Skip to main content
Log in

Two alternating direction implicit spectral methods for two-dimensional distributed-order differential equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, two alternating direction implicit Galerkin-Legendre spectral methods for distributed-order differential equation in two-dimensional space are developed. It is proved that the schemes are unconditionally stable and convergent with the convergence orders Ot + σ2 + Nm) and Ot2 + σ2 + Nm), respectively, where Δt, σ, N, and m are the time step size, step size in distributed-order variable, polynomial degree, and regularity in the space variable of the exact solution, respectively. Moreover, the applicability and accuracy of the two schemes are demonstrated by numerical experiments to support our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernardi, C., Maday, Y.: Spectral methods. Handbook Numer. Anal. 5, 209–485 (1997)

    MathSciNet  Google Scholar 

  3. Chechkin, A.V., Klafter, J., Sokolov, I.M.: Fractional fokker-planck equation for ultraslow kinetics. EPL (Europhysics Letters) 63, 326 (2003)

    Article  Google Scholar 

  4. Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225, 96–104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Faires, J.D., Burden, R.: Numerical Methods, second ed. Brooks, Cole, Pacific Grove (1998)

    MATH  Google Scholar 

  6. Ford, N.J., Morgado, M.L.: Distributed order equations as boundary value problems. Comput. Math. Appl. 64, 2973–2981 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ford, N.J., Morgado, M.L., Rebelo, M.: An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time. Electron. Trans. Numer. Anal. 44, 289–305 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Gao, G.H., Alikhanov, A.A., Sun, Z.Z.: The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations. J. Sci. Comput. 73(1), 93–121 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao, G.H., Sun, H.W., Sun, Z.Z.: Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys. 298, 337–359 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations. J. Sci. Comput. 66, 1281–1312 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, G.H., Sun, Z.Z.: Two unconditionally stable and convergent difference schemes with the extrapolation method for the one-dimensional distributed-order differential equations. Numer. Method Partial Differ. Eq. 32, 591–615 (2016b)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khismatullin, D., Renardy, Y., Renardy, M.: Development and implementation of vof-prost for 3d viscoelastic liquid–liquid simulations. J. Non-Newtonian Fluid Mech. 140, 120–131 (2006)

    Article  MATH  Google Scholar 

  14. Kochubei, A.N.: Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340, 252–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, Y., Du, Y., Li, H., He, S., Gao, W.: Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction–diffusion problem. Comput. Math. Appl. 70, 573–591 (2015)

    Article  MathSciNet  Google Scholar 

  17. Shen, J.: Efficient spectral-galerkin method i. direct solvers of second-and fourth-order equations using legendre polynomials. SIAM J. Sci. Comput. 15, 1489–1505 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications, vol. 41. Springer Science & Business Media, Berlin (2011)

    Book  Google Scholar 

  19. Shen, J., Yang, X.: Numerical approximations of allen-cahn and cahn-hilliard equations. Dyn. Syst. Discrete Contin. 28, 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sinai, Y.G.: The limiting behavior of a one-dimensional random walk in a random medium. Theory Probab. Appl. 27, 256–268 (1983)

    Article  Google Scholar 

  21. Wang, H., Zhang, X.: A high-accuracy preserving spectral Galerkin method for the Dirichlet boundary-value problem of variable-coefficient conservative fractional diffusion equations. J. Comput. Phys. 281, 67–81 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed-order and riesz space fractional diffusions on bounded domains. IMA J. Appl. Math. 80, 825–838 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: A crank–nicolson adi spectral method for a two-dimensional riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and referees for their valuable comments and suggestions which helped us improved the results of this paper.

Funding

The first and second authors are partially supported by theNational Natural Science Foundation of China Grant No. 11671233. The authors X. Li and Z. Liu thank for the financial support from China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxing Rui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Rui, H. & Liu, Z. Two alternating direction implicit spectral methods for two-dimensional distributed-order differential equation. Numer Algor 82, 321–347 (2019). https://doi.org/10.1007/s11075-018-0606-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0606-z

Keywords

Mathematics Subject Classification (2010)

Navigation