutions of a difference equation of the same kind.
In this Section, we will find the corresponding second order difference equations of second

order that Qλ
n(x) satisfy. We will also obtain two different versions of this second order difference

equation, which generalize respectively (10) and (11) when λ > 0.
We first provide the second order difference equation satisfied by Qλ

n(x) in the same way as
in (10). The technique used is based on the connection formula (17), the three term recurrence

relation (6) satisfied by {C
(a)
n }n≥0, and the simple difference relation (12). We begin by proving

some Lemmas that are needed to substantiate our next results, namely Theorems 2 and 3.

Lemma 1 Under the same hypothesis of Proposition 2, for the SMOP {Qλ
n}n≥0 and {C

(a)
n }n≥0

we have
∆Qλ

n(x) = C1(x;n)C
(a)
n (x) +D1(x;n)C

(a)
n−1(x), (27)

where

C1(x;n) = A1(x+ 1;n)−A1(x;n)−
1

a
B1(x+ 1;n),

D1(x;n) = nA1(x+ 1;n)−B1(x;n) +
x− n+ 1

a
B1(x+ 1;n).

(28)

with A1(x;n) and B1(x;n) given in (17).

Proof. Shifting the index in (12) as n→ n− 1, and using (6) we obtain

∆C
(a)
n−1(x) =

−1

a
C(a)
n (x) +

x− n− a+ 1

a
C

(a)
n−1(x). (29)

Next, using the property (3) we apply the forward difference operator ∆ in both sides of (17),
which yields

∆Qλ
n(x) = ∆

[

C(a)
n (x)A1(x;n)

]

+∆
[

C
(a)
n−1(x)B1(x;n)

]

= C(a)
n (x)∆A1(x;n) + [∆A1(x;n) +A1(x;n)]∆C

(a)
n (x)

+C
(a)
n−1(x)∆B1(x;n) + [∆B1(x;n) +B1(x;n)]∆C

(a)
n−1(x)

Substituting (12) and (29) into the above expression the Lemma follows.

Lemma 2 The sequences of monic polynomials {Qλ
n}n≥0 and {C

(a)
n }n≥0 are also related by

Qλ
n−1(x) = A2(x;n)C

(a)
n (x) +B2(x;n)C

(a)
n−1(x), (30)

∆Qλ
n−1(x) = C2(x;n)C

(a)
n (x) +D2(x;n)C

(a)
n−1(x), (31)
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where

A2(x;n) =
−B1(x;n− 1)

a(n − 1)
,

B2(x;n) = A1(x;n − 1) +
x− n− a+ 1

a(n− 1)
B1(x;n − 1),

C2(x;n) =
aB1(x;n − 1)− a(n − 1)A1(x+ 1;n − 1)− (x− n+ 2)B1(x+ 1;n− 1)

a2(n− 1)
, (32)

D2(x;n) =
a(n− 1)(1 − n+ x)A1(x+ 1;n − 1) + a(−1 + a+ n− x)B1(x;n − 1)

a2(n− 1)

−A1(x;n− 1) +
[(−2 + n− x)(−1 + n− x)− a(1 + x)]B1(x+ 1;n − 1)

a2(n− 1)
.

Proof. The proof of (30) and (31) is a straightforward consequence of (17), (12), Lemma 1, and

the three term recurrence relation (6) for the SMOP {C
(a)
n }n≥0.

Remark 2 Observe that the set of coefficients (28) and (32) can be given strictly in terms of the
following known quantities: the coefficients A1(x;n) and B1(x;n) in (17), and the characteristic
parameters ot the problem a, c, λ and n.

The following Lemma shows the converse relation of (17)–(30) for the polynomials C
(a)
n (x)

and C
(a)
n−1(x). That is, we express these two consecutive polynomials of {C

(a)
n }n≥0 in terms of

only two consecutive polynomials of the SMOP {Qλ
n}n≥0.

Lemma 3 For every n ≥ 1, λ ∈ R+, c ∈ R such that ψ(a) has no points of increase in the
interval (c, c + 1), and a > 0, the following expressions hold

C(a)
n (x) =

B2(x;n)

Λ(x;n)
Qλ

n(x)−
B1(x;n)

Λ(x;n)
Qλ

n−1(x), (33)

C
(a)
n−1(x) =

−A2(x;n)

Λ(x;n)
Qλ

n(x) +
A1(x;n)

Λ(x;n)
Qλ

n−1(x), (34)

where Λ(x;n) is the determinant

Λ(x;n) =

∣

∣

∣

∣

A1(x;n) B1(x;n)
A2(x;n) B2(x;n)

∣

∣

∣

∣

(35)

Proof. Note that (17)–(30) can be interpreted as a system of two linear equations with two

polynomial unknowns, namely C
(a)
n (x) and C

(a)
n−1(x), hence from Cramer’s rule the Lemma, and

the expression for Λ(x;n) follow in a straightforward way.
The proof of the next Theorem 2 easily follows from Lemmas 1, 2 and 3. Replacing (33)–(34)

in (27) and (31) one obtains the ladder difference equations

∆Qλ
n(x) =

[

C1(x;n)B2(x;n)

Λ(x;n)
−
D1(x;n)A2(x;n)

Λ(x;n)

]

Qλ
n(x)

+

[

A1(x;n)D1(x;n)

Λ(x;n)
−
C1(x;n)B1(x;n)

Λ(x;n)

]

Qλ
n−1(x),



4 LADDER OPERATORS AND SECONDORDER LINEARDIFFERENCE EQUATIONS13

∆Qλ
n−1(x) =

[

C2(x;n)B2(x;n)

Λ(x;n)
−
A2(x;n)D2(x;n)

Λ(x;n)

]

Qλ
n(x)

+

[

A1(x;n)D2(x;n)

Λ(x;n)
−
C2(x;n)B1(x;n)

Λ(x;n)

]

Qλ
n−1(x).

