Skip to main content
Log in

A bias-compensated fractional order normalized least mean square algorithm with noisy inputs

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper comes up with a stable bias-compensated fractional order normalized least mean square (BC-FONLMS) algorithm with noisy inputs. This kind of bias-compensated algorithm needs the estimation of input noise variance to avoid the bias caused by noisy inputs. Yet, existing algorithms either cause instability because of the method used to estimate input noise variance, or surmount the instability problems at the price of performance diminishment. This paper introduces fractional order calculus into LMS algorithm to be a new BC-FONLMS algorithm. Then, analyze the stability of the BC-FONLMS algorithm through probing the recursive equations of mean deviation (MD) and mean square deviation (MSD). On the basis of the stability analysis, methods to estimate input noise variance and to adjust step size are suggested to stabilize the algorithm and likewise to enhance the performance such as convergence speed and steady-state error. Numerical simulations are given at last, whose results show that the proposed BC-FONLMS algorithm performs well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Haykin, S.S.: Adaptive Filter Theory. Pearson Education, Upper Saddle River (2008)

    MATH  Google Scholar 

  2. Ljung, L.: System identification. In: Signal Analysis and Prediction, pp 163–173. Springer, New York (1998)

  3. Widrow, B., Walach, E.: Adaptive Inverse Control, Reissue Edition: a Signal Processing Approach. Wiley, Hoboken (2008)

    Google Scholar 

  4. Wei, Y.H., Du, B., Cheng, S.S., Wang, Y.: Fractional order systems time-optimal control and its application. J. Optim. Theory Appl. 174(1), 122–138 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tan, Y., He, Z.Q., Tian, B.Y.: A novel generalization of modified LMS algorithm to fractional order. IEEE Signal Process. Lett. 22(9), 1244–1248 (2015)

    Article  Google Scholar 

  6. Chen, Y.Q., Gao, Q., Wei, Y.H., Wang, Y.: Study on fractional order gradient methods. Appl. Math. Comput. 314, 310–321 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Tseng, C.C.: Design of variable and adaptive fractional order FIR differentiators. Signal Process. 86(10), 2554–2566 (2006)

    Article  MATH  Google Scholar 

  8. Cheng, S.S., Wei, Y.H., Chen, Y.Q., Li, Y., Wang, Y.: An innovative fractional order LMS based on variable initial value and gradient order. Signal Process. 133, 260–269 (2017)

    Article  Google Scholar 

  9. Cheng, S.S., Wei, Y.H., Chen, Y.Q., Liang, S., Wang, Y.: A universal modified LMS algorithm with iteration order hybrid switching. ISA Trans. 67, 67–75 (2017)

    Article  Google Scholar 

  10. Wei, X., Liu, D.Y., Boutat, D.: Nonasymptotic pseudo-state estimation for a class of fractional order linear systems. IEEE Trans. Autom. Control 62(3), 1150–1164 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ortigueira, M.D., Coito, F.: On the usefulness of Riemann-Liouville and Caputo derivatives in describing fractional shift-invariant linear systems. J. Appl. Nonlinear Dyn. 1, 113–124 (2012)

    Article  MATH  Google Scholar 

  12. Wei, Y.H., Tse, P.W., Du, B., Wang, Y.: An innovative fixed-pole numerical approximation for fractional order systems. ISA Trans. 62, 94–102 (2016)

    Article  Google Scholar 

  13. Golub, G.H., Van Loan, C.F.: An analysis of the total least squares problem. SIAM J. Numer. Anal. 17(6), 883–893 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, D.Z., Zhang, X.D., Chang, D.X., Zheng, W.X.: A fast recursive total least squares algorithm for adaptive FIR filtering. IEEE Trans. Signal Process. 52(10), 2729–2737 (2004)

    Article  Google Scholar 

  15. Davila, C.E.: An efficient recursive total least squares algorithm for FIR adaptive filtering. IEEE Trans. Signal Process. 42(2), 268–280 (1994)

    Article  Google Scholar 

  16. Feng, D.Z., Bao, Z., Jiao, L.C.: Total least mean squares algorithm. IEEE Trans. Signal Process. 46(8), 2122–2130 (1998)

    Article  Google Scholar 

  17. Ma, W., Zheng, D., Tong, X., Zhang, Z., Chen, B.: Proportionate nlms with unbiasedness criterion for sparse system identification in the presence of input and output noises. IEEE Transactions on Circuits and Systems II: Express Briefs (2017)

