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Received: date / Accepted: date

Abstract In practical conjugate gradient (CG) computations it is important to mon-

itor the quality of the approximate solution to Ax = b so that the CG algorithm can

be stopped when the required accuracy is reached. The relevant convergence char-

acteristics, like the A-norm of the error or the normwise backward error, cannot be

easily computed. However, they can be estimated. Such estimates often depend on

approximations of the smallest or largest eigenvalue of A.

In the paper we introduce a new upper bound for the A-norm of the error, which is

closely related to the Gauss-Radau upper bound, and discuss the problem of choosing

the parameter µ which should represent a lower bound for the smallest eigenvalue of

A. The new bound has several practical advantages, the most important one is that it

can be used as an approximation to the A-norm of the error even if µ is not exactly a

lower bound for the smallest eigenvalue of A. In this case, µ can be chosen, e.g., as

the smallest Ritz value or its approximation. We also describe a very cheap algorithm,

based on the incremental norm estimation technique, which allows to estimate the

smallest and largest Ritz values during the CG computations. An improvement of the

accuracy of these estimates of extreme Ritz values is possible, at the cost of storing

the CG coefficients and solving a linear system with a tridiagonal matrix at each CG

iteration. Finally, we discuss how to cheaply approximate the normwise backward

error. The numerical experiments demonstrate the efficiency of the estimates of the

extreme Ritz values, and show their practical use in error estimation in CG.

Keywords Conjugate gradients · error norm estimation · approximation of Ritz

values · incremental norm estimator.
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1 Introduction

The (preconditioned) Conjugate Gradient ((P)CG) algorithm by Hestenes and Stiefel

[18] is now considered as the iterative method of choice for solving linear systems

Ax = b with a real symmetric positive definite matrix A. An important question to

solve practical problems is to know when to stop the iterations. Since, in CG, the norm

of the residual vector rk = b−Axk (where xk is the approximate solution at iteration k)

is available, many CG codes use ‖rk‖/‖r0‖ ≤ tol where tol is a user-given threshold

as a stopping criterion. This can be misleading depending on the choice of the initial

iterate x0. A better stopping criterion is ‖rk‖/‖b‖≤ tol. However, both criteria can be

misleading as it was already mentioned in [18]. Moreover, in many cases, the residual

norm is oscillating making the use of these criteria more problematic.

A more reliable stopping criterion could be based on the A-norm of the error

‖x− xk‖A = ((x− xk)
T A(x− xk))

1/2.

Mathematically, CG minimizes this quantity at each iteration k; see [18]. In some lin-

ear systems arising from engineering problems the A-norm of the error corresponds to

the energy norm and thus has a physical meaning. Of course, in real-world problems

the error and its norm are unknown. Therefore, this has lead to some research works

for finding approximations or even lower and upper bounds for the A-norm of the er-

ror. It turns out that the CG A-norm of the error is linked to a Riemann-Stieltjes inte-

gral for a discrete measure involving the distribution of the eigenvalues of A. Inspired

by this connection already mentioned by Hestenes and Stiefel [18, p. 428], research

on this topic was started by Gene Golub in the 1970’s and continued throughout the

years with several collaborators (e.g., G. Dahlquist, S. Eisenstat, S. Nash, B. Fischer,

G. Meurant, Z. Strakoš). The main idea is to approximate the Riemann-Stieltjes in-

tegral by Gauss or Gauss-Radau quadrature rules. Since, in this case, the sign of the

remainders of the quadrature rules are known, in theory this gives lower and upper

bounds for the A-norm of the error. These bounds can be used to design more reli-

able stopping criteria than just using the relative norm of the residual. For details on

these techniques, see [4,5,9,10,13,11]. This research was summarized in [22] and

[12]. More recently, some simpler and improved formulas for the computation of the

bounds on the A-norm of the error were provided in [23].

The techniques used in [10,13,29,30] to compute lower or upper bounds use a

positive integer d which is called the delay, in such a way that, at CG iteration k+ d,

an estimate of the A-norm of the error at iteration k is obtained. The larger the delay

is, the better are the bounds at iteration k. However, even when using these tech-

niques, the situation is still not completely satisfactory. Obtaining an upper bound

with the Gauss-Radau quadrature rule needs to have a prescribed parameter which

should represent a lower bound for the smallest eigenvalue of the (preconditioned)

system matrix. This may not be readily available to the user. Moreover, some numer-

ical examples have shown that, even if we have a good lower bound for the smallest

eigenvalue, the quality of the Gauss-Radau upper bound may deteriorate when the
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A-norm of the error becomes small. Sometimes, it is also useful to compute an ap-

proximation of the matrix 2-norm if the user wants to compute an estimate of the

normwise backward error, see [25,28], or to approximate the ultimate level of accu-

racy, or the condition number of the (preconditioned) system matrix.

The goal of this paper is to discuss and address these issues to obtain cheap ap-

proximations to the smallest and largest eigenvalues of the (preconditioned) system

matrix during the CG computations, and to use them in estimating convergence char-

acteristics like the A-norm of the error or the normwise backward error. In particular,

we introduce a new upper bound for the A-norm of the error which is less sensitive to

the choice of the approximation to the smallest eigenvalue, and suggest an approxi-

mate upper bound which does not require any a priori information about the smallest

eigenvalue.

The paper is organized as follows. In Section 2 we recall the Lanczos and CG

algorithms as well as some relations which show the links between CG and Gauss

quadrature. Section 3 is concerned with the Gauss-Radau upper bound and the deriva-

tion of a new upper bound. In Section 4 we present a numerical example that shows

the troubles that may happen with the Gauss-Radau upper bounds, and a possible

potential of the new upper bound which is not sensitive to the choice of the approxi-

mation to the smallest eigenvalue. In Section 5 we address the problem of computing

estimates of the smallest and largest eigenvalues of A. This is done by using incre-

mental estimates of norms of bidiagonal matrices. These algorithms can be useful in

a more general setting than computing bounds for the CG error norms. In Sections 6

and 7 these results are used to approximate the Gauss-Radau upper bound and the

normwise backward error. Section 8 illustrates numerically the quality of approxi-

mations to the smallest and largest eigenvalues, and their use in approximating the

normwise backward error and the A-norm of the error. Finally, in Section 9 we give

some conclusions and perspectives.

2 The Lanczos and CG algorithms

Given a starting vector v ∈ R
N and a symmetric matrix A ∈ R

N×N , one can consider

a sequence of nested subspaces

Kk(A,v)≡ span{v,Av, . . . ,Ak−1v}, k = 1,2, . . . ,

called Krylov subspaces. The dimension of these subspaces is increasing up to an

index n≤N called the grade of v with respect to A, at which the maximal dimension is

attained, and Kn(A,v) is invariant under multiplication with A. Assuming that k < n,

the Lanczos algorithm (Algorithm 1) computes an orthonormal basis v1, . . . ,vk+1 of

the Krylov subspace Kk+1(A,v). The basis vectors v j of unit norm satisfy the matrix

relation

AVk =VkTk + β̃kvk+1eT
k

where Vk = [v1 · · ·vk], ek denotes the kth column of the identity matrix, and
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Algorithm 1 Lanczos algorithm

input A, v

β̃0 = 0, v0 = 0

v1 = v/‖v‖
for k = 1, . . . do

w = Avk − β̃k−1vk−1

α̃k = vT
k w

w = w− α̃kvk

β̃k = ‖w‖
vk+1 = w/β̃k

end for

Tk =




α̃1 β̃1

β̃1
. . .

. . .

. . .
. . . β̃k−1

β̃k−1 α̃k




is the k× k symmetric tridiagonal matrix of the recurrence coefficients computed in

Algorithm 1. The coefficients β̃ j being positive, Tk is a Jacobi matrix. The Lanczos

algorithm works for any symmetric matrix, but if A is positive definite, then Tk is

positive definite as well.