Observe that defining the following determinants for k = 1, 2

Ξk(x;n) =
1

Λ(x;n)

∣

∣

∣

∣

C1(x;n) Ak(x;n)
D1(x;n) Bk(x;n)

∣

∣

∣

∣

, Θk(x;n) =
1

Λ(x;n)

∣

∣

∣

∣

C2(x;n) Ak(x;n)
D2(x;n) Bk(x;n)

∣

∣

∣

∣

, (36)

we can express the above ladder difference equations in the compact way

Ξ2(x;n)Q
λ
n(x)−∆Qλ

n(x) = Ξ1(x;n)Q
λ
n−1(x), (37)

Θ1(x;n)Q
λ
n−1(x) + ∆Qλ

n−1(x) = Θ2(x;n)Q
λ
n(x). (38)

Next, rearranging terms in the above two equations, we conclude the following result, which
is fully equivalent to (39)–(40).

Theorem 2 (ladder difference operators) For every n ≥ 1, λ ∈ R+, c ∈ R such that ψ(a)

has no points of increase in the interval (c, c + 1), and a > 0, let dn and d
†
n be the difference

operators

dn = Ξ2(x;n)I−∆,

d
†
n = Θ1(x;n)I + ∆,

where I is the identity and ∆ the forward difference operators respectively. The difference ope-
rators dn and d

†
n are respectively lowering and raising difference operators associated to the

Sobolev-type Charlier SMOP, satisfying

dn[Q
λ
n(x)] = Ξ1(x;n)Q

λ
n−1(x), (39)

d
†
n[Q

λ
n−1(x)] = Θ2(x;n)Q

λ
n(x), (40)

with Ξk(x;n), Θk(x;n), k = 1, 2 given in (36). These four coefficients can be given only in terms
of the coefficients A1(x;n), B1(x;n) in (17) and the parameters a, λ, c, and n throughout the
set of equations (36), (28), (32).

For a deeper discussion on raising and lowering difference operators we refer the reader to
[13, Ch. 3]. We next provide the second order linear difference equation satisfied by the SMOP
{Qλ

n}n≥0.
Next, the proof of Theorem 3 comes directly from the ladder operators provided in Theorem

2. The usual technique (see, for example [13, Th. 3.2.3]) consists in applying the raising operator
to both sides of the equation satisfied by the lowering operator, i.e. the expression

d
†
n

[

1

Ξ1(x;n)
dn[Q

λ
n(x)]

]

= d
†
n

[

Qλ
n−1(x)

]

= Θ2(x;n)Q
λ
n(x) (41)

is indeed a second order difference equation for Qλ
n(x).
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Theorem 3 (2nd order difference equation) For every n ≥ 1, λ ∈ R+, c ∈ R such that
ψ(a) has no points of increase in the interval (c, c + 1), and a > 0, the Sobolev-type Charlier
SMOP {Qλ

n}n≥0 satisfies the second order difference equation

∆2Qλ
n(x) +R(x;n)∆Qλ

n(x) + S(x;n)Qλ
n(x) = 0, (42)

with rational coefficients

R(x;n) =
[Θ1(x;n)− 1]∆Ξ1(x;n)

Ξ1(x;n)
−∆Ξ2(x;n) + Θ1(x;n)− Ξ2(x;n),

S(x;n) = Θ2(x;n) [Ξ1(x;n) + ∆Ξ1(x;n)]−∆Ξ2(x;n)−Θ1(x;n)Ξ2(x;n) (43)

−
Ξ2(x;n) [Θ1(x;n)− 1]∆Ξ1(x;n)

Ξ1(x;n)
.

Proof. From (41), using the definitions for d†n, dn and the quotient rule (4) we obtain

d
†
n

[

1

Ξ1(x;n)
dn[Q

λ
n(x)]

]

−Θ2(x;n)Q
λ
n(x) =

(

Θ2(x;n)−
Θ1(x;n)Ξ2(x;n)

Ξ1(x;n)
−

Ξ1(x;n)∆Ξ2(x;n)− Ξ2(x;n)∆Ξ1(x;n)

Ξ1(x;n) (Ξ1(x;n) + ∆Ξ1(x;n))

)

Qλ
n(x)

+

(

Θ1(x;n)

Ξ1(x;n)
−

Ξ2(x;n)

Ξ1(x;n)
−

Ξ1(x;n)∆Ξ2(x;n)− Ξ2(x;n)∆Ξ1(x;n) + ∆Ξ1(x;n)

Ξ1(x;n) (Ξ1(x;n) + ∆Ξ1(x;n))

)

∆Qλ
n(x)

+

(

1

Ξ1(x;n)
−

∆Ξ1(x;n)

Ξ1(x;n) (Ξ1(x;n) + ∆Ξ1(x;n))

)

∆2Qλ
n(x) = 0.

