Skip to main content
Log in

A meshless fading regularization algorithm for solving the Cauchy problem for the three-dimensional Helmholtz equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We investigate the Cauchy problem associated with the Helmholtz equation in three dimensions, namely the numerical reconstruction of the primary field (Dirichlet data) and its normal derivative (Neumann data) on a part of the boundary from the knowledge of overprescribed noisy measurements taken on the remaining boundary part. This inverse problem is solved by combining the fading regularization method with the method of fundamental solutions (MFS). A stopping regularizing/stabilizing criterion is also proposed. Two numerical examples are investigated in order to validate the proposed method in terms of its accuracy, convergence, stability and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, J.T., Wong, F.C.: Dual formulation of multiple reciprocity method for the acoustic mode of a cavity with a thin partition. J. Sound Vib. 217(1), 75–95 (1998)

    Article  Google Scholar 

  2. Harari, I., Barbone, P.E., Slavutin, M., Shalom, R.: Boundary infinite elements for the Helmholtz equation in exterior domains. Int. J. Numer. Methods Eng. 41(6), 1105–1131 (1998)

    Article  Google Scholar 

  3. Hall, W.S., Mao, X.Q.: A boundary element investigation of irregular frequencies in electromagnetic scattering. Eng. Anal. Bound. Elem. 16(3), 245–252 (1995)

    Article  Google Scholar 

  4. Beskos, D.E.: Boundary element methods in dynamic analysis. Appl. Mech. Rev. 40, 1 (1987)

    Article  Google Scholar 

  5. Hadamard, J: Lectures on Cauchy Problem in Linear Partial Differential Equations. Oxford University Press, Oxford (1923)

    MATH  Google Scholar 

  6. Marin, L., Elliott, L., Heggs, P.J., Ingham, D.B., Lesnic, D., Wen, X.: An alternating iterative algorithm for the Cauchy problem associated to the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 192(5), 709–722 (2003)

    Article  MathSciNet  Google Scholar 

  7. Marin, L., Elliott, L., Heggs, P.J., Ingham, D.B., Lesnic, D., Wen, X.: Conjugate gradient-boundary element solution to the Cauchy problem for Helmholtz-type equations. Comput. Mech. 31(3–4), 367–377 (2003)

    Article  MathSciNet  Google Scholar 

  8. Marin, L., Elliott, L., Heggs, P.J., Ingham, D.B., Lesnic, D., Wen, X.: BEM solution for the Cauchy problem associated with Helmholtz-type equations by the Landweber method. Eng. Anal. Bound. Elem. 28(9), 1025–1034 (2004)

    Article  Google Scholar 

  9. Marin, L.: Boundary element-minimal error method for the Cauchy problem associated with Helmholtz-type equations. Comput. Mech. 44(2), 205–219 (2009)

    Article  MathSciNet  Google Scholar 

  10. Marin, L., Lesnic, D.: The method of fundamental solutions for the Cauchy problem associated with two-dimensional Helmholtz-type equations. Compos. Struct. 83(4), 267–278 (2005)

    Article  MathSciNet  Google Scholar 

  11. Marin, L.: A meshless method for the numerical solution of the Cauchy problem associated with three-dimensional Helmholtz-type equations. Appl. Math. Comput. 165(2), 355–374 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Marin, L., Elliot, L., Heggs, P.J., Ingham, D.B, Lesnic, D., Wen, X.: Dual reciprocity boundary element method solution of the Cauchy problem for Helmholtz-type equations with variable coefficients. J. Sound Vib. 297(1–2), 89–105 (2006)

    Article  Google Scholar 

  13. Qin, H.H., Wei, T., Shi, R.: Modified Tikhonov regularization method for the Cauchy problem of the Helmholtz equation. J. Comput. Appl. Math. 224, 39–53 (2009)

    Article  MathSciNet  Google Scholar 

  14. Qin, H.H., Wei, T.: Two regularization methods for the Cauchy problems of the Helmholtz equation. Appl. Math. Model. 34, 947–967 (2010)

    Article  MathSciNet  Google Scholar 

  15. Kabanikhin, S.I., Gasimov, Y.S., Nurseitsov, D.B., Shishlenin, M.A., Sholpanbaev, B.B., Kasenov, S.: Regularization of the continuation problem for elliptic equations. J. Inverse Ill-Posed Probl. 21, 871–884 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Berntsson, F., Kozlov, V.A., Mpinganzima, B., Turesson, O.: An alternating iterative procedure for the Cauchy problem for the Helmholtz equation. Inverse Prob. Sci. Eng. 22, 45–62 (2014)