When solving a system of linear equations Ax = b with a real symmetric positive

definite matrix A, the CG method (Algorithm 2) can be used. Mathematically, the CG

Algorithm 2 Conjugate Gradients

input A, b, x0

r0 = b−Ax0

p0 = r0

for k = 1, . . . until convergence do

γk−1 =
rT
k−1rk−1

pT
k−1Apk−1

xk = xk−1 + γk−1 pk−1

rk = rk−1 − γk−1Apk−1

δk =
rT
k

rk

rT
k−1

rk−1

pk = rk +δk pk−1

end for

iterates xk minimize the A-norm of the error over the manifold x0 +Kk(A,r0),

‖x− xk‖A = min
y∈x0+Kk(A,r0)

‖x− y‖A,

and the residual vectors rk = b−Axk are proportional to the Lanczos vectors v j,

v j+1 = (−1) j r j

‖r j‖
, j = 0, . . . ,k.
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Thanks to this close relationship between the CG and Lanczos algorithms it can be

shown (see, for instance [22]) that the recurrence coefficients computed in both algo-

rithms are connected via

β̃k =

√
δk

γk−1
, α̃k =

1

γk−1
+

δk−1

γk−2
, δ0 = 0, γ−1 = 1. (1)

Writing these formulas in matrix form, we get

Tk = LkLT
k , LT

k =




1√
γ0

√
δ1
γ0

. . .
. . .

. . .
√

δk−1

γk−2
1√

γk−1



.

In other words, CG computes implicitly the Cholesky factorization of the Jacobi ma-

trix Tk generated by the Lanczos algorithm. Hence, the eigenvalues of Tk (the so-

called Ritz values) are equal to the squared singular values of the upper bidiagonal

matrix LT
k .

It is well known that the reduction of the squared A-norm of the error from it-

eration k − 1 to iteration k is given by γk−1‖rk−1‖2; see [18, relation (6:1)]. As a

consequence

‖x− x0‖2
A =

k−1

∑
j=0

γ j‖r j‖2 + ‖x− xk‖2
A. (2)

The relation (2) represents the basis for the quadrature-based estimation of the A-

norm of the error in the CG method [10,13,11,29,30,23,24]. In more details, let

A=QΛQT be the spectral decomposition of A, with Q= [q1, . . . ,qN ] orthonormal and

Λ = diag(λ1, . . . ,λN), the λi’s, i = 1, . . . ,N being the eigenvalues of A. For simplicity

of notation we assume that the eigenvalues of A are distinct and ordered as λ1 < λ2 <
· · ·< λN . Let us define the weights ωi by

ωi ≡
(r0,qi)

2

‖r0‖2
so that

N

∑
i=1

ωi = 1 , (3)

and the (nondecreasing) stepwise constant distribution function ω(λ ) with a finite

number of points of increase λ1,λ2, . . . ,λN ,

ω(λ )≡





0 for λ < λ1 ,

∑i
j=1 ω j for λi ≤ λ < λi+1 , 1 ≤ i ≤ N − 1 ,

1 for λN ≤ λ .

(4)

Having the distribution function ω(λ ) and an interval 〈ζ ,ξ 〉 such that ζ < λ1 < λ2 <
· · · < λN < ξ , for any continuous function f , one can define the Riemann-Stieltjes

integral (see, for instance [12])

∫ ξ

ζ
f (λ )dω(λ ) =

N

∑
i=1

ωi f (λi). (5)
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For the integrated function defined as f (λ ) = λ−1, we obtain the integral representa-

tion of the squared initial A-norm of the error

‖x− x0‖2
A = rT

0 A−1r0 = (QT r0)
T Λ−1(QT r0)

= ‖r0‖2
n

∑
j=1

λ−1
j ω j = ‖r0‖2

∫ ξ

ζ
λ−1 dω(λ ).

Finally, using the optimality of CG, it can be shown that the formula (2) represents

the scaled k-point Gauss quadrature rule for approximating the Riemann-Stieltjes

integral of the function f (λ ) = λ−1, with the scaled positive reminder ‖x−xk‖2
A. The

scaling factor is ‖r0‖−2. Various modified quadrature rules can be used to obtain other

approximations to the integral, possibly also with a negative reminder. Such rules

usually require some a priori information about the spectrum of A. For a summary,

see, e.g., the book [12].

3 Quadrature-based bounds and a new upper bound

In this section we concentrate on two simple upper bounds. To summarize some re-

sults of [13,10,29], and [23] related to the Gauss and Gauss-Radau quadrature bounds

for the A-norm of the error in CG, it has been shown that

γk‖rk‖2 < ‖x− xk‖2
A < γ (µ)

k ‖rk‖2 (6)

where

γ (µ)

k+1 =

(
γ (µ)

k − γk

)

µ
(

γ (µ)

k − γk

)
+ δk+1

, γ (µ)

0 =
1

µ
, (7)

k < n− 1, and µ such that 0 < µ ≤ λmin. Note that in the special case k = n− 1

since ‖x− xn‖2
A = 0, we get ‖x− xn−1‖2

A = γn−1‖rn−1‖2. If the initial residual r0 has

a nontrivial component in the eigenvector corresponding to λmin, then λmin is also an

eigenvalue of Tn. If in addition µ is chosen such that µ = λmin, then γn−1 = γ (µ)

n−1 and

the second strict inequality in (6) changes to equality.

The simple updating formula (7) was first presented in [23]. Following the idea

of [13] and [29], we can improve the lower and upper bounds in (6) by considering

quadrature rules (2) at iterations k and k+ d for some integer d > 0 which is called

the delay. Then, we get the formula

‖x− xk‖2
A =

k+d−1

∑
j=k

γ j‖r j‖2 + ‖x− xk+d‖2
A, (8)

and one can bound the error norm at the iteration k+ d using (6) to obtain

k+d−1

∑
j=k

γ j‖r j‖2 + γk+d‖rk+d‖2 < ‖x− xk‖2
A (9)
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and

‖x− xk‖2
A <

k+d−1

∑
j=k

γ j‖r j‖2 + γ (µ)

k+d‖rk+d‖2. (10)

Note that (9) and (10) give a lower bound and an upper bound for the A-norm of the

error at iteration k when CG is already at iteration k+ d whence (6) provides lower

and upper bounds when CG is at iteration k. In [29] it has been shown that the identity

(8) holds (up to some small inaccuracies) also for numerically computed quantities

in finite precision arithmetic, until the A-norm of the error reaches its ultimate level

of accuracy. So, it can be used safely for estimating the A-norm of the actual error.

Mathematically, we will derive another upper bound for the squared A-norm of

the error, which is closely related to the Gauss-Radau upper bound. This bound de-

pends on the ratio

φk ≡
‖rk‖2

‖pk‖2
,

which can be updated using a simple recurrence relation. In particular, using pk = rk+
δk pk−1 and the orthogonality between rk and pk−1 (local orthogonality), we obtain

‖pk‖2 = ‖rk‖2

(
1+ δk

‖pk−1‖2

‖rk−1‖2

)
,

and, therefore,

φk =
φk−1

φk−1 + δk

, φ0 = 1. (11)

Hence φk can be updated cheaply without computing the norm of pk which is not

readily available in CG. From (11) and by induction, it follows that

φ−1
k = 1+

‖rk‖2

‖rk−1‖2
φ−1

k−1 = ‖rk‖2
k

∑
j=0

‖r j‖−2

and hence

‖rk‖2 φk =

(
k

∑
j=0

‖r j‖−2

)−1

; (12)

see also [18, Theorem 5:3]. Note that mathematically, the quantity (12) can be inter-

preted as the norm of the residual vector determined by the minimal residual method;

see, e.g., [8, Theorem 3.5]. In finite precision arithmetic, the quantity (12) cannot be,

in general, interpreted as the norm of the residual vector generated by some minimal

residual method. We remark that the quantity φk appears also as a coefficient in strate-

gies for residual smoothing [16,17]. In particular, one can compute the smoothed

residual rS
k and the corresponding approximation xS

k using the recurrences

rS
k = (1−φk)rS

k−1 +φkrk, xS
k = (1−φk)xS

k−1 +φkxk.

The new upper bound is as follows.
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Theorem 1 Let 0 < µ ≤ λmin be given. The approximations xk, k < n, generated by

the CG method satisfy

‖x− xk‖2
A <

‖rk‖2

µ

‖rk‖2

‖pk‖2
, (13)

and the bound is decreasing with increasing k.

Proof Based on (6) it is sufficient to show that µγ (µ)

k ≤ φk. We will prove it by induc-

tion. The inequality holds for k = 0. Using the induction hypothesis, (7), and (11) we

obtain, for k < n− 1,

µγ (µ)

k+1 =
µ
(

γ (µ)

k − γk

)

µ
(

γ (µ)

k − γk

)
+ δk+1

<
µγ (µ)

k

µγ (µ)

k + δk+1

≤ φk

φk + δk+1
= φk+1.