Multiplying all the equation by Ξ1(x;n) + ∆Ξ1(x;n) we have 1 as the coefficient of ∆2Qλ
n(x),

so we finally obtain (43). This completes the proof.
Doing few more computations, we can obtain the coefficients just in terms of the functions

A1(x;n) and B1(x;n) of the connection formula (17), and the other parameters a, λ, c, and n.
Being

R(x;n) =
B(x;n)

A(x;n)
, and S(x;n) =

C(x;n)

A(x;n)
,

we have

A(x;n) = a2A1(x+ 1;n) [nA1(x;n)−B1(x;n)]

+aB1(x+ 1;n) [(−n+ x+ 1)A1(x;n) +B1(x;n)] ,

B(x;n) = 2a2nA1(x+ 1;n)A1(x;n)

−(a− n+ x+ 1)anA1(x+ 2;n)A1(x;n)

−
(

−n(a+ 2x+ 3) + n2 + (x+ 1)(x+ 2)
)

A1(x;n)B1(x+ 2;n)

+2a(−n+ x+ 1)A1(x;n)B1(x+ 1;n)

−2a2A1(x+ 1;n)B1(x;n) + a(a− n)A1(x+ 2;n)B1(x;n)

+2aB1(x+ 1;n)B1(x;n)− (a− n+ x+ 2)B1(x+ 2;n)B1(x;n),
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C(x;n) = n(a+ 2x+ 3)B1(x+ 2;n)− n2B1(x+ 2;n)− (x+ 1)(x+ 2)A1(x;n)B1(x+ 2;n)

−(a− n+ x+ 2)B1(x;n)B1(x+ 2;n)

+(x+ 1)(−n+ x+ 2)A1(x+ 1;n)B1(x+ 2;n)

+(x+ 1)B1(x+ 2;n)B1(x+ 1;n) + a(a− n)A1(x+ 2;n)B1(x;n)

+aA1(x+ 1;n) [n(x+ 1)A1(x+ 2;n)− aB1(x;n)]

+a2nA1(x+ 1;n)A1(x;n) + na(−a+ n− x− 1)A1(x+ 2;n)A1(x;n)

+a(−n+ x+ 1)A1(x;n)B1(x+ 1;n)

−aB1(x+ 1;n) [(x+ 1)B1(x+ 2;n)−B1(x;n)] ,

We can use the above expressions to show that (42) becomes (10) when λ = 0. In this

case Qλ=0
n (x) ≡ C

(a)
n (x), and therefore A1(x;n) = 1 and B1(x;n) = 0 in (17). Under these

assumptions, we get

A(x;n) = a2n,

B(x;n) = −an (x+ 1− a− n) ,

C(x;n) = an2.

which allows us to recover (10) from (42), provided also that a > 0 and n ≥ 1.
Next, we study the generalization of the second order difference equation of hypergeometric

type (10). In order to prove our next Theorem, we bring together few technical steps, presented
in the following

Lemma 4 The monic Sobolev-type Charlier orthogonal polynomials Qλ
n(x) defined by (26) sa-

tisfy the following

i)

∇Qλ
n(x) = C3(x;n)C

(a)
n (x) +D3(x;n)C

(a)
n−1(x), (44)

where

C3(x;n) = ∇A1(x;n) + nx−1A1(x− 1;n)− x−1B1(x− 1;n),

D3(x;n) = ∇B1(x;n) + nax−1A1(x− 1;n) + (x− a) x−1B1(x− 1;n).

ii)
Qλ

n−1 (x) = F1(x;n)∇Q
λ
n (x) + G1(x;n)Q

λ
n (x) , (45)

where

F1(x;n) = −
Λ(x;n)

Φ1(x;n)
, G1(x;n) =

Φ2(x;n)

Φ1(x;n)
,

Φk(x;n) =

∣

∣

∣

∣

C3(x;n) Ak(x;n)
D3(x;n) Bk(x;n)

∣

∣

∣

∣

, k = 1, 2.

iii)
∆Qλ

n (x) = F2(x;n)∇Q
λ
n (x) + G2(x;n)Q

λ
n (x) , (46)

where

F2(x;n) = −Ξ1(x;n)F1(x;n),

G2(x;n) = Ξ2(x;n)− Ξ1(x;n)G1(x;n).
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Proof.

i) Applying the forward operator ∇ to (17) and using 3 we deduce

∇Qλ
n(x) = C(a)

n (x)∇A1(x;n) + x−1A1(x− 1;n)x∇C(a)
n (x)

+C
(a)
n−1(x)∇B1(x;n) + x−1B1(x− 1;n)x∇C

(a)
n−1(x).

Next, we use (7) and the recurrence relation (6) to expand ∇C
(a)
n (x) and ∇C

(a)
n−1(x) in

terms of only two consecutive Charlier polynomials C
(a)
n (x) and C

(a)
n−1(x). Pulling out

common factors, we get (44).

ii) Replacing (33)-(34) in (44), we obtain (45).

iii) Combining (45) with (37) we conclude (46) in a straightforward way.

Now, we are ready to present the alternative version of the second order difference equation
(42) satisfied by the Sobolev-type Charlier orthogonal polynomials.

Theorem 4 For every n ≥ 1, λ ∈ R+, c ∈ R such that ψ(a) has no points of increase in the
interval (c, c + 1), and a > 0, the Sobolev-type Charlier SMOP {Qλ

n}n≥0 satisfies the following
second order difference equation

σ (x)∆∇Qλ
n (x) + τ (x)∆Qλ

n (x) + µ (x)Qλ
n (x) = 0, (47)

where

σ (x) = F2(x;n),

τ (x) = ∆F2 (x;n) + G2 (x+ 1;n) +R (x;n) , (48)

µ (x) = ∆G2 (x;n) + S (x;n) .