    Article  MathSciNet  Google Scholar 

  17. Berntsson, F., Kozlov, V.A., Mpinganzima, B., Turesson, O.: An accelerating alternating iterative procedure for the Cauchy problem for the Helmholtz equation. Comput. Math. Appl. 68(1), 44–60 (2014)

    Article  MathSciNet  Google Scholar 

  18. Cimetière, A., Delvare, F., Jaoua, M., Pons, F.: Solution of the Cauchy problem using iterated Tikhonov regularization. Inverse Prob. 17(3), 553 (2001)

    Article  MathSciNet  Google Scholar 

  19. Cimetière, A., Delvare, F., Pons, F.: Une méthode inverse à régularisation évanescente. C. R. Acad. Sci., Ser. IIB: Mec. 328(9), 639–644 (2000)

    MATH  Google Scholar 

  20. Delvare, F., Cimetière, A., Pons, F.: An iterative boundary element method for Cauchy inverse problems. Comput. Mech. 28(3–4), 291–302 (2002)

    Article  MathSciNet  Google Scholar 

  21. Cimetière, A., Delvare, F., Jaoua, M., Pons, F.: An inversion method for harmonic functions reconstruction. Int. J. Therm. Sci. 41(6), 509–516 (2002)

    Article  Google Scholar 

  22. Delvare, F., Cimetière, A., Hanus, J.-L., Bailly, P.: An iterative method for the Cauchy problem in linear elasticity with fading regularization effect. Comput. Methods Appl. Mech. Eng. 199(49), 3336–3344 (2010)

    Article  MathSciNet  Google Scholar 

  23. Durand, B., Delvare, F., Bailly, P.: Numerical solution of Cauchy problems in linear elasticity in axisymmetric situations. Int. J. Solids Struct. 48(21), 3041–3053 (2011)

    Article  Google Scholar 

  24. Marin, L., Delvare, F., Cimetière, A: Fading regularization MFS algorithm for inverse boundary value problems in two-dimensional linear elasticity. Int. J. Solids Struct. 78–79, 9–20 (2016)

    Article  Google Scholar 

  25. Caillė, L., Delvare, F., Marin, L., Michaux-Leblond, N.: Fading regularization MFS algorithm for the Cauchy problem associated with the two-dimensional Helmholtz equation. Int. J. Solids Struct. 125, 122–133 (2017)

    Article  Google Scholar 

  26. Kupradze, V.D., Aleksidze, M.A.: The method of functional equations for the approximate solution of certain boundary value problems. USSR Comput. Math. Math. Phys. 4(4), 82–126 (1964)

    Article  MathSciNet  Google Scholar 

  27. Mathon, R., Johnston, R.L.: The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM J. Numer. Anal. 14(4), 638–650 (1977)

    Article  MathSciNet  Google Scholar 

  28. Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9(1–2), 69–95 (1998)

    Article  MathSciNet  Google Scholar 

  29. Goldberg, M.A., Chen, C.S.: The method of fundamental solutions for potential, Helmholtz and diffusion problems. In: Boundary Integral Methods-Numerical and Mathematical Aspects, pp 103–176 (1999)

  30. Karageorghis, A., Lesnic, D., Marin, L.: A survey of applications of the MFS to inverse problems. Inverse Prob. Sci. Eng. 19(3), 309–336 (2011)

    Article  MathSciNet  Google Scholar 

  31. Kirsch, A., Hettlich, F.: The mathematical theory of time-harmonic Maxwell’s equations. Springer International Publishing Switzerland (2015)

  32. Gorzelańczyk, P., Kołodziej, J.A.: Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods. Eng. Anal. Bound. Elem. 32(1), 64–75 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

L. Caillé and L. Marin have been supported by a grant of Ministry of Research and Innovation, CNCS - UEFISCDI, project number PN-III-P4-ID-PCE-2016-0083, within PNCDI III. The financial support received by L. Caillé from Région Normandie is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Delvare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caillé, L., Marin, L. & Delvare, F. A meshless fading regularization algorithm for solving the Cauchy problem for the three-dimensional Helmholtz equation. Numer Algor 82, 869–894 (2019). https://doi.org/10.1007/s11075-018-0631-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0631-y

Keywords

Navigation