Recall that γ (µ)

k − γk is positive because of (6). Finally, using (12), the bound (13) is

monotonically decreasing with increasing k.

The tightness of the bound (13) can further be improved when using a delay d,

similarly as in (10). First, the proof of the previous theorem also shows that the Gauss-

Radau upper bound presented in (6) can be bounded from above by

γ (µ)

k ‖rk‖2 <
‖rk‖2

µ

‖rk‖2

‖pk‖2
. (14)

Second, combining (10) and (14) we can get an improved upper bound

‖x− xk‖2
A <

k+d−1

∑
j=k

γ j‖r j‖2 +
‖rk+d‖2

µ

‖rk+d‖2

‖pk+d‖2
. (15)

In practical computations, the parameter µ has to be determined. This represents

a nontrivial task.

4 A numerical example: The choice of µ

As an example that can demonstrate the difficulties to compute accurate upper bounds

for the A-norm of the error, we consider the matrix bcsstk01 from the set BC-

SSTRUC1 in the Harwell-Boeing collection, which can be obtained from the Ma-

trix Market1 or from the SuiteSparse Matrix Collection2. It is a small stiffness ma-

trix of order 48 arising from dynamic analysis in structural engineering with 400

nonzero entries. Its condition number is κ(A) = 8.8234× 105. The smallest eigen-

value λmin(A) = 3.417267562666500×103 was computed in extended precision and

rounded to double precision. The right-hand side b has been chosen such that b has

equal components in the eigenvector basis, and such that ‖b‖= 1.

1 http://math.nist.gov/MatrixMarket
2 https://sparse.tamu.edu/

http://math.nist.gov/MatrixMarket
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The linear system Ax = b is difficult to solve with CG without a preconditioner.

We have to perform around 180 iterations to reach the maximum attainable accuracy

when the matrix is only of order 48. There is a long phase of quasi-stagnation of the

A-norm of the error that last almost 100 iterations as one can see in Fig. 1. Denote

u
(µ)

k ≡
√

γ (µ)

k ‖rk‖, uuu
(µ)

k ≡
√

φk

µ
‖rk‖ (16)

the bounds which correspond to (6) and (13) (without any delay d = 0).

Fig. 1 displays the A-norm of the error (dotted curve), the bounds u
(µ)

k for different

values of µ equal to λmin/(1+ 10−m),m = 2, ...,14 (dashed curves), and the new

upper bounds uuu
(µ)

k (thick solid curves). The closer µ is to λmin the better is the upper

bound u
(µ)

k of the A-norm of the error. However, below a level of approximately 10−8

all the values of µ in our experiment give visually the same upper bound u
(µ)

k which

is not very close to the A-norm of the error. We can also observe that the new upper

bound uuu
(µ)

k is insensitive to the choice of µ and gives an envelope of the Gauss-Radau

upper bounds u
(µ)

k .

0 50 100 150

10 -15

10 -10

10 -5

Fig. 1 bcsstk01, u
(µ)

k and uuu
(µ)

k , µ = λmin/(1+10−m),m = 2, ...,14

Fig. 2 shows the “upper bounds” u
(µ)

k for values of µ which are larger than but

close to λmin; µ = λmin/(1− 10−m),m = 2,4,6, ...,14. We use quotes since, as one

can see, we do not obtain an upper bound in general, even though we are close to

λmin. If µ is chosen to be larger than λmin, then, at some point, the coefficient γ (µ)

k can

even be negative. In such cases we use |γ (µ)

k |, and emphasize the corresponding value

by a dot. In Fig. 2 we do not plot the new bound uuu
(µ)

k . However, from its definition

and the assumption that µ ≈ λmin it follows that uuu
(µ)

k will stay visually the same as in

Fig. 1.

In summary, the node µ should satisfy µ ≤ λmin, and, simultaneously, it should

closely approximate λmin, otherwise the Gauss-Radau upper bound u
(µ)

k would be a
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0 50 100 150

10 -15

10 -10

10 -5

Fig. 2 bcsstk01,

√∣∣∣γ (µ)

k

∣∣∣‖rk‖, µ = λmin/(1−10−m),m = 2,4,6, , ...,14

poor approximation of the A-norm of the error. If the smallest eigenvalue is known in

advance, then the bound u
(µ)

k
can give very good results until some level of accuracy

of the error norm (in our case 10−8) is reached. Below this level, the bounds u
(µ)

k and

uuu
(µ)

k visually coincide, and are far away from the A-norm of the norm.

If the parameter µ has to be determined, possibly in some adaptive way, then we

can expect troubles. First, one cannot hope in general to get a very accurate approxi-

mation of the smallest eigenvalue without too much work. Second, there is usually no

guarantee that the condition µ ≤ λmin is satisfied. Typically, the best we can get from

the Lanczos process are the Ritz values (eigenvalues of Tk) which can approximate

the eigenvalues of A. However, Ritz values provide only upper bounds on λmin, and

some heuristics (e.g., multiplication by a safety constant) have to be used to obtain

µ with the desired properties. As we have seen in the numerical example, the value

u
(µ)

k can be very sensitive to small perturbations of µ . Then, using a heuristic can

strongly influence the approximation properties of u
(µ)

k , and cause numerical troubles

in computation of u
(µ)

k if µ > λmin. On the other hand, the new bound uuu
(µ)

k can be

computed without any troubles also for µ > λmin. If in addition µ ≈ λmin, then either

uuu
(µ)

k represents an upper bound, or, it is an approximation of the A-norm of the error.

In other words, an approximation of the smallest Ritz value can be used as a heuristic

for the bound uuu
(µ)

k .

5 Approximating the extreme Ritz values

In this section we develop efficient algorithms for the incremental approximation of

the smallest and largest Ritz values. This information can be used not only in the

error approximation techniques based on various modified quadrature rules (see, e.g.,

[10,11,23]), but also to approximate the 2-norm of A or the condition number of A.
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Note that an approximation of ‖A‖ is needed in estimating the maximum attainable

accuracy (see [15]) or in the computation of the normwise backward error (see [28]).

As already mentioned, Jacobi matrices Tk and the lower bidiagonal matrices Lk

which appear in CG are related through Tk = LkLT
k . In particular, it holds that

λmax(Tk) = ‖Lk‖2 , λmin(Tk) =
∥∥L−1

k

∥∥−2
. (17)

Hence, one can approximate the extreme eigenvalues of Tk using incremental norm

estimation applied to the upper triangular matrices LT
k and L−T

k . Although we are

mainly motivated by the approximation of the extreme Ritz values in CG, we consider

the problem of incremental norm estimation of bidiagonal matrices and their inverses

by itself, since it can be useful also in other algorithms involving bidiagonal matrices.

5.1 The eigenvalues and eigenvectors of a 2× 2 symmetric matrix

An important ingredient of incremental norm estimation is the fact that the eigenval-

ues and eigenvectors of a 2× 2 symmetric matrix are known explicitly. Consider a

matrix of the form [
ρ σ
σ τ

]
. (18)

The two eigenvalues of (18) are given by

λ+ =
1

2
(ρ + τ + χ) , λ− =

1

2
(ρ + τ − χ)

where

χ2 = (ρ − τ)2 + 4σ2. (19)

If σ 6= 0, the matrix of unnormalized eigenvectors is given by

[
ρ − τ + χ ρ − τ − χ

2σ 2σ

]
.

For more details see [6, p.306], [12, p.166].

5.2 Incremental estimation of the norms of upper triangular matrices

To approximate the maximum singular value of an upper triangular matrix, we use

an incremental estimator proposed in [6]. The algorithm is based on incremental im-

provement of an approximation of the right singular vector that corresponds to the

maximum singular value. In [7] it has been shown that this technique tends to be

superior, with respect to approximating maximum singular values, to the original in-

cremental technique proposed in [3]. In the following we recall the basic idea of the

incremental norm estimation and reformulate slightly the algorithm so that it can be

efficiently applied to upper bidiagonal matrices and their inverses.
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Let R ∈R
k×k be an upper triangular matrix and let z be its approximate (or exact)

maximum right singular vector. Let

R̂ =

[
R v

η

]
, v ∈ R

k, η ∈ R, (20)

and consider the new approximate maximum right singular vector in the form

ẑ =

[
sz

c

]
, (21)

where s2 +c2 = 1. The parameters s and c are chosen such that the norm of the vector

R̂ẑ is maximal. It holds that

‖R̂ẑ‖2 =

[
s

c

]T [
ρ σ
σ τ

][
s

c

]

where

ρ = ‖Rz‖2, σ = vT Rz, τ = vT v+η2.