Equation (47) becomes the hypergeometric type difference equation (11) when λ = 0.

Proof. Replacing Lemma 4-iii) in (42), we obtain

F2 (x+ 1;n)∆∇Qλ
n (x) +∇Qλ

n (x)∆F2 (x;n) + [G2 (x+ 1;n) +R (x;n)]∆Qλ
n (x)

+ [∆G2 (x;n) + S (x;n)]Qλ
n(x) = 0 (49)

On the other hand, we have

F2 (x+ 1;n)∆∇Qλ
n (x) +∇Qλ

n (x)∆F2 (x;n) =

F2 (x;n)∆∇Qλ
n (x) + ∆F2 (x;n)∆∇Qλ

n (x) +∇Qλ
n (x)∆F2 (x;n) .

Applying the property ∆∇ = ∆−∇, we get

F2 (x+ 1;n)∆∇Qλ
n (x) +∇Qλ

n (x)∆F2 (x;n) = F2 (x;n)∆∇Qλ
n (x) + ∆F2 (x;n)∆Q

λ
n (x) .
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Thus, replacing the above expression into (49), we can assert

F2 (x;n)∆∇Qλ
n (x) + [∆F2 (x;n) + G2 (x+ 1;n) +R (x;n)]∆Qλ

n (x)

+ [∆G2 (x;n) + S (x;n)]Qλ
n(x) = 0,

which is (47).
Next, we evaluate (47) when λ = 0. In this particular case, we have

A1(x;n) = 1, B1(x;n) = 0, C1(x;n) = 0, D1(x;n) = n,

A2(x;n) = 0, B2(x;n) = 1, C2(x;n) = −1/a, D2(x;n) = (x+ 1− n− a) /a,

C3(x;n) = n/x, D3(x;n) = na/x, Λ(x;n) = 1,

R(x;n) = (−x− 1 + a+ n) /a, S(x;n) = n/a,

Ξ1(x;n) = −n, Ξ2(x;n) = 0, Φ1 = −na/x, Φ2 = n/x

F1(x;n) = x/na, G1(x;n) = −1/a, F2(x;n) = x/a, G2(x;n) = −n/a.

Replacing all these values in (48), yields

σ (x) =
x

a
,

τ (x) =
(x+ 1)

a
−
(x

a

)

+
−n

a
+

−x− 1 + a+ n

a
= 1−

1

a
x,

µ (x) =
n

a
,

which leads to equation (11) divided by a. This completes the proof.
It is worth noting that equation (47) generalizes the equation of hypergeometric type (11) for

λ > 0, but it is not itself an equation of hypergeometric type. To be of hypergeometric type, (47)
should fulfill important properties, such as those commented at the beginning of this Section
concerning the k-th finite differences of its polynomial solutions ∆k

xQ
λ
n(x). It can be verified

that, for example the first difference of its polynomials solutions, do not satisfy an equation of
the same type as (47).

5 Recurrence formulas

Here we present two recurrence formulas for the Sobolev-type Charlier polynomials of the SMOP
{Qλ

n}n≥0. The first one is a five term recurrence relation, whose existence was proved in [7, Prop.
3.1] in a more general framework. Here we provide the explicit coefficients in the Charlier case.
The second one is a three term recurrence relation whose coefficients are rational functions.

Next we find the explicit coefficients of the five term recurrence relation satisfied by Qλ
n(x),

whose existence is proven in [7, Proposition 3.1, p. 236].

Theorem 5 (Five term recurrence relation) For every n ≥ 1, λ ∈ R+, c ∈ R such that
ψ(a) has no points of increase in the interval (c, c+1), and a > 0, the monic Sobolev-type Charlier
polynomials {Qλ

n}n≥0, orthogonal with respect to (1) satisfy the following five term recurrence
relation

(x− c)(x− c− 1)Qλ
n(x) =
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Qλ
n+2(x) + ρn,n+1Q

λ
n+1(x) + ρn,nQ

λ
n(x) + ρn,n−1Q

λ
n−1(x) + ρn,n−2Q

λ
n−2(x),

where

ρn,n+1 =
σn+1,−1||C

(a)
n ||2

||Qλ
n+1||

2
λ

−
γn−1

an−2
(bn − 1) ,

ρn,n = σn,0
||C

(a)
n ||2

||Qλ
n||

2
λ

− (bn − 1)

[

γn−1

an−2

(

σn,−1
||C

(a)
n−1||

2

||Qλ
n||

2
λ

− (n+ a− c− 2)

)

+ (a− γn)

]

,

ρn,n−1 = σn,−1
||C

(a)
n−1||

2

||Qλ
n−1||

2
λ

−
γn−1

an−2
(bn − 1)

||Qλ
n||

2
λ

||Qλ
n−1||

2
λ

,

ρn,n−2 = σn,−2
||C

(a)
n−2||

2

||Qλ
n−2||

2
λ

.

