Skip to main content
Log in

Investigations on several high-order ADI methods for time-space fractional diffusion equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The paper is devoted to the construction of high-precision unconditionally stable finite difference methods for solving time-space fractional diffusion equation with the Caputo fractional derivative (of order β, with β ∈ (0, 1)) in time and the Rimann-Liouville fractional derivatives (of order α, with α ∈ (1, 2]) in space. Two kinds of difference schemes with the approximation orders O(τ2−β + h3) and O(τ2 + h3) respectively are constructed. The stability and convergence are analyzed in detail. The obtained results are illustrated numerically by some examples, and a comparative study of several high-order schemes is also carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Deng, W.H., Li, C.P.: The evolution of chaotic dynamics for fractional unified system. Phys. Lett. A 372, 401–407 (2008)

    Article  MATH  Google Scholar 

  2. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous time finance. Physica A 284, 376–384 (2000)

    Article  MathSciNet  Google Scholar 

  3. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resources Res. 36, 1403–1412 (2000)

    Article  Google Scholar 

  4. Sun, H.G., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.Q.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simulat. 64, 213–231 (2018)

    Article  Google Scholar 

  5. Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P.: Fractional diffusion: probability distributions and random walk models. Physica A 305, 106–112 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, W.: TimeCspace fabric underlying anomalous diffusion. Chaos, Soliton. Fract. 28, 923–929 (2006)

    Article  MATH  Google Scholar 

  7. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  8. Magin, R.L., Abdullah, O., Baleanu, D., Zhou, X.J.: Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J. of Mag. Res. 190, 255–270 (2008)

    Article  Google Scholar 

  9. Liu, F., Zhuang, P., Anh, V., Turner, I.: A fractional-order implicit difference approximation for the space-time fractional diffusion equation. ANZIAM J. 47, C48-C68 (2006)

    Article  MathSciNet  Google Scholar 

  10. Yang, Q., Turner, I., Liu, F., Ili’c, M.: Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput. 33, 1159–1180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, Z., Vong, S.K., Lei, S.L.: Finite difference schemes for two-dimensional time-space fractional differential equations. Int. J. Comput. Math. 93, 578–595 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, M.H., Deng, W.H.: A second-order accurate numerical method for the space-time tempered fractional diffusion-wave equation. Appl. Math. Lett. 68, 87–93 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pang, H., Sun, H.: Fourth order finite difference schemes for time-space fractional sub-diffusion equations. Comput. Math. Appl. 71, 1287–1302 (2016)

    Article  MathSciNet  Google Scholar 

  14. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cui, M.R.: Compact alternating direction implicit method for two-dimensional time fractional diffusion equation. J. Comput. Phys. 231, 2621–2633 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ren, J.C., Sun, Z.Z., Zhao, X.: Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 232, 456–467 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhai, S.Y., Weng, Z.F., Gui, D.W., Feng, X.L.: High-order compact operator splitting method for three-dimensional fractional equation with subdiffusion. Int. J. Heat Mass Transfer 84, 440–447 (2015)

    Article  Google Scholar 

  18. Zhai, S.Y., Feng, X.L.: A block-centered finite-difference method for the time-fractional diffusion equation on nonuniform grids. Numer. Heat Transfer B 69, 217–233 (2016)

    Article  Google Scholar 

  19. Hao, Z.P., Sun, Z.Z., Cao, W.R.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vong, S., Lyu, P., Chen, X., Lei, S.-L.: High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives. Numer Algorithms 72, 195–210 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. 84, 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou, H., Tian, W.Y., Deng, W.H.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ding, H.F., Li, C.P.: High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 71, 759–784 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ding, H.F., Li, C.P.: High-order algorithms for Riesz derivative and their applications (III). Fract. Calc. Appl. Anal. 19, 19–55 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, Z.B., Vong, S.W.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gao, G.H., Sun, H.W., Sun, Z.Z.: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280, 510–528 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhai, S.Y., Feng, X.L.: Investigations on several compact ADI methods for the 2D time fractional diffusion equation. Numer Heat Transfer B 69, 364–376 (2016)

    Article  Google Scholar 

  29. Dimitrov, Y.: Numerical approximations for fractional differential equations. arXiv:1311.3935v1 (2013)

  30. Chan, R.H., Jin, X.Q.: An introduction to iterative toeplitz solvers, SIAM (2007)

  31. Chan, R.H.: Toeplitz preconditioners for Toeplitz systems with nonnegative generating functions. IMA J. Numer. Anal. 11, 333–345 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, 2nd ed. Springer (2007)

  33. Laub, A.J.: Matrix Analysis for Scientists and Engineers, SIAM (2005)

  34. Zeng, F.H., Li, C.P., Liu, F.W., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37, A55-A78 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhao, X., Sun, Z.Z., Hao, Z.P.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional schrödinger equation. SIAM J. Sci. Comput. 36, A2865-A2886 (2014)

    Article  MATH  Google Scholar 

  36. Zhai, S.Y., Feng, X.L., He, Y.N.: An unconditionally stable compact ADI method for three-dimensional time-fractional convection-diffusion equation. J. Comput. Phys. 269, 138–155 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Authors thank the editor and referees for their constructive comments and useful suggestions which improved greatly the quality of our paper.