Hence, to maximize ‖R̂ẑ‖2, we need to determine the maximum eigenvalue of the

symmetric 2× 2 matrix (18), and the corresponding eigenvector. Using the previous

results [
s

c

]
=

u

‖u‖ , u =

[
ρ − τ + χ

2σ

]
, (22)

and

λ+ =
ρ + τ + χ

2
, χ2 = (ρ − τ)2 + 4σ2.

Note that if σ = 0, the formula for the eigenvector that corresponds to λ+ is still valid.

Next, it holds that

‖u‖2 = 2(χ2 +(ρ − τ)χ),

and, therefore, from (19),

c2 =
2σ2

χ2 +(ρ − τ)χ
=

1

2

χ2 − (ρ − τ)2

χ2 +(ρ − τ)χ
=

1

2

(
1− ρ − τ

χ

)
.

We can also express ‖R̂ẑ‖2 in a more convenient form

‖R̂ẑ‖2 =
ρ + τ + χ

2
= ρ +

χ

2

(
1− ρ − τ

χ

)
= ρ + χc2.

To compute ẑ, we still need to determine the signs of s and c. From (22) it follows

that s ≥ 0 and c has the same sign as σ . Therefore,

s =
√

1− c2, c = |c|sign(σ).

Using the subscript k, we can formulate Algorithm 3 for the incremental norm esti-

mation of

Rk+1 =

[
Rk vk

ηk

]
, vk ∈ R

k, ηk ∈R, (23)
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Algorithm 3 Incremental estimation of ‖Rk‖2

input matrices Rk

z1 = 1,

for k = 1, . . . do

% . . . Compute the entries of the 2×2 matrix.

ρk = ‖Rkzk‖2, σk = vT
k Rkzk, τk = vT

k vk +η2
k

% . . . Compute the new estimate ρk+1.

χ2
k = (ρk − τk)

2 +4σ2
k , c2

k =
1
2

(
1− ρk−τk

χk

)
, ρk+1 = ρk + χkc2

k

% . . . If required, compute zk+1.

sk =
√

1− c2
k , ck = |ck |sign(σk), zk+1 =

[
skzk

ck

]

end for

where Rk in Algorithm 3 is a principal submatrix of Rk+1.

Note that if we start the algorithm with z1 = 1, then ρ1 = r2
1,1, and ρ2 is equal to

‖R2‖2. In more details, it holds that

ρ2 = ρ1 + χ1c2
1 =

1

2
(χ1 +ρ1 + τ1)

= 1
2

(
r2

1,1 + r2
2,2 + r2

1,2 +

√(
r2

1,1 − r2
2,2 − r2

1,2

)2

+ 4r2
1,1r2

1,2

)
= ‖RT

2 R2‖.

As we will see in the following, if Rk is upper bidiagonal, it is possible to incremen-

tally estimate ‖Rk‖ and
∥∥R−1

k

∥∥ in a very efficient way, without storing the coefficients

of the matrix Rk and even without storing the approximate right singular vectors zk.

In particular, we will be able to find simple updating formulas for σk and τk which

are then used in the updating formula for ρk+1.

5.3 Specialization to upper bidiagonal matrices

Consider a bidiagonal matrix Bk,

Bk =




α1 β1

α2 β2

. . .
. . .

. . . βk−1

αk



. (24)

Having in mind relation (23) and taking Rk = Bk, the vector vk and the entry ηk in the

last column of Bk+1 are given by vk = βkek, ηk = αk+1, where ek = [0, · · · ,0,1]T is

the kth column of the k× k identity matrix. Hence

ρk = ‖Bkzk‖2, σk = αkβkeT
k zk, τk = β 2

k +α2
k+1.
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Note that the last entry eT
k zk of the vector zk is given by ck−1 (see (21)), and, therefore,

σk = αkβkck−1. Using the previous results, we are now able to update the entries ρk,

σk and τk without storing the vector zk; see Algorithm 4.

Algorithm 4 Incremental estimation of ‖Bk‖2

input entries αk and βk of upper bidiagonal matrices

ρ1 = α2
1 , ρmax

1 = ρ1 , c0 = 1,

for k = 1, . . . do

σ2
k = α2

k β 2
k c2

k−1, τk = β 2
k +α2

k+1

χ2
k = (ρk − τk)

2 +4σ2
k

c2
k = 1

2

(
1− ρk−τk

χk

)

ρk+1 = ρk + χkc2
k

ρmax
k+1 = ρk+1

end for

In some cases, a better accuracy of the approximations to norms of matrices is

needed. To improve the accuracy, we need to store Bk and zk so that we can run

Algorithm 3, and construct the approximate maximum right singular vector

zk+1 =

[
skzk

ck

]
(25)

of Bk+1. The vector zk+1 can also be seen as an approximate eigenvector of BT
k+1Bk+1

corresponding to the approximate maximum eigenvalue ρk+1. Hence, one can im-

prove the vector zk+1 using one shifted inverse iteration applied to the matrix BT
k+1Bk+1,

where ρk+1 is used as a shift; see, e.g., [14, Section 7.6].

In detail, having the LDLT factorization of the tridiagonal matrix BT
k+1Bk+1, we

can easily compute the LDLT factorization of the matrix BT
k+1Bk+1 −ρk+1I using the

dstqds algorithm by Parlett and Dhillon [27]. The last factorization can be used to

perform one inverse iteration by solving the system

(BT
k+1Bk+1 −ρk+1I)y = zk+1.

Finally, we can consider the vector ẑk+1 ≡ y/‖y‖ and the scalar ρ̂k+1 ≡ ‖Bk+1ẑk+1‖2

to be new approximations to the maximum right singular vector and to the squared

norm of Bk+1, and ρ̂max
k+1 ≡ ρ̂k+1 to be an improved estimate of the largest eigenvalue

of BT
k+1Bk+1.

5.4 Inversions of nonsingular upper bidiagonal matrices

Consider a nonsingular bidiagonal matrix Bk of the form (24), αi 6= 0. It is well known

that the last column wk+1 of the matrix B−1
k+1 can be expressed in the explicit form

wk+1 =
1

αk+1

[
(−1)k

∏k
i=1

βi

αi
, . . . ,

βk−1

αk−1

βk
αk
, − βk

αk
, 1
]T

.
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Hence,

B−1
k+1 =

[
B−1

k −wk
βk

αk+1
1

αk+1

]
, wk+1 =

1

αk+1

[
−wkβk

1

]
, (26)

where wk is the last column of the matrix B−1
k . We now specialize the idea of the

incremental norm estimation presented in Section 5.2 to the case of matrices B−1
k ,

that is,

Rk = B−1
k , vk =−wk

βk

αk+1
, ηk =

1

αk+1
.

First, let us find updating formulas for ‖wk+1‖2 and B−T
k

wk. From (26) it follows

that

‖wk+1‖2 =
1

α2
k+1

(
β 2

k ‖wk‖2 + 1
)
, (27)

and

B−T
k wk =

[
B−T

k−1

−wT
k−1

βk−1

αk

1
αk

][
−wk−1

βk−1

αk
1

αk

]
=

[
− βk−1

αk

(
B−T

k−1wk−1

)

‖wk‖2

]
. (28)

Using the formulas (27) and (28) we are now able to update the entries σk and τk

which are needed in the process of the incremental norm estimation; see Section 5.2.

For τk we get

τk = ‖wk+1‖2 =
1

α2
k+1

(
β 2

k ‖wk‖2 + 1
)
=

1

α2
k+1

(
β 2

k τk−1 + 1
)
,

and for σk,

σk = vT
k Rkzk =− βk

αk+1
zkB−T

k wk

= − βk

αk+1

[
sk−1zk−1

ck−1

]T
[
− βk−1

αk

(
B−T

k−1wk−1

)

‖wk‖2

]

= − βk

αk+1

(
sk−1

[
−βk−1

αk

zT
k−1B−T

k−1wk−1

]
+ ck−1‖wk‖2

)

= − βk

αk+1
(sk−1σk−1 + ck−1τk−1) .