Proof. We first consider the Fourier expansion of (x−c)(x−c−1)Qλ
n(x) in terms of the elements

of {Qλ
n}n≥0

(x− c)(x − c− 1)Qλ
n(x) = Qλ

n+2(x) +

n+1
∑

k=0

ρn,kQ
λ
k(x),

where

ρn,k =
〈(x− c)(x− c− 1)Qλ

n(x), Q
λ
k(x)〉λ

||Qλ
k ||

2
λ

, k = 0, . . . , n+ 1,

and ρn,k = 0 for k = 0, . . . , n − 3. Using (22) we deduce

ρn,n+1 =
〈(x− c)(x− c− 1)Qλ

n(x), Q
λ
n+1(x)〉λ

||Qλ
n+1||

2
λ

=
1

||Qλ
n+1||

2
λ

〈(x− c)(x− c− 1)C(a)
n (x), Qλ

n+1(x)〉λ −
γn−1

an−2
(bn − 1) .

Thus, from (15) we get

〈(x− c)(x − c− 1)C(a)
n (x), Qλ

n+1(x)〉λ = 〈C(a)
n (x), (x− c)(x− c− 1)Qλ

n+1(x)〉.

Then, having into account (24), we have

〈(x− c)(x− c− 1)C(a)
n (x), Qλ

n+1(x)〉 = σn+1,−1||C
(a)
n ||2

and, in consequence

ρn,n+1 =
σn+1,−1||C

(a)
n ||2

||Qλ
n+1||

2
λ

−
γn−1

an−2
(bn − 1) .

In order to compute ρn,n, we use (22)

ρn,n =

〈

(x− c)(x − c− 1)Qλ
n(x), Q

λ
n(x)

〉

λ

||Qλ
n||

2
λ

=
〈(x− c)(x − c− 1)C

(a)
n (x), Qλ

n(x)〉

||Qλ
n||

2
λ

−
γn−1

an−2
(bn − 1)

〈(x− c)C
(a)
n (x), Qλ

n(x)〉λ
||Qλ

n||
2
λ

+ a(n− 1)(bn − 1).
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From (6), (15) and (24) we deduce

〈(x− c)(x− c− 1)C
(a)
n (x), Qλ

n(x)〉

||Qλ
n||

2
λ

=
〈C

(a)
n (x), (x − c)(x− c− 1)Qλ

n(x)〉

||Qλ
n||

2
λ

= σn,0
||C

(a)
n ||2

||Qλ
n||

2
λ

,

and

〈(x− c)C
(a)
n (x), Qλ

n(x)〉λ
||Qλ

n||
2
λ

=
〈C

(a)
n−1(x), (x − c)(x− c− 1)Qλ

n(x)〉

||Qλ
n||

2
λ

− (n+ a− c− 2)

= σn,−1
||C

(a)
n−1||

2

||Qλ
n||

2
λ

− (n+ a− c− 2) .

Hence

ρn,n = σn,0
||C

(a)
n ||2

||Qλ
n||

2
λ

−
γn−1σn,−1

an−2
(bn − 1)

||C
(a)
n−1||

2

||Qλ
n||

2
λ

+
γn−1

an−2
(bn − 1) (n+ a− c− 2) + γn(bn − 1)− a(bn − 1)

= σn,0
||C

(a)
n ||2

||Qλ
n||

2
λ

− (bn − 1)

[

γn−1

an−2

(

σn,−1
||C

(a)
n−1||

2

||Qλ
n||

2
λ

− (n+ a− c− 2)

)

+ (a− γn)

]

Similarly, we compute

ρn,n−1 =
〈(x− c)(x− c− 1)Qλ

n(x), Q
λ
n−1(x)〉λ

||Qλ
n−1||

2
λ

=
〈Qλ

n(x), (x − c)(x− c− 1)Qλ
n−1(x)〉λ

||Qλ
n−1||

2
λ

=
〈Qλ

n(x), (x− c)(x− c− 1)C
(a)
n−1(x)〉λ

||Qλ
n−1||

2
λ

−
γn−1

an−2
(bn − 1)

||Qλ
n||

2
λ

||Qλ
n−1||

2
λ

,

where

〈Qλ
n(x), (x− c)(x− c− 1)C

(a)
n−1(x)〉λ

||Qλ
n−1||

2
λ

=
〈(x− c)(x− c− 1)Qλ

n(x), C
(a)
n−1(x)〉

||Qλ
n−1||

2
λ

= σn,−1
||C

(a)
n−1||

2

||Qλ
n−1||

2
λ

.

Thus

ρn,n−1 = σn,−1
||C

(a)
n−1||

2

||Qλ
n−1||

2
λ

−
γn−1

an−2
(bn − 1)

||Qλ
n||

2
λ

||Qλ
n−1||

2
λ

.

Finally, using the same arguments, we conclude

ρn,n−2 =
〈(x− c)(x− c− 1)Qλ

n(x), Q
λ
n−2(x)〉λ

||Qλ
n−2||

2
λ

=
〈Qλ

n(x), (x − c)(x− c− 1)C
(a)
n−2(x)〉λ

||Qλ
n−2||

2
λ

=
〈(x− c)(x− c− 1)Qλ

n(x), C
(a)
n−2(x)〉

||Qλ
n−2||

2
λ

= σn,−2
||C

(a)
n−2||

2

||Qλ
n−2||

2
λ

.
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This completes the proof.
It is worth emphasizing that the values of the coefficients in the above five-term recurrence

relation depend on a number of quantities involved in the present problem, such the coefficients
βn, γn in (6), parameters an, bn in (16), coefficients σn,1 to σn,−2 in (3), etc.

