
Noname manuscript No.
(will be inserted by the editor)

Simple digital quantum algorithm for symmetric first order linear
hyperbolic systems

F. Fillion-Gourdeau · E. Lorin

the date of receipt and acceptance should be inserted later

Abstract This paper is devoted to the derivation of a digital quantum algorithm for the Cauchy problem
for symmetric first order linear hyperbolic systems, thanks to the reservoir technique. The reservoir
technique is a method designed to avoid artificial diffusion generated by first order finite volume methods
approximating hyperbolic systems of conservation laws. For some class of hyperbolic systems, namely
those with constant matrices in several dimensions, we show that the combination of i) the reservoir
method and ii) the alternate direction iteration operator splitting approximation, allows for the derivation
of algorithms only based on simple unitary transformations, thus perfectly suitable for an implementation
on a quantum computer. The same approach can also be adapted to scalar one-dimensional systems with
non-constant velocity by combining with a non-uniform mesh. The asymptotic computational complexity
for the time evolution is determined and it is demonstrated that the quantum algorithm is more efficient
than the classical version. However, in the quantum case, the solution is encoded in probability amplitudes
of the quantum register. As a consequence, as with other similar quantum algorithms, a post-processing
mechanism has to be used to obtain general properties of the solution because a direct reading cannot
be performed as efficiently as the time evolution.

Keywords First order hyperbolic systems, quantum algorithms, quantum information theory, reservoir
method.

1 Introduction

Quantum computing is a new paradigm in information science which benefits from quantum mechanics
to perform some computational tasks. In the last few decades, it has attracted a lot of attention because
it promises efficient solutions to a large class of problems deemed unsolvable on classical computers.
Shor’s algorithm, for the prime number factorization of integers, is the foremost example of the strength
of quantum computing [52]. This algorithm runs in polynomial time, i.e. the computation time scales
like a polynomial function of the input size, while the same task runs in (sub-)exponential time on a
classical computer. This quantum speedup has motivated the development of many other algorithms for
the solution of problems in the BQP complexity class but outside the P class, i.e. problems with bounded
error for which the amount of quantum resources is a polynomial function and having an exponential
speedup over classical computations [47,56].

One of the promising applications of quantum computing is the simulation of quantum systems.
Inspired from Feynman’s quantum simulator [24], it has been demonstrated that universal quantum

F. Fillion-Gourdeau
Université du Québec, INRS-Énergie, Matériaux et Télécommunications, Varennes, Canada, J3X 1S2
Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
E-mail: francois.fillion@emt.inrs.ca

E. Lorin
Centre de Recherches Mathématiques, Université de Montréal, Montréal, Canada, H3T 1J4.
School of Mathematics and Statistics, Carleton University, Ottawa, Canada, K1S 5B6.
E-mail: elorin@math.carleton.ca

ar
X

iv
:1

70
5.

09
36

1v
2

 [
qu

an
t-

ph
]

 6
 A

pr
 2

01
8

computers [22] can simulate efficiently the dynamics of any local quantum Hamiltonian with a number of
quantum operations scaling polynomially with the system size [43]. Following these seminal results, other
algorithms have been developed for other types of quantum physical systems. Some examples include
algorithms for the simulation of non-relativistic single-particle quantum mechanics [64,65,12], relativistic
mechanics [27], many-body physics [17,64,65,61,55], quantum field theory [35], quantum chemistry [37,
63,36,8] and many others [18,28].

Generally the simulation of quantum systems on a quantum computer is based on two main ingre-
dients: (i) the encoding of the quantum state on the quantum register, and (ii) the existence of a set
of operations that modify a quantum register according to the dynamics of the physical system under
study. When both are available, it is possible to use the quantum computer to emulate another quantum
physical system.

In contrast to analogue quantum simulators [28], based on a direct analogy between two Hamiltonians
and thus restricted to a certain category of systems, the digital quantum computers (DQC) considered in
this article are built from a set of entangled two-level quantum systems, the qubits, forming the quantum
register. Similar to bits in classical computing, qubits are discrete entities calling for the discretization of
the physical system under consideration. However, due to their inherent quantum nature allowing them to
be in a superposition of states, the quantum register is characterized byN = 2n ∈ N∗ complex coefficients,
where n is the number of qubits. Then, a possible strategy consists in mapping the coefficients of the
physical system wave function expressed in some suitable basis into the probability amplitudes of the
quantum register, as in the aforementioned algorithms. This process is called amplitude encoding. Thus,
DQC allows for the simulation of quantum systems in their discretized form, analogously to classical
computers.