The initial values

ρ1 =
1

α2
1

, τ0 =
1

α2
1

, σ0 = 0, s0 = 0, c0 = 1,

lead to the 2× 2 matrix

[
ρ1 σ1

σ1 τ1

]
=




1
α2

1

− β1

α2α2
1

− β1

α2α2
1

1

α2
2

+
(

β1
α2α1

)2


= B−T

2 B−1
2 ,
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Algorithm 5 Incremental estimation of ‖B−1
k ‖2

input entries αk and βk of upper bidiagonal matrices

ρ1 = α−2
1 , ρmin

1 = α2
1 , τ0 = ρ1 , σ0 = 0, s0 = 0, c0 = 1

for k = 1, . . . do

σk =− βk
αk+1

(sk−1σk−1 + ck−1τk−1),

τk =
1

α2
k+1

(
β 2

k τk−1 +1
)

χ2
k = (ρk − τk)

2 +4σ2
k

c2
k = 1

2

(
1− ρk−τk

χk

)

ρk+1 = ρk + χkc2
k

sk =
√

1− c2
k , ck = |ck |sign(σk)

ρmin
k+1 = ρ−1

k+1
end for

so that ρ2 =
∥∥B−1

2

∥∥2
. The results are summarized in Algorithm 5.

Similarly as in the previous section, we can improve the accuracy of the approxi-

mations of norms of inverses of matrices by one shifted inverse iteration. To do so, we

need to store Bk, zk, and also the vector B−T
k wk (to compute σk) which can be updated

using the formula (28). Then, as in (25), we can construct the approximate maximum

right singular vector zk+1 of B−1
k+1. The vector zk+1 can be seen as an approximate

eigenvector of the matrix B−T
k+1B−1

k+1, or, as an approximate eigenvector of the matrix

Bk+1BT
k+1,

B−T
k+1B−1

k+1zk+1 ≈ ρk+1zk+1, ρ−1
k+1zk+1 ≈ Bk+1BT

k+1zk+1.

The accuracy of the vector zk+1 can now be improved by one shifted inverse iteration

applied to the matrix Bk+1BT
k+1, where ρ−1

k+1 is used as a shift.

In detail, we can easily get the UDUT factorization (U is upper bidiagonal) of

the tridiagonal matrix Bk+1BT
k+1. Using a straightforward modification of the dstqds

algorithm, the UDUT factorization of the matrix Bk+1BT
k+1 −ρ−1

k+1I can be computed

and used to solve the system

(Bk+1BT
k+1 −ρ−1

k+1I)y = zk+1.

The modification of the dstqds algorithm consists in the unitary transformation of

the problem for the UDUT factorization to the problem with LDLT factorization,

using the backward identity matrix. Finally, one can consider the vector ẑk+1 ≡ y/‖y‖
and the scalar ρ̂k+1 ≡ ‖B−1

k+1ẑk+1‖2 to be new approximations to the maximum right

singular vector and to ‖B−1
k+1‖2, and ρ̂min

k+1 ≡ ρ̂−1
k+1 to be an improved estimate of the

smallest eigenvalues of BT
k+1Bk+1.
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5.5 CG and approximations of the extreme Ritz values

The results of the previous sections can be applied to the upper bidiagonal matrices

Bk = LT
k that are computed in CG, i.e.,

α j =
1

√
γ j−1

, j = 1, . . . ,k, β j =

√
δ j

γ j−1
, j = 1, . . . ,k− 1,

to approximate the smallest and largest eigenvalues of Tk; see (17). In particular, after

substitution we obtain in Algorithm 4,

σ2
k =

δk

γ2
k−1

c2
k−1, τk =

1

γ j−1
+

δk

γ j−1
,

and in Algorithm 5,

σk =−
√

γk

δk

γk−1
(sk−1σk−1 + ck−1τk−1) , τk = γk

(
δk

τk−1

γk−1
+ 1

)
. (29)

Moreover, for τk in Algorithm 5 it holds that

τk

γk

= [1+ δk(1+ δk−1(1+ · · ·+ δ2(1+ δ1) . . . ))] =
‖pk‖2

‖rk‖2
.

6 Approximation of the Gauss-Radau upper bound

The previous section provides a cheap tool to approximate the Gauss-Radau upper

bound without having an a priori information about the smallest eigenvalue of the

(preconditioned) system matrix. In particular, to approximate the Gauss-Radau up-

per bound one can use the new upper bound (13). Instead of µ which should closely

approximate the smallest eigenvalue from below, one can use the updated approxima-

tion µk ≡ ρmin
k to the smallest Ritz value; see Algorithm 5 and Section 5.5. Since the

bound (13) is not sensitive to the choice of µ , the approximative bound (13) which

uses µk will be close to the bound (13) for µ = λmin whenever µk ≈ λmin. Moreover,

as we have seen in Section 4, the bound (13) is often a good approximation to the

Gauss-Radau upper bound, in particular if µ approximates the smallest eigenvalue

only roughly, say to 1 or 2 valid digits. In summary, when we do not have an a pri-

ori information about the smallest eigenvalue of the (preconditioned) system matrix,

we suggest to approximate the Gauss-Radau upper bound u
(µ)

k , see (16), using an

approximate upper bound

uuu
(µk)

k =
‖rk‖√

µk

‖rk‖
‖pk‖

(30)

where µk = ρmin
k is updated at each iteration as in Algorithm 5, with σk and τk com-

puted directly from the CG coefficients using (29). The algorithm for updating µk

starts with ρ1 = γ0, µ1 = γ−1
0 , τ0 = ρ1, σ0 = 0, s0 = 0, c0 = 1. Note that it does not

make too much sense to use inverse iterations to improve the quality of the approx-

imation of the smallest Ritz value. A more accurate approximation to the smallest

Ritz value does not improve the bound (30) significantly.
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7 Approximation of the normwise backward error

In [26,1], backward error perturbation theory was used to derive a family of stopping

criteria for iterative methods. In particular, given x̃, one can ask what are the norms

of the smallest perturbations ∆A of A and ∆b of b measured in the relative sense such

that the approximate solution x̃ represents the exact solution of the perturbed system

(A+∆A) x̃ = b+∆b .

In other words, we are interested in the quantity

η = min{δ : (A+∆A) x̃ = b+∆b, ‖∆A‖ ≤ δ‖A‖, ‖∆b‖ ≤ δ‖b‖} .

It was shown by Rigal and Gaches [28] that this quantity, called the normwise back-

ward error, is given by

η =
‖r̃‖

‖A‖‖x̃‖+ ‖b‖ . (31)

where r̃ = b−Ax̃. This approach can be generalized, see [26,1], in order to quantify

levels of confidence in A and b. The normwise backward error is, as a base for stop-

ping criteria, frequently recommended in the numerical analysis literature, see, e.g.

[19,2].

When solving a linear system with CG, the norms of vectors x̃ = xk and r̃ = rk are

easily computable, and ‖A‖ can be approximated from below using Algorithm 4; see

also Section 5.5. Hence, we can efficiently compute an approximate upper bound on

the normwise backward error (31) in CG. In the following subsection we show that if

x0 = 0, then ‖xk‖ can be approximated cheaply in an incremental way.

7.1 A cheap approximation of ‖xk‖ in CG

If x0 = 0, then the CG approximate solution xk can be expressed as

xk = ‖r0‖VkT−1
k e1, and ‖xk‖2 = ‖r0‖2eT

1 T−1
k V T

k VkT−1
k e1.

Using the global orthogonality among the Lanczos vectors we obtain

‖xk‖2 = ‖r0‖2eT
1 T−2

k e1. (32)

Note that in finite precision arithmetic, the orthogonality is usually quickly lost. How-

ever, we observed in numerical experiments (see Section 8) that despite the loss or

orthogonality, the quantity

ξk ≡ ‖r0‖2eT
1 T−2

k e1 (33)

still approximates ‖xk‖2 very accurately. In the following lemma we suggest an algo-

rithm to efficiently compute ξk at a negligible cost.
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Lemma 1 With the notation introduced in Section 2, it holds that

ξk =
k−1

∑
j=0

‖r j‖−2

(
k−1

∑
i= j

ψi

)2

, ψi = γi‖ri‖2,

and ξk+1, k = 0,1,2, . . . , can be computed using the recurrences

ϑk+1 = ϑk + γkφ−1
k , (34)

ξk+1 = ξk +ψk (ϑk+1 +ϑk) , (35)

where ϑ0 = 0, ξ0 = 0, and φk can be updated using (11).