  18. Ma, W., Zheng, D., Li, Y., Zhang, Z., Chen, B.: Bias-compensated normalized maximum correntropy criterion algorithm for system identification with noisy input. Signal Processing (2018)

  19. Diversi, R.: A bias-compensated identification approach for noisy fir models. IEEE Signal Process. Lett. 15, 325–328 (2008)

    Article  Google Scholar 

  20. Bertrand, A., Moonen, M., Sayed, A.H.: Diffusion bias-compensated RLS estimation over adaptive networks. IEEE Trans. Signal Process. 59(11), 5212–5224 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jung, S.M., Park, P.G.: Normalised least-mean-square algorithm for adaptive filtering of impulsive measurement noises and noisy inputs. Electron. Lett. 49(20), 1270–1272 (2013)

    Article  Google Scholar 

  22. Arablouei, R., Doğançay, K., Werner, S.: Recursive total least-squares algorithm based on inverse power method and dichotomous coordinate-descent iterations. IEEE Trans. Signal Process. 63(8), 1941–1949 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Arablouei, R., Doğançay, K., Adali, T.: Unbiased recursive least-squares estimation utilizing dichotomous coordinate-descent iterations. IEEE Trans. Signal Process. 62(11), 2973–2983 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jung, S.M., Park, P.G.: Stabilization of a bias-compensated normalized least-mean-square algorithm for noisy inputs. IEEE Trans. Signal Process. 65(11), 2949–2961 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zheng, Z.S., Zhao, H.Q.: Bias-compensated normalized subband adaptive filter algorithm. IEEE Signal Process. Lett. 23(6), 809–813 (2016)

    Article  Google Scholar 

  26. Jo, S.E., Kim, S.W.: Consistent normalized least mean square filtering with noisy data matrix. IEEE Trans. Signal Process. 53(6), 2112–2123 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Podlubny, I.: Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, New York (1999)

    MATH  Google Scholar 

  28. Widrow, B., Hoff, M.E.: Adaptive Switching Circuits, tech. rep. Stanford University Stanford Electronics Laboratories, Stanford (1960)

  29. Jelfs, B., Mandic, D.P.: A unifying framework for the analysis of proportionate nlms algorithms. Int. J. Adapt. Control Signal Process. 29(9), 1073–1085 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mandic, D.P., Kanna, S., Constantinides, A.G.: On the intrinsic relationship between the least mean square and kalman filters [lecture notes]. IEEE Signal Process. Mag. 32(6), 117–122 (2015)

    Article  Google Scholar 

  31. Sayed, A.H.: Fundamentals of Adaptive Filtering. Wiley, Hoboken (2003)

    Google Scholar 

  32. Mandic, D.P., Chambers, J.: Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability. Wiley, Hoboken (2001)

    Book  Google Scholar 

  33. Kang, B., Yoo, J., Park, P.G.: Bias-compensated normalised LMS algorithm with noisy input. Electron. Lett. 49(8), 538–539 (2013)

    Article  Google Scholar 

  34. Ciochinȧ, S., Paleologu, C., Benesty, J.: An optimized NLMS algorithm for system identification. Signal Process. 118, 115–121 (2016)

    Article  Google Scholar 

  35. Mandic, D.P.: A generalized normalized gradient descent algorithm. IEEE Signal Process. Lett. 11(2), 115–118 (2004)

    Article  Google Scholar 

  36. Tarrab, M., Feuer, A.: Convergence and performance analysis of the normalized LMS algorithm with uncorrelated Gaussian data. IEEE Trans. Inf. Theory 34(4), 680–691 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  37. Slock, D.T.M.: On the convergence behavior of the LMS and the normalized LMS algorithms. IEEE Trans. Signal Process. 41(9), 2811–2825 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kailath, T.: An innovations approach to least-squares estimation–part I: linear filtering in additive white noise. IEEE Trans. Autom. Control 13(6), 646–655 (1968)

    Article  Google Scholar 

Download references

Funding

The work described in this paper was fully supported by the National Natural Science Foundation of China (No. 61573332, No. 61601431), the Fundamental Research Funds for the Central Universities (No. WK2100100028), the Anhui Provincial Natural Science Foundation (No. 1708085QF141) and the General Financial Grant from the China Postdoctoral Science Foundation (No. 2016 −M602032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmei Shuai.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Human and animals participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, W., Cheng, S., Wei, Y. et al. A bias-compensated fractional order normalized least mean square algorithm with noisy inputs. Numer Algor 82, 201–222 (2019). https://doi.org/10.1007/s11075-018-0600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0600-5

Keywords

Navigation