Next, we prove an alternative recurrence formula with rational coefficients, that can be used
to find the next polynomial Qλ

n+1(x), from the two former consecutive polynomials Qλ
n(x) and

Qλ
n−1(x) in the Sobolev-type Charlier SMOP {Qλ

n}n≥0. Using the ladder difference equations
(37) and (38) we have

Ξ2(x;n)Q
λ
n(x)−∆Qλ

n(x) = Ξ1(x;n)Q
λ
n−1(x),

Θ1(x;n+ 1)Qλ
n(x) + ∆Qλ

n(x) = Θ2(x;n+ 1)Qλ
n+1(x).

Simply adding the above two equations, for every n ≥ 1 we obtain the aforesaid three term
recurrence relation

Qλ
n+1(x) = β̃(x;n)Qλ

n(x) + γ̃(x;n)Qλ
n−1(x), (50)

with rational coefficients

β̃(x;n) =
Ξ2(x;n) + Θ1(x;n+ 1)

Θ2(x;n + 1)
, and γ̃(x;n) = −

Ξ1(x;n)

Θ2(x;n + 1)
.

Having in mind Remark 2, we can express β̃(x;n) and γ̃(x;n) exclusively in terms of A1(x;n)
and B1(x;n) in (17), and the rest of involved parameters a, λ, c, and n. From (36), (32) and
(35) we conclude

β̃(x;n) =
a(n − 1)A1(x;n− 1) [(−a− n+ x)A1(x;n + 1) +B1(x;n + 1)]

B1(x;n− 1) [(−a− n+ x+ 1)A1(x;n) +B1(x;n)] + a(n− 1)A1(x;n − 1)A1(x;n)
+

B1(x;n − 1)
[

a2 + a(n− 2x− 1) + (n− x)2 − n+ x
]

A1(x;n+ 1)− (a+ n− x− 1)B1(x;n+ 1)

B1(x;n − 1) [(−a− n+ x+ 1)A1(x;n) +B1(x;n)] + a(n− 1)A1(x;n− 1)A1(x;n)

and

γ̃(x;n) =
a(n− 1) {(A1(x;n+ 1) [(a+ n− x)B1(x;n)− anA1(x;n)]−B1(x;n)B1(x;n + 1)}

B1(x;n − 1) [(−a− n+ x+ 1)A1(x;n) +B1(x;n)] + a(n − 1)A1(x;n− 1)A1(x;n)
.

As might be expected, when λ = 0, we have A1(x;n) = 1 and B1(x;n) = 0 above, and therefore
we recover the corresponding coefficients βn and γn in (6). Thus,

β̃(x;n) =
a(n − 1)(−a− n+ x)

a(n− 1)
= x− n− a = x− βn,

γ̃(x;n) =
−a2n(n− 1)

a(n− 1)
= −an = −γn.

6 Asymptotic behavior of the zeros

In this Section we obtain new results on zero behavior of the Sobolev-type Charlier orthogonal
polynomials Qλ

n(x), which are different and complementary to that encountered in the literature
so far. We will analyze the behavior of zeros of Qλ

n(x) as a function of the mass λ, when λ
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tends from zero to infinity as well as we characterize the exact values of λ such the smallest
(respectively, the largest) zero of {Qλ

n}n≥0 is located outside of I = supp(ψ(a)). In order to
do that, we use a technique developed and proved in [9, Lemma 1] and [11, Lemmas 1 and
2], concerning the behavior and the asymptotics of the zeros of linear combinations of two
polynomials h, g ∈ P with interlacing zeros, such that f(x) = hn(x) + λgn(x). From now on, we
will refer to this technique as the Interlacing Lemma, and for the convenience of the reader, we
include here the part in which we are interested.

Lemma 5 (Interlacing Lemma) Let hn(x) = a(x − x1) · · · (x − xn) and gn(x) = b(x −
y1) · · · (x−yn) be polynomials with real and simple zeros, where a and b are real positive constants.
If

y1 < x1 < · · · < yn < xn,

then, for any real constant λ > 0, the polynomial

f(x) = hn(x) + λgn(x)

has n real zeros η1 < · · · < ηn which interlace with the zeros of hn(x) and gn(x) in the following
way

y1 < η1 < x1 < · · · < yn < ηn < xn.

Moreover, each ηk = ηk(λ) is a decreasing function of λ and, for each k = 1, . . . , n,

lim
λ→∞

ηk = yk and lim
λ→∞

λ[ηk − yk] =
−hn(yk)

g′n(yk)
.

Concerning the classical Charlier polynomials C
(a)
n (x), we denote by {xn,r}

n
r=1 their zeros,

all arranged in an increasing order. When a > 0 we have ψ(a) is positive-definite so all the zeros
{xn,r}

n
r=1 are simple and lie in (0,+∞). At the same time, it is known that Qλ

n(x) can have
complex zeros, and this fact depends entirely on the choice of the parameter c. For example,
in Figure 1 are shown the two complex zeros of Q100

4 (x) (for a = 0.34) mentioned in the last
Remark of ([6, p.27]), whose numerical values are 0.00403781, 1.12129, and 2.74947±0.403581 i.

-1 1 2 3 4

-2

-1

1

2

-1 0 1 2 3 4

-2

-1

0

1

2

Figure 1: Graphs of Q100
4 and its zeros for a = 0.34 and c = 2.



6 ASYMPTOTIC BEHAVIOR OF THE ZEROS 22

As was proved in [6, Corollary 3.4 b), p. 24], if c + 1 < inf I, then Qλ
n(x) has n real zeros

{ηλn,r}
n
r=1 satisfying the interlacing property

ηλn,1 < xn,1 < ηλn,2 < xn,2 < · · · < ηλn,n < xn,n (51)

where I is the interval containing the spectrum of the Poisson distribution ψ(a), as was introduced
in (2). Note that in the present case, inf I = 0.