Proof It holds that

ξk = ‖r0‖2eT
1 T−2

k e1 = ‖‖r0‖L−T
k L−1

k e1‖2 ≡ ‖y‖2

where y= [y1, . . . ,yk]
T solves the system LT

k Lky= ‖r0‖e1. Using the bidiagonal struc-

ture of Lk we get in a straightforward way that

y j = (−1) j+1 1

‖r j−1‖

(
k−1

∑
i= j−1

ψi

)
, j = 1, . . . ,k,

and, therefore,

ξk = ‖y‖2 =
k−1

∑
j=0

(
∑k−1

i= j ψi

)2

‖r j‖2
.

It remains to find a way how to compute ξk in an efficient way. In other words,

knowing ξk and ψk, we would like to express ξk+1. It holds that

ξk+1 =
k

∑
j=0

(
∑k

i= j ψi

)2

‖r j‖2
=

ψ2
k

‖rk‖2
+

k−1

∑
j=0

ψ2
k

‖r j‖2
+

k−1

∑
j=0

2ψk ∑k−1
i= j ψi

‖r j‖2
+ ξk

= ψk

(
k

∑
j=0

∑k
i= j ψi

‖r j‖2
+

k−1

∑
j=0

∑k−1
i= j ψi

‖r j‖2

)
+ ξk

= ξk +ψk (ϑk+1 +ϑk)

where

ϑk ≡
k−1

∑
j=0

∑k−1
i= j ψi

‖r j‖2
.

Let us find an updating formula for ϑk+1. We have,

ϑk+1 = γk +
k−1

∑
j=0

∑k−1
i= j ψi +ψk

‖r j‖2
= γk +ϑk +ψk

k−1

∑
j=0

1

‖r j‖2

= γk +ϑk + γk

‖rk‖2

‖rk−1‖2

(
‖rk−1‖2

k−1

∑
j=0

‖r j‖−2

)

= γk +ϑk + γkδkφ−1
k−1

= ϑk + γkφ−1
k ;

see (11) and (12).
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Lemma 1 shows how to cheaply approximate ‖xk‖ in CG under the assumption

x0 = 0. If x0 6= 0, then xk = x0+‖r0‖VkT−1
k e1 and ξk can be seen as an approximation

to ‖xk − x0‖2. By a simple algebraic manipulation we can express ‖xk‖2 as

‖xk‖2 = ‖x0‖2 + 2‖r0‖xT
0 VkT−1

k e1 + ξk. (36)

The term (V T
k x0)

T T−1
k e1 can be evaluated incrementally, without storing the Lanc-

zos vectors. However, this requires the computation of one additional inner product

per iteration. While in CG, it is then better to compute directly ‖xk‖2, the term (36)

can still be useful in PCG where norms of preconditioned approximations can be of

interest when approximating the normwise backward error which corresponds to the

preconditioned system.

Algorithm 6 Preconditioned Conjugate gradients (PCG)

input A, b, x0, M,

r0 = b−Ax0 , solve Mz0 = r0 to get z0, p0 = z0

for k = 1, . . . until convergence do

γ̂k−1 =
zT
k−1rk−1

pT
k−1

Apk−1

xk = xk−1 + γ̂k−1 pk−1

rk = rk−1 − γ̂k−1Apk−1

solve Mzk = rk to get zk

δ̂k =
zT
k

rk

zT
k−1

rk−1

pk = zk + δ̂k pk−1

end for

7.2 Normwise backward error in PCG

Given a symmetric positive definite matrix M = LLT we can formally think about

preconditioned CG (see Algorithm 6) as CG applied to the modified system

L−1AL−T

︸ ︷︷ ︸
Â

LT x︸︷︷︸
x̂

= L−1b︸︷︷︸
b̂

. (37)

Moreover, a change of variable is used to go back to the original variable x and the

original residual r in such a way that the only preconditioning matrix which is in-

volved is M or its inverse, and not L which may be unknown. Using the techniques

presented in Sections 5 and 7.1 we can approximate the normwise backward error for

the preconditioned system (37),

η̃ =
‖r̃‖

‖Â‖‖x̃‖+ ‖b̂‖
, (38)

where x̃ is a given approximation and r̃ = b̂− Âx̃. In particular, in PCG we are inter-

ested in x̃ = LT xk, r̃ = L−1rk, so that

‖x̃‖2 = ‖xk‖2
M, ‖r̃‖2 = zT

k rk = ‖rk‖2
M−1 , ‖b̂‖2 = ‖b‖2

M−1 . (39)
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The norm of the preconditioned matrix ‖Â‖ can be approximated from the PCG co-

efficients γ̂k and δ̂k using techniques developed in Section 5, and the norm of the

preconditioned approximation ‖LT xk‖ = (xT
k Mxk)

1/2 = ‖xk‖M can be approximated

using Lemma 1. The other quantities are available in PCG.

We know that x̃ is the exact solution of a perturbed problem (Â+∆ Â)x̃ = b̂+∆ b̂,

where the relative sizes of ∆ Â and ∆ b̂ are bounded by η̃ . Hence, xk is the exact

solution of the perturbed system

(A+ ∆̂A)xk = b+ ∆̂b, ∆̂A ≡ L(∆ Â)LT , ∆̂b ≡ L(∆ b̂) .

Since the relative sizes of ∆ Â and ∆ b̂ are bounded by η̃ , it holds that ‖∆̂A‖/‖A‖ ≤
κ(M)η̃ and ‖∆̂b‖/‖b‖ ≤ κ(M)1/2η̃ .

Nevertheless, the question of which backward error makes more sense in a given

problem remains. The quantity η in (31) tells us how well we have solved the original

system whence η̃ in (38) tells us how well we have solved the preconditioned system.

We did not find any discussion of this issue in the literature.

8 Numerical experiments

Numerical experiments are divided into two parts. In the first part we demonstrate

the quality of our estimates approximating the extreme Ritz values and the norms of

approximate solutions during the CG computations. In the second part we use these

estimates to approximate characteristics of our interest, i.e., the Gauss-Radau upper

bound for the A-norm of the error and the normwise backward error. The experiments

are performed in Matlab 9.2 (R2017a).

We consider four systems of linear equations. The first one with the system matrix

bcsstk01 has already been described in Section 4. For this system, the influence of

finite precision arithmetic to CG computations is substantial; orthogonality is quickly

lost and convergence is significantly delayed. Hence, one can test whether our tech-

niques work also under these circumstances which are quite realistic during practical

computations.

The second system arises after discretizing the diffusion equation

−div(λ (x,y)∇u) = f in Ω = (0,1)2, u|∂Ω = 0,

with the diffusion coefficient

λ (x,y) =
1

2+ 1.8sin(10x)
· 1

2+ 1.8sin(10y)
.

The PDE is discretized using standard finite differences with a five-point scheme

on a 60 × 60 mesh so that the system matrix Pb26 has the moderate dimension

3600; for more details see [22, Section 9.2, p. 313]. Note that nnz(A) = 17760 and

κ(A)≈ 7.54×104. The right hand side b is a random vector normalized to have a unit

norm. The starting vector is x0 = 0. In the experiments, the system is solved without

preconditioning.
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The third linear system Pres Poisson from the SuiteSparse Matrix Collection

arises in problems of computational fluid dynamics. The matrix size is n = 14822,

nnz(A) = 715804, κ(A) ≈ 2.04× 106, the right hand side b is provided with the

matrix. The starting vector is x0 = 0. We use incomplete Cholesky factorization with

zero-fill as a preconditioner; see, e.g., [14, Section 11.5.8].

Finally, the last system matrix s3dkt3m2 is of order n = 90449 and κ(A) ≈
3.6 × 1011. It can be downloaded from the CYLSHELL collection in the Matrix

Market library, which contains matrices that represent low-order finite-element dis-

cretizations of a shell element test, the pinched cylinder. Only the last element of the

right-hand side vector b is nonzero, which corresponds to the given physical problem;

for more details see [20] and the references therein. The factor L in the preconditioner

M = LLT is determined by the incomplete Cholesky (ichol) factorization with thresh-

old dropping, type = ’ict’, droptol = 1e-5, and with the global diagonal shift

diagcomp = 1e-2. Note that here nnz(A) = 3686223 and nnz(L) = 6541916. When

used in experiments, the smallest eigenvalue of the preconditioned matrix was com-

puted as the smallest Ritz value at the iteration k = 3500 for which the ultimate level

of accuracy of the A-norm of the error was already reached.