Furthermore, the dynamics of the quantum computer and the simulated system proceed by unitary
operations. In a quantum computer, the state of the quantum register is modified by simple unitary
operations: the quantum logic gates [47]. In turn, a quantum system evolves according to unitary op-
erations given by the evolution operator, according to the laws of quantum mechanics. A mapping of
the evolution operator onto quantum gates can be implemented via a unitary decomposition, often per-
formed using Trotter(splitting)-like approximations [60]. However, these mappings are not unique, each
one corresponding to a different numerical method: the encoding is determined by the basis choice while
the chosen unitary decomposition sets the numerical scheme used to evolve the system in time.

Using these two mappings, i.e. the wave function on the quantum register and the evolution operator
on quantum gates, it is possible to simulate quantum systems. Moreover, for many cases of interest, these
simulations are more efficient than their classical counterparts, in the sense that computing resources are
scaling polynomially with the size of the system.

For classical systems, such as fluids, plasmas and electromagnetic fields, the analogy described above
between the quantum computer and the physical system is not as explicit and may even be non-existing
as the time evolution may be non-unitary. Mathematically, this implies that in contrast to quantum
mechanics, the L2-norm is not always preserved by the dynamics, complicating the mapping on quantum
computers which are based on unitary operations. Nevertheless, it is possible to devise algorithms for
the quantum simulation of some classical systems. For instance, fluid-like mechanics equations have
been considered in [45], but they required the implementation of non-unitary operations. The latter
can be implemented on a quantum computer, but the algorithm becomes nondeterministic and the
probability of success depends on the time step. For these reasons, algorithms for the simulation of
classical systems are scarce, with some notable exceptions where classical thermal state [62], classical
diffusion [44], electromagnetism [53] and the Poisson equation [19] have been considered. In addition,
there exists algorithms for the solution of ordinary differential equations, which may be relevant for many
physical applications [14].

In this article, we consider the quantum simulation of an important class of classical partial differential
equations: linear hyperbolic systems. Our approach is similar to a scheme developed for the Dirac equation
where an analogy between the split operator method and quantum walks was explicitly constructed [27].
The Dirac equation is in fact a particular hyperbolic system, where the mass and the electromagnetic
potential are local source terms. Therefore, it was expected that techniques for the quantum Dirac
equation can be adapted to more general hyperbolic systems. This was noticed in [7], where a quantum
algorithm for constant linear hyperbolic systems with rational eigenvalues have been investigated. Here,
we are proposing a quantum implementation of the reservoir numerical scheme [3,5,40,6,4], extending
the results in [7] to more general hyperbolic systems. The reservoir method was developed to avoid

2

spurious diffusion generated by low order finite volume methods, by adding a reservoir and a Courant-
Friedrichs-Lewy (CFL [57]) counter at the interface between discretization volumes. This numerical
scheme is then particularly well-suited for a quantum implementation because in some cases, it reduces
to simple streaming steps which preserve the L2-norm and also, can be implemented efficiently on a
quantum computer. Notice that the assumption that matrices in the hyperbolic system are symmetric
is not indispensable in the reservoir method, but is required in order to have unitary operations. At the
same time, it guarantees that the system of equations is hyperbolic.

The main result of this paper, stated precisely in Propositions 51 and 52, is that by combining these
ideas and assuming that the quantum register can be initialized in O(polylog N) operations, it is possible
to solve a symmetric hyperbolic system on a DQC with a quantum speedup

S = O

(
m2

log2m

Nd

log2N

)
,

for a large number of grid points N , where d is the number of dimensions and m is the number of
characteristic fields. This corresponds to an exponential speedup, i.e. the number of operations in the
quantum algorithm increases logarithmically with the number of grid points while it increases linearly
in the classical implementation of the same algorithm. This is clearly an interesting advantage of the
quantum approach, although there is an important caveat: as the solution is encoded into probability
amplitudes, the measurement/reading of the solution on the DQC requires O(N) repetitions of the
algorithm, potentially eliminating the exponential speedup. This is a typical problem in the field of
quantum simulations (see [14] for instance) which is usually solved partially by post-processing the
solution to obtain some observables or some general properties of the solution. To preserve the exponential
speedup, one requires that this post-processing is performed using O(polylog N) operations, which is
not possible if one wants the whole solution. Of course, this is an important but standard limitation of
the quantum approach.