The Interlacing Lemma deals only with real and simple zeros, so in order to get the results
of this Section, it will be necessary to put some extra restriction on the values of c. From now
on we make the assumption c ∈ R�[−1,+∞), and therefore we restrict ourselves to the case in
which the set of zeros of Qλ

n(x) are all simple and real.
On the other hand, from the connection formula [6, (2.5)]

Qλ
n(x) = C(a)

n (x)−
λ∆C

(a)
n (c)

1 + λK
(1,1)
n−1 (c, c)

K
(0,1)
n−1 (x, c) (52)

we define the following limit polynomials

G(a)
n (x) = lim

λ→∞
Qλ

n(x) = C(a)
n (x)−

∆C
(a)
n (c)

K
(1,1)
n−1 (c, c)

K
(0,1)
n−1 (x, c), (53)

where K
(0,1)
n−1 (x, c) is given by (see [6, p. 21])

K
(0,1)
n−1 (x, c) =

C
(a)
n−1(x, c)

||C
(a)
n−1||

2
C(a)
n (x)−

C
(a)
n (x, c)

||C
(a)
n−1||

2
C

(a)
n−1(x), (54)

with

C
(a)
n (x, c) =

C
(a)
n (c) + (x− c)∆C

(a)
n (c)

(x− c)(x− c− 1)
.

In order to prove the interlacing between the zeros of C
(a)
n (x) and G

(a)
n (x), we follow a two step

process.

Lemma 6 Let c ∈ R�[−1,+∞), and let {xn,r}
n
r=1, {κn−1,r}

n−1
r=1 denote the zeros of C

(a)
n (x)

and K
(0,1)
n−1 (x, c), respectively, all arranged in an increasing order. Then, the zeros of K

(0,1)
n−1 (x, c)

are all real, and the inequalities

xn,1 < xn−1,1 < κn−1,1 < xn,2 < · · · < xn,n−1 < xn−1,n−1 < κn−1,n−1 < xn,n+1

hold for every n ∈ N.

Proof. The main tool here will be [14, Corollary 1.3] applied to (54). The zeros of C
(a)
n (x) and

C
(a)
n−1(x) are all real, and interlace on the interval (0,+∞). Their respective coefficients in (54),

namely C
(a)
n−1(x, c)||C

(a)
n−1||

−2 and C
(a)
n (x, c)||C

(a)
n−1||

−2 are both continuous and have constant sign
on (0,+∞).

Thus, (54) satisfies the hypothesis of [14, Corollary 1.3] and therefore the Lemma follows.
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Lemma 7 Let c ∈ R�[−1,+∞), and let {xn,r}
n
r=1, {κn−1,r}

n−1
r=1 and {yn,r}

n
r=1 be the zeros of

C
(a)
n (x), K

(0,1)
n−1 (x, c) and G

(a)
n (x), respectively, all arranged in an increasing order. Then, the n

zeros of G
(a)
n (x) are all real, and the inequalities

yn,1 < xn,1 < κn−1,1 < yn,2 < · · · < xn,n−1 < κn−1,n−1 < yn,n < xn,n (55)

hold for every n ∈ N.

Proof. Here we use [14, Lemma 1.1] together with (53). In the former Lemma 6 we proved

that the zeros of C
(a)
n (x) and K

(0,1)
n−1 (x, c) are all real, and interlace in the interval (0,+∞). Also,

the coefficient of C
(a)
n (x) is always constant, and −∆C

(a)
n (c)�K

(1,1)
n−1 (c, c) has constant sign (for

a fixed n) at each of the zeros of C
(a)
n (x), so therefore the Lemma follows.

Next we normalize the connection formula (52) in a more useful way, in order to apply the
Interlacing Lemma and obtain some results concerning monotonicity, asymptotics, and speed of
convergence for the zeros {ηλn,r}

n
r=1 in terms of the mass λ.

Proposition 5 The polynomials in {Q̃λ
n}n≥0 , with Q̃λ

n(x) = λcn−1Q
λ
n(x), can be represented as

Q̃λ
n(x) = C(a)

n (x) + λK
(1,1)
n−1 (c, c)G

(a)
n (x) (56)

where λcn−1 = 1 + λK
(1,1)
n−1 (c, c), and K

(1,1)
n−1 (c, c) > 0 for every n ∈ N.

Proof. From (53) we have

K
(0,1)
n−1 (x, c) =

K
(1,1)
n−1 (c, c)

∆C
(a)
n (c)

[

C(a)
n (x)−G(a)

n (x)
]

.

Combining the above expression with (52)

Qλ
n(x) = C(a)

n (x)−
λK

(1,1)
n−1 (c, c)

(

1 + λK
(1,1)
n−1 (c, c)

)

[

C(a)
n (x)−G(a)

n (x)
]

Next we multiply the above by 1 + λK
(1,1)
n−1 (c, c)

Qλ
n(x)

(

1 + λK
(1,1)
n−1 (c, c)

)

= C(a)
n (x)

(

1 + λK
(1,1)
n−1 (c, c)

)

− λK
(1,1)
n−1 (c, c)

[

C(a)
n (x)−G(a)

n (x)
]

= C(a)
n (x) + λK

(1,1)
n−1 (c, c)G

(a)
n (x)

which yields (56). Next, from (13) one has

K
(1,1)
n−1 (c, c) =

n−1
∑

k=0

[∆C
(a)
k (c)]2

||C
(a)
k ||2

.