8.1 Approximations to the extreme Ritz values and to ‖xk‖

It is sometimes difficult to know beforehand good approximations of the smallest and

largest eigenvalues of A. Since CG is equivalent to the Lanczos algorithm, estimates

of the smallest and largest eigenvalues can be computed during CG iterations via

approximating the smallest and largest Ritz value. In Algorithms 4 and 5, and in

Section 5.5 we formulated a very cheap way of approximating the extreme Ritz values

at a negligible cost of a few scalar operations per iteration. Moreover, the estimates

can be improved when updating the LDLT factorization of the tridiagonal matrix Tk

and performing one shifted inverse iteration; see Sections 5.3 and 5.4.

Note that an adaptive algorithm for approximating the smallest eigenvalue was

also proposed in [21], with the aim to get the parameter µ for computing the Gauss-

Radau bound. The user was required to provide an initial lower bound for λmin(A).
Then, during the CG iterations the smallest Ritz values were computed using a fixed

number of inverse iterations. When the smallest Ritz value was considered to be

converged, the value of µ was changed to the converged value. However, this re-

quired solving several tridiagonal linear systems at every CG iteration and the size

of these linear systems was increasing with the CG iterations. Therefore, we can do

now something better with our new cheap estimates, as well as with the improved

estimates which require solving of just one linear system per iteration.

Let us first describe the meaning of curves in Figures 3-6. The left and right parts

of the figures correspond to approximations of the largest and smallest eigenvalue,

respectively. Denote by θ (k)

1 , . . . ,θ (k)

k the eigenvalues of Tk, i.e., the Ritz values, sorted

in nondecreasing order, which we compute using the Matlab command eig. We plot

the convergence history of the relative distance of the largest or smallest Ritz value
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Fig. 3 Approximating the extreme Ritz values for the system bcsstk01.

to the largest or smallest eigenvalue of A respectively, i.e., the quantities

|λmax(A)−θ (k)

k |
λmax(A)

,
|λmin(A)−θ (k)

1 |
λmin(A)

,

as a dash-dotted curve. The dashed and dotted curves are related to the relative accu-

racy of the estimates of the largest or smallest Ritz value,

|θ (k)

k − estmax
k |

θ (k)

k

,
|θ (k)

1 − estmin
k |

θ (k)

1

,

where estmax
k stands for ρmax

k or ρ̂max
k , and estmin

k stands for ρmin
k or ρ̂min

k . In particular, the

dashed curves correspond to the relative accuracy of the cheap estimates ρmax
k and ρmin

k

computed by Algorithms 4 and 5 respectively, while the dotted curve corresponds to

the relative accuracy of the improved estimates ρ̂max
k and ρ̂min

k , described in Section

5.3 and 5.4. Finally, the relative distances of the cheap estimates ρmax
k and ρmin

k to the

largest and smallest eigenvalues, i.e.,

|λmax(A)−ρmax
k |

λmax(A)
,

|λmin(A)−ρmin
k |

λmin(A)
,

are plotted as a solid curve. Note that λmin(A) < θ (k)

1 ≤ estmin
k and estmax

k ≤ θ (k)

k <
λmax(A).

In Figures 3-4 we can observe that if CG is applied to an unpreconditioned system,

the largest Ritz values θ (k)

k converge to λmax(A) after a few iterations of CG (dash-

dotted curve in the left part), while convergence of the smallest Ritz values θ (k)

1 to

λmin(A) (dash-dotted curve in the right part) is often delayed, and it is usually related

to the convergence of the A-norm of the error.

In a few initial iterations, the cheap estimates ρmax
k and ρmin

k (dashed curves) ap-

proximate the corresponding Ritz values with a very high accuracy (in theory, the

estimates agree with the exact Ritz values in iterations 1 and 2). However, in later it-

erations, their relative accuracy stagnates on the level of 10−1 or 10−2. In other words,

the estimates agree with the corresponding Ritz values to 1 or 2 valid digits. Since
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Fig. 4 Approximating the extreme Ritz values for the system Pb26.

10 20 30 40 50 60 70 80

10 -15

10 -10

10 -5

10 0

50 100 150 200

10 -15

10 -10

10 -5

10 0

Fig. 5 Approximating the extreme Ritz values for the preconditioned system Pres Poisson.

the extreme Ritz values approximate the extreme eigenvalues of A, the estimates also

approximate these eigenvalues. We can observe that if an extreme Ritz value has con-

verged, then its cheap estimate approximates the corresponding extreme eigenvalue

to 1 or 2 valid digits (solid curve). Note that in most applications, this would be a

sufficient accuracy. The dotted curves show the relative accuracy of the improved

estimates ρ̂max
k and ρ̂min

k of the corresponding extreme Ritz values. The experiments

predict that at the cost of computing one linear system with the tridiagonal matrix

available in the form of LDLT factorization, the accuracy of the estimates can be

significantly improved.

A similar picture can be seen for preconditioned systems; see Figures 5-6. Recall

that if we precondition the system, the extreme Ritz values approximate the extreme

eigenvalues of the preconditioned matrix Â. As we can see, convergence of θ (k)

k to

λmax(Â) to full precision accuracy is for the preconditioned systems significantly

delayed. This is due to the fact that the preconditioned matrix has often a cluster of

eigenvalues, which corresponds to the largest eigenvalue. Then, the power method as

well as the Lanczos method (or CG) need more iterations to approximate the largest

eigenvalue accurately. Moreover, a cluster of eigenvalues about the largest eigenvalue

leads to a cluster of Ritz values which approximate the largest eigenvalue, and, as a
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Fig. 6 Approximating the extreme Ritz values for the preconditioned system s3dkt3m2.
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Fig. 7 Approximating ‖xk‖ using ξk when solving the unpreconditioned systems bcsstk01 (left part) and

Pb26 (right part).

consequence, the improved estimates ρ̂max
k (dotted curve) based on inverse iterations

often do not improve the accuracy of the approximation significantly.

Similarly as in the unpreconditioned case, the cheap estimates ρmax
k and ρmin

k ap-

proximate the corresponding Ritz values with a high relative accuracy in a few initial

iterations (dashed curve), but in later iterations the relative accuracy is getting worse

and stagnates on the level of about 10−1 or 10−2. As a result, one can expect that in

later iterations, the estimates ρmax
k and ρmin

k can approximate the largest and smallest

eigenvalues of Â also with the relative accuracy of 10−1 or 10−2 (solid curve).

Finally, let us test numerically, how well the quantity ξ
1/2
k approximates ‖xk‖ in

the unpreconditioned case, and ‖xk‖M in the preconditioned case. Recall that ξk is

defined by (33) and, in the experiments, we compute it cheaply using the formulas

(34)–(35).

In Fig. 7 we consider the unpreconditioned systems bcsstk01 and Pb26. By the

dashed curve we plot the relative error of the approximation

∣∣∣∣
‖xk‖− ξk

‖xk‖

∣∣∣∣ (dashed).



26 Gérard Meurant, Petr Tichý
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Fig. 8 Approximating ‖xk‖M using ξk when solving the preconditioned systems Pres Poisson (left part)

and s3dkt3m2 (right part).

In the left part (system bcsstk01), the above mentioned relative error is close or

below the level of 10−10, despite the severe loss of orthogonality. In other words, ξk

agrees with the approximated quantity ‖xk‖ to about 10 valid digits. For comparison

we also plot with a solid curve the relative error of ‖xk‖ as an approximation of ‖x‖,

and by dots the relative error of ξk as an approximation of ‖x‖,
∣∣∣∣
‖x‖−‖xk‖

‖x‖

∣∣∣∣ (solid),

∣∣∣∣
‖x‖− ξk

‖x‖

∣∣∣∣ (dots).

We can observe that the solid curve coincides visually with the dots until the level of

10−10 is reached. Below this level, the two curves can differ, but they are still close

to each other. In the right part of the figure (system Pb26), the relative accuracy of ξk

as an approximation of ‖xk‖ is even better, close to machine precision.

In Fig. 8 we consider systems Pres Poisson and s3dkt3m2 solved with precon-

ditioning. Here ξk is computed using the formulas (34)–(35) from the PCG coeffi-

cients γ̂k and δ̂k, and it approximates ‖xk‖M. Similarly as for the unpreconditioned

systems, we can observe that ξk approximates ‖xk‖M very accurately. In the consid-

ered examples, the relative errors are close to the level of machine precision.