Although the problem under consideration, with constant symmetric matrices, seems relatively simple
from a mathematical point of view, there still exist some complex open problems in physics involving this
type of systems. For instance, the advection equation for transport problem, linear acoustic equations
for sound waves, Maxwell’s equations in electrodynamics, linear elasticity equation and the wave equa-
tion are some examples of homogeneous symmetric hyperbolic systems with considerable importance in
physics. As mentioned above, the Dirac equation is a first order hyperbolic system with constant coef-
ficients. In quantum electrodynamics, it is well known that accurate computations of electron-positron
pair production from Schwinger’s effect [26] requires the solution to a given Dirac equation with many
initial conditions, which is not tractable on classical computers. Such calculations require fundamental
breakthrough from the computing point of view, which could be provided by efficient quantum algo-
rithms. In addition, our work can be considered as a first step towards the development of quantum
algorithms for more general hyperbolic equations. We give possible directions to generalize our approach
at the end of this article.

This article is organized as follows. In Section 2, we first give some basic notions on quantum com-
puting. In Section 3, we review the reservoir method for linear systems. We then show in Section 4,
how to derive a quantum algorithm for the reservoir method for one-dimensional first order hyperbolic
systems and then, for multidimensional first order systems. The computational complexity and quantum
speedup are discussed in Section 5. In Section 6, we propose some possible avenues to extend the ideas
presented in this paper, first to scalar first order hyperbolic equations with non-constant velocity, then
using quantum algorithms based on the method of lines. We conclude in Section 7.

2 Survival kit on quantum computing

In this section, we recall some basic definitions in quantum computing, and quantum simulation theory
for readers without or with a very limited knowledge of these fields. The objective is to present the
mathematical objects and tools which are necessary to construct or understand a quantum algorithm.
The reader who already has some advanced knowledge in quantum computing can skip this section. More
information on this topic can be found in Ref. [47].

First, we recall that the qubit in QC is the analogue of the bit on digital computers, that is the basic
unit of information. More specifically, a qubit is a quantum mechanical two-level system. In principle, it

3

can be realized by any quantum physical systems having two degrees of freedom, such as single photon
polarization, electron spin, superconducting qubits, and many others. In practice, some physical systems
are more suitable for quantum computing because they can be controlled more easily and have a larger
decoherence time owing to a weaker interaction with the environment.

The state for all two-level systems is described quantum mechanically by a unit vector, denoted here by
|u〉, defined in a two-dimensional Hilbert space H. It can then be written in the form : |u〉 = α0|0〉+α1|1〉,
where |0〉, |1〉 denote the computational basis vectors of H and α0, α1 are complex numbers representing
the quantum amplitudes normalized as |α0|2 + |α1|2 = 1.

A quantum register is a set of ` two-level entangled systems. In this case, the quantum state of the total
system |u`〉, according to quantum mechanics principles, is a vector in the Hilbert space H` = ⊗`n=1H,
the tensor product of ` two-dimensional spaces. Then, any |u`〉 ∈ H` reads

|u`〉 =

1∑
s1=0

· · ·
1∑

s`=0

αs1···s` ⊗`i=1 |si〉, (1)

where αs1···s` (for all s1 · · · s`) are complex numbers representing the coefficients or amplitudes of the
quantum state, and {|si〉}16i6` are the ` qubit basis functions of the ` two-dimensional spaces {Hi}16i6`.
We note that |u`〉 is a unit vector (〈u`|u`〉 = 1), implying that the amplitudes should be normalized as

1∑
s1=0

· · ·
1∑

s`=0

|αs1···s` |2 = 1.

This normalization is introduced to have a probability interpretation of the quantum state.
Here, it is important to note that although we only have ` qubits, the number of amplitude coeffi-

cients is 2` owing to the tensorial structure of the vector space. Information can be stored into these
coefficients. However, reading all of them is challenging because it requires O(2`) measurements. This
occurs because each amplitude αs1···s` is related to the probability of finding the system in some state
⊗`i=1|si〉 as Ps1···s` = |αs1···s` |2. Then, according to the measurement postulate in quantum mechanics,
a Von Neumann measurement on a quantum system characterized by the Hilbert space H` outputs a
classical value s1 · · · s` with probability Ps1···s` . After such measurement, the system has collapsed to the
state ⊗`i=1|si〉, i.e. any subsequent measurement will obtain s1 · · · s` with probability 1. Then, measuring
all coefficients αs1···s` entails reconstructing the probability distribution for all possible states, a process
called quantum tomography, which usually requires O(2`) measurements.

Realizing physically a quantum register by entangling a certain number of qubits is a very challenging
experimental task. Nevertheless, this has been achieved using several physical systems such as supercon-
ducting circuits [39,10,11], trapped ions [41], nuclear magnetic resonance [46] photons [59] and cavity
quantum electrodynamics [50]. The typical size for quantum registers varies presently up to ∼ 50 qubits,
but this number is likely to increase in the future.

2.1 Quantum logic gates

Quantum logic gates are analogues to logical gates in classical computing. More precisely, the quantum
gates are operators acting on a quantum register, modifying its state according to the laws of quantum
mechanics. Thus, they must be unitary reversible operators. One of the most simple, but also important
quantum gate is the Hadamard gate. The latter acts on a single qubit and corresponds mathematically
to one rotation of π around the x-axis and another rotation of π/2 around the y-axis, so that

H =
1√
2

[
1 1
1 −1

]
.

Hence, any qubit |u〉 = α0|0〉+ α1|1〉, is transformed by H as

H|u〉 =
α0 + α1√

2
|0〉+

α0 − α1√
2
|1〉.

4

Another elementary quantum gate, is the NOT-gate which is the analogue of digital NOT-gate (or
inverter), which reads

NOT =

[
0 1
1 0

]
.

There exists an infinite number of possible 2` × 2`-dimensional unitary operations U`, each of them
corresponding to a quantum logic gate. However, it can be demonstrated that any unitary operations
applied on a quantum register with `-qubits can be approximated to a certain accuracy ε by a finite
sequence of elementary quantum gates taken from a universal set [47]. As any real quantum device used
for computation will be able to implement a certain universal set, any quantum algorithm needs to be
decomposed as a sequence of these elementary gates.

A typical example is the standard universal set formed of two single qubit gates: Hadamard and
π/8-gates (= Rπ/4), and one two-qubit gate: the controlled-NOT-gate. They are explicitly given by

Rφ =

[
1 0
0 eiφ

]
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,
along with the Hadamard gate defined previously. The controlled-gates will be important in the design
of our algorithm. They operate on at least two qubits, where one of the qubit serves as a control: if the
control qubit is in a certain state (|0〉 or |1〉), then some operation X is applied on other qubits. For
example, if X is an arbitrary gate acting on a single qubit, that is

X =

[
X00 X01

X10 X11

]
,

the corresponding C(X)-gate which acts of two qubits and which perform the operation when the first
qubit is in the state |1〉, reads

C(X) =


1 0 0 0
0 1 0 0
0 0 X00 X01

0 0 X10 X11

.
We refer again to [47] for more details about quantum gates.

One of the main challenges in quantum computation is to determine efficient decompositions of unitary
transformations in terms of elementary gates defined above. A given decomposition has an exponential
speedup when the ratio of the cost (number of operations) for the classical algorithm and the cost for
the quantum algorithm is an exponential function in the amount of resources. In a quantum algorithm,
such sequence of operations forms a quantum circuit, discussed in more details in the next section. The
purpose of this paper is to decompose a classical numerical solver for hyperbolic systems into quantum
logic gates which are applied to a quantum register.

2.2 Quantum circuits

As mentioned above, the quantum algorithm has to be written as a sequence of elementary quantum
gates. A convenient way to represent this decomposition visually is to use what is commonly called a
quantum circuit or quantum diagram. These circuits allow for a visual representation of operations on
`−qubits, where ` is called the width of circuit. The most simple quantum circuit is depicted in Fig. 1(a).
The line represents the qubit under consideration |u〉, and H is the Hadamard matrix/operator. The
circuit is read from the left to the right: first, the qubit is initialized to |u〉 = |0〉 and then the Hadamard

gate is applied, yielding the qubit in the state |u〉 =
1
√

2
|0〉+

1
√

2
|1〉, at the right of the circuit.

A more complex example for 2-qubits is the one shown in Fig. 1(b), where the two qubits are initialized
to arbitrary states. The top (resp. bottom) line represents the first (resp. second) qubit. The first part

5

H|0〉
(a)

H

X X

(b)

Fig. 1 (a) Hadamard gate applied to a qubit initialized to the state |u〉 = |0〉. (b) Diagram of rotation operator in
x-direction, with qubits initialized in arbitrary states.

(a) (b)

Fig. 2 (a) Circuit diagram for the CNOT-gate. (b) Circuit diagram for the Toffoli-gate.

of the circuit represents C(X)-gate applied to the 2-qubits, then a Hadamard gate on the first qubit,
then a C(X)-gate again. The vertical lines represent the control: here, if the first qubit is in the state |1〉
(represented by a black dot), then the operation X is performed on the second qubit. A white dot in the
controlled operation can also be used when one needs the control qubit to be in the state |0〉 to perform
the operation X.

In this paper, the controlled-not(also called CNOT-gate) and controlled-controlled-not gates (also
known as Toffoli gate), are used to implement the translation operators. For 2 qubits |s1〉, |s2〉, the
controlled-not gate transforms |s1〉 7→ |s1〉 and |s2〉 7→ |s1 ⊕ s2 mod 2〉; the corresponding quantum
circuit is represented in Fig. 2(a), where the “plus dot” represents the NOT-gate. These controlled gates
can be generalized to any number of control qubits.

The Toffoli gates transform 3 qubits |s1〉, |s2〉, |s3〉 with s1, s2, s3 in {0, 1} as follows: |s1〉 7→ |s1〉,
|s2〉 7→ |s2〉 and |s3〉 7→ |s3 ⊕ (s1s2) mod 2〉 and is represented in Fig. 2(b).

To sum-up, quantum computing works in the following way. First, the qubits forming the quantum
register are initialized to a certain state, a vector in H` of dimension 2`. Then, a sequence of unitary
operations is applied to this quantum register, modifying its quantum state. The quantum circuits il-
lustrate this procedure: each horizontal line represent a qubit, vertical lines represent control and boxes
represent unitary operators. Finally, a measurement is performed where the state of the quantum system
is observed.

As discussed in the following sections, the most important operations of the classical algorithms
considered in this paper are the changes of basis and the translations by upwinding. At the quantum level,
these operations can be performed using rotation and translation operators. The latter can themselves
be decomposed as elementary quantum gates (e.g. NOT,CNOT, Hadamard, Toffoli). The scaling of the
number of fundamental quantum gates as a function of quantum resources yields the computational
complexity of the algorithm. This will be discussed in Section 5.

3 Reservoir method for symmetric linear first order hyperbolic systems

In this section, we recall the principle of the reservoir method for solving one-dimensional first order linear
hyperbolic systems with constant matrices. This method was initially proposed in [3,5,6] and studied
analytically in [40]. It basically consists of introducing flux-difference reservoirs and CFL counters in

6

order to ensure a “CFL=1” or diffusion-less behavior of the approximate solution to hyperbolic systems
of conservation laws at any time, on any characteristic field, and any location.

We start by considering the one-dimensional case because this is the main building block to treat
systems with many dimensions. Indeed, our strategy for the multi-dimensional case is the use of alternate
direction iteration, whereas the multi-dimensional problem is reduced to a sequence of one-dimensional
problems.

3.1 Reservoir method for one-dimensional linear systems

We first present some general remarks on finite volume discretization for first order hyperbolic systems
in 1-D with constant matrices and then, describe how their discretization can be improved with the
reservoir method.

Specifically, we consider the following system:{
∂tu+A∂xu = 0, (x, t) ∈ R× (0, T),
u(·, 0) = u0, x ∈ R, (2)

where u0 : R 7→ Rm is a given function in
(
L2(R)

)m
with compact support, so that u0 ∈

(
L1(R)

)m
, and

A ∈ Sm(R) has m real eigenvalues ordered as |λ1| 6 · · · 6 |λm|. The fact that u0 has compact support
allows for avoiding boundary conditions issues on finite domain and for preserving the L2-norm of the
solution. The latter can be checked using an elementary calculation: in particular, it can be shown that
∂t‖u(t)‖L2 = 0 if A is symmetric and if u(t) has compact support. As we will see later, the conservation
of the L2-norm is important to get simple quantum algorithms. We also assume that ‖u0‖L2 = 1.

We denote by {sk}k=1,··· ,m the corresponding orthonormalized right-