As the right hand side of the above formula is always the sum of positive quantities, the proof
is completed.

Taking into account that the positive constant K
(1,1)
n−1 (c, c) does not depend on λ, we can now

use (56) to obtain results about monotonicity, asymptotics, and speed of convergence for the
zeros of Qλ

n(x) in terms of the mass λ. Thus, from (56), Lemma 7, (55), we are in the hypothesis
of the Interlacing Lemma, and we immediately conclude the following results.
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Theorem 6 If c ∈ R�[−1,+∞), then the following inequalities

yn,1 < ηλn,1 < xn,1 < yn,2 < ηλn,2 < xn,2 < · · · < yn,n < ηλn,n < xn,n

hold for every n ∈ N. Moreover, each ηλk = ηλk (λ) is a decreasing function of λ and, for each
k = 1, . . . , n,

lim
λ→∞

ηλk = yk and lim
λ→∞

λ[ηλk − yk] =
−C

(a)
n (yn,k)

[G
(a)
n ]′(yn,k)

. (57)

Under the above assumptions on c, at most one of the zeros of Qλ
n(x) is located outside

(0,+∞). Next we provide the explicit value λ0 of the mass such that for λ > λ0 this situation
appears, i.e, one of the zeros is located outside (0,+∞).

Corollary 2 If c ∈ R�[−1,+∞), then the smallest zero ηλn,1 = ηλn,1(c) satisfies

ηλn,1 > 0, for λ < λ0,

ηλn,1 = 0, for λ = λ0,

ηλn,1 < 0, for λ > λ0,

where

λ0 = λ0(n, a, c) =

(

∆C
(a)
n (c)

C
(a)
n (0)

K
(0,1)
n−1 (0, c) −K

(1,1)
n−1 (c, c)

)−1

> 0. (58)

Proof. It suffices to use (52) together with the fact that Qλ
n (0) = 0 if and only if λ = λ0

Qλ
n(0) = C(a)

n (0)−
λ0∆C

(a)
n (c)

1 + λ0K
(1,1)
n−1 (c, c)

K
(0,1)
n−1 (0, c) = 0.

Therefore

λ0 = λ0(n, a, c) =

(

∆C
(a)
n (c)

C
(a)
n (0)

K
(0,1)
n−1 (0, c) −K

(1,1)
n−1 (c, c)

)−1

.

It would be of interest to compare the results of Theorem 6 with [12, Th. 4, p. 70]. In that
case, the zeros of the Laguerre-Sobolev type polynomials also obey to an electrostatic model
that does not exist in the present Sobolev-type Charlier case. Our conjecture is that in this case
the zeros of the Sobolev-type Charlier polynomials also seem to behave under the effect of an
electrostatic potential which, so far, is unknown to us.

Next we show some numerical experiments using Mathematica c© software, dealing with the
least zero of Qλ

n(x). We are interested to show the location and behavior of this least zero. In
the first two tables we show the position, for some choices of the mass λ, of the first zeros of
Qλ

n(x) of degree n = 7 and a = 2. When the least zero of the polynomial is outside (0,+∞) is
highlighted in bold type. For λ = 0 we obviously recover the least zero and the second zero of

the Charlier polynomials C
(a)
n (x). When the mass point is located at c = −5 we obtain

ηλ7,k λ = 0 λ = 5.0 · 10−12 λ = 5.0 · 10−8 λ = 5.0 · 10−7 λ = 5.0 · 10−6 λ = 5.0

k = 1 0.015807 0.0158059 0.00424094 −0.620631 −4.67916 −5.87285

k = 2 1.14616 1.14616 1.08515 0.257578 0.102767 0.0962811
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and for n = 10, a = 7, and c = −15 we have

ηλ10,k λ = 0 λ = 5.0 · 10−15 λ = 5.0 · 10−13 λ = 5.0 · 10−12 λ = 5.0 · 10−7 λ = 5.0

k = 1 0.332811 0.332401 0.286249 −1.34917 −17.1465 −17.1471

k = 2 2.05847 2.05765 1.96819 0.983817 0.632546 0.632544

In support of Corollary 2, we provide the exact values of λ0 for the above two cases. From
(58) we see that the smallest zero of the Sobolev-type Charlier polynomial of degree n = 7, for
a = 2 and with the mass point located at c = −5 is λ0 = 6.55003 · 10−8 ∈ (5.0 · 10−8, 5.0 · 10−7),
as one can deduce from the first table. Concerning the second table we see λ0(10, 7,−15) =
2.1602 · 10−12 ∈ (5.0 · 10−13, 5.0 · 10−12).

Finally, another interesting question is to study, for a fixed value λ, the behavior of zeros of
Sobolev-type Charlier polynomials in terms of the parameter a. Notice that, for a fixed value
of a we can loose its negative zero. We show the behavior of the first two zeros to give more
information about their relative spacing. For instance, let us show the first two zeros of the
Sobolev-type Charlier polynomials of degree n = 8, when λ = 7 · 10−9 and the mass point is
located at c = −9

ηλ8,k : a = 1 a = 2 a = 3 a = 4 a = 5 a = 6

k = 1 −10.2156 −9.17105 −4.43974 −0.720877 0.0143978 0.315444

k = 2 0.00096038 0.0303099 0.166524 0.680407 1.51815 2.12898
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