8.2 Approximating convergence characteristics

The cheap approximations to the smallest and largest Ritz values, and to the norms

of approximate solutions can be used to approximate various characteristics which

provide some information about the convergence. In particular, in this section we

concentrate on approximating the normwise backward error and the Gauss-Radau

upper bound, for the preconditioned systems Pres Poisson and s3dkt3m2.

In Section 7 we discussed approximation of the normwise backward error. In

Fig. 9 we plot the backward error (31) (solid curve) which corresponds to the orig-

inal system, and the backward error (38) (dash-dotted curve) which corresponds to

the preconditioned system. As mentioned in Section 7.2, using the cheap techniques

we can approximate the norm of the preconditioned matrix Â, and the M-norm of

the approximate solution ‖xk‖M. Therefore, we can only efficiently approximate the
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Fig. 9 Approximating the backward error for the preconditioned systems Pres Poisson (left part) and

s3dkt3m2 (right part).

0 50 100 150 200 250

10 -10

10 -5

10 0

0 1000 2000 3000
10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

Fig. 10 Approximating the Gauss-Radau upper bound for the preconditioned systems Pres Poisson (left

part) and s3dkt3m2 (right part).

backward error (38). The dots in Fig. 9 correspond to the approximations of the back-

ward error (38), where ‖Â‖ was approximated using the incremental technique (Algo-

rithm 4) and ‖xk‖M was computed using the formulas (34)–(35). For both systems we

can observe that the backward error (38) visually coincides with its approximation.

The Gauss-Radau upper bound can be approximated using the approximate bound

(30) which does not require any a priori information about the smallest eigenvalue;

see Section 6. In Fig. 10 we plot the A-norm of the error (dotted curve) and the Gauss-

Radau upper bounds u
(µ)

k (dashed curves), where the values of µ closely approximate

the smallest eigenvalue of the preconditioned matrix Â from below. Similarly as in

Section 4, we choose µ to be equal to

λmin(Â)

(1+ 10−m)
, for m = 1,4,8,12.

The approximate upper bound (30) using µk is plotted as a solid curve. As expected,

the quantity (30) underestimates the A-norm of the error in the initial stage of con-

vergence, since the smallest Ritz value is a poor approximation to the smallest eigen-

value. However, as soon as the smallest Ritz value approximates the smallest eigen-

value, the quantity (30) bounds the A-norm of the error from above. Moreover, in



28 Gérard Meurant, Petr Tichý
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Fig. 11 Approximating the A-norm of the error using Gauss-Radau upper bound, approximate upper

bound, and the Gauss lower bound for the preconditioned systems Pres Poisson (left part, d = 10)

and s3dkt3m2 (right part, d = 40).

the final stage of convergence, the quantity (30) is as good as the Gauss-Radau up-

per bounds even if µ approximates λmin(Â) tightly. As in the numerical example

presented in Section 4, we can observe that the Gauss-Radau upper bounds are very

sensitive to the accuracy to which µ approximates λmin(Â). Nevertheless, below some

level, all the values of µ give visually the same upper bound, which is not very close

to the A-norm of the error. This phenomenon appeared almost in all experiments we

performed and we believe it deserves further investigation.

In the last numerical experiment (Fig. 11) we choose the delay d = 10 for the

preconditioned system Pres Poisson and d = 40 for s3dkt3m2. We approximate

the A-norm of the error (dotted curve) using the Gauss-Radau upper bound (10)

(dashed curve) for a value of µ which closely approximates λmin(Â) from below,

µ = λmin(Â)/(1+ 10−12), simulating the situation when we know λmin(Â) in ad-

vance from the application. If there is no a priori information about λmin(Â), one can

use the approximate upper bound (15) (solid curve) with µk+d . For comparison we

also plot the Gauss lower bound based on (9) (dash-dotted curve).

In the left part of Fig. 11 we can observe that d = 10 significantly improves all

the bounds. The approximate upper bound (solid) is slightly overestimating the A-

norm of the error ‖x− xk‖A in the initial stage of convergence. When convergence

accelerates (around iteration 200), all the bounds approximate ‖x− xk‖A tightly. In

Fig. 10 (left part) we have observed that the curves describing upper bounds are

about 10 iterations delayed in the later stage of convergence. This is the reason why

the choice of d = 10 is sufficient to get good approximations to ‖x− xk‖A.

In the right part of Fig. 11 we consider the more complicated problem with the

system s3dkt3m2. Here the choice of d = 40 does not improve the bounds too much

in the initial stagnation phase. The Gauss lower bound (dash-dotted) as well as the ap-

proximate upper bound (solid) underestimate ‖x−xk‖A significantly. The only useful

bound in this phase of convergence is the Gauss-Radau upper bound (dashed) with

a prescribed value of µ . When the A-norm of the error starts to decrease (around

iteration 2300), the Gauss lower bound with d = 40 starts to be visually the same

as ‖x− xk‖A, until the ultimate level of accuracy is reached. This is not the case
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for the approximate upper bound (solid), which is significantly delayed. However, in

comparison to Fig. 10 (right part), the approximate upper bound is moved about 40

iterations towards ‖x− xk‖A. The Gauss-Radau upper bound (dashed) approximates

at first ‖x− xk‖A tightly, but, below a certain level, it starts to give the same results

as the approximate upper bound, i.e., the curve is delayed. This experiment demon-

strates the potential weakness of upper bounds in the final stage of convergence, and

also shows a need for an adaptive choice of d.

9 Conclusions

In this paper we derived a new upper bound for the A-norm of the error in CG. The

new bound is closely related to the Gauss-Radau upper bound. While the Gauss-

Radau upper bound can be very sensitive to the choice of the parameter µ which

should closely approximate the smallest eigenvalue of the (preconditioned) system

matrix from below, the new bound is not sensitive to the choice of µ . One can use it

even if µ is larger than the smallest eigenvalue, as an approximate upper bound, so

that µ can be chosen as an approximation to the smallest Ritz value.

We next developed a very cheap algorithm for approximating the smallest and

largest Ritz values during the CG computations. These approximations can further

be improved using inverse iterations, at the cost of storing the CG coefficients and

solving a linear system with a tridiagonal matrix at each CG iteration. The cheap ap-

proximations to the smallest and largest Ritz values can be useful in general, e.g., to

approximate almost for free the condition number of the system matrix, or to estimate

the ultimate level of accuracy. In this paper, we used them to approximate the param-

eter µ for the new upper bound on the A-norm of the error, and also to approximate

the 2-norm of the system matrix when computing the normwise backward error.

Numerical experiments predict that the approximate upper bound for the A-norm

of the error which uses the cheap technique to approximate the smallest Ritz value is

in the later stage of convergence usually as good as the Gauss-Radau upper bound for

which µ has to be prescribed. We also observed that even if the smallest eigenvalue

is known in advance, the Gauss-Radau upper bound looses its sharpness as the A-

norm of the error decreases, and, below some level, it is the same as the approximate

upper bound. This phenomenon is caused by the underlying finite precision Lanczos

process, and it deserves additional investigation.

As further demonstrated, the quality of the lower and upper bounds can be im-

proved using the delay parameter d. This technique is very promising for practical

estimation of the A-norm of the error in CG. However, constant value of d is usually

not sufficient in the initial stage of convergence, and it requires too many extra steps

of CG in the convergence phase. Hence, there is a need for developing a heuristic

technique to choose d adaptively, to reflect the required accuracy of the estimate. We

believe that results of this paper can be useful in developing such a technique. The

adaptive choice of d remains a subject of our further work.
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17. Gutknecht, M.H., Rozložnik, M.: Residual smoothing techniques: do they improve the limiting accu-

racy of iterative solvers? BIT 41(1), 86–114 (2001)

18. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Research

Nat. Bur. Standards 49, 409–436 (1952)

19. Higham, N.J.: Accuracy and stability of numerical algorithms. Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, PA (1996)

20. Kouhia, R.: Description of the CYLSHELL set. Laboratory of Structural Mechanics, Finland (1998)

21. Meurant, G.: The computation of bounds for the norm of the error in the conjugate gradient algorithm.

Numer. Algo. 16(1), 77–87 (1998)

22. Meurant, G.: The Lanczos and conjugate gradient algorithms, from theory to finite precision compu-

tations, Software, Environments, and Tools, vol. 19. Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA (2006)
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