Funding

The work was partially supported by the CAPES and CNPq, Brazil; the NSF of China (Nos. 1701196, 11701197); the China Postdoctoral Sustentation Fund; the Natural Science Foundation of Fujian Province (No. 2016J05007); the Natural Science Foundation of Xinjiang Province (No. 2016D01C07) and the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQN-YX502), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuying Zhai.

Appendix

Appendix

In this appendix, we present the proof of h(α; x) ≤ 0. Thus, we list the following lemma.

Lemma A.1

For anyx ∈ [0,π] andα ∈ (1, 2), we haveh(α; x) decreases withrespect toα,that is

$$\frac{\partial}{\partial \alpha}{h(\alpha; x)}\leq 0. $$

Proof

Taking the partial derivative of h(α, x) with respect to α, we have

$$ \frac{\partial}{\partial \alpha}{h(\alpha; x)}=L_{1}(\alpha;x)+\frac{\pi-x}{2}L_{2}(\alpha;x), $$
(1)

where

$$L_{1}(\alpha,x)=\frac{6\alpha-7}{24}\cos(A-x)+\frac{-6\alpha+ 13}{12}\cos(A)+\frac{6\alpha-19}{24}\cos(A+x),\qquad\qquad\quad $$
$$L_{2}(\alpha,x)=\frac{3\alpha^{2}-7\alpha}{24}\sin(A-x)+\frac{-3\alpha^{2}+ 13\alpha}{12}\sin(A)+\frac{3\alpha^{2}-19\alpha+ 24}{24}\sin(A+x) $$

with \(A=\frac {\alpha (x-\pi )}{2}-x\).

Next, we estimate Eq. 28 via the following two steps.

I: :

We first consider L1(α; x) ≤ 0. It is easy to obtain

$$ L_{1}(\alpha,x)=\frac{6\alpha-13}{12}\cos(A)\cos(x)+\frac{1}{2}\sin(A)\sin(x)+\frac{-6\alpha+ 13}{12}\cos(A). $$
(2)

For any x ∈ [π/2,π] and α ∈ (1, 2), it is obviously L1(α; x) ≤ 0.

For any x ∈ [0,π/2) and α ∈ (1, 2), since

$$\frac{\partial}{\partial x}\left[\frac{6\alpha-13}{12}\cos A\cos x+\frac{1}{2}\sin A\sin x\right]\leq 0,$$

we have

$$\frac{6\alpha-13}{12}\cos A\cos x+\frac{1}{2}\sin A\sin x\leq \frac{6\alpha-13}{12}\cos \left( -\frac{\alpha\pi}{2}\right), $$

and combining with

$$\frac{-6\alpha+ 13}{12}\cos A\leq\frac{-6\alpha+ 13}{12}\cos\left( \frac{-\alpha\pi}{2}\right),$$

so we obtain L1(α; x) ≤ 0.

II: :

We now consider L2(α; x) ≤ 0. It is easy to obtain

$$ L_{2}(\alpha; x)=\frac{3\alpha^{2}-7\alpha}{12}\sin A\cos x+\frac{2-\alpha}{2}\sin\left( \frac{\alpha(x-\pi)}{2}\right)+\frac{-3\alpha^{2}+ 13\alpha}{12}\sin(A). $$
(3)

For any x ∈ [π/2,π] and α ∈ (1, 2), it is obviously L2(α; x) ≤ 0.

For any x ∈ [0,π/2) and α ∈ (1, 2), we have

$$\begin{array}{@{}rcl@{}} L_{2}(\alpha; x)&=&\frac{3\alpha^{2}-7\alpha}{12}\sin A\cos x+\frac{2-\alpha}{2}\sin(A+x)+\frac{-3\alpha^{2}+ 13\alpha}{12}\sin(A)\\ &=&\frac{3\alpha^{2}-13\alpha}{12}\sin A(\cos x-1)+\sin A\cos x+\frac{2-\alpha}{2}\cos A\cos x\\ &\leq& 0. \end{array} $$

As a result of (I) and (II), we obtain the expected result.□

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, S., Weng, Z., Feng, X. et al. Investigations on several high-order ADI methods for time-space fractional diffusion equation. Numer Algor 82, 69–106 (2019). https://doi.org/10.1007/s11075-018-0594-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0594-z

Keywords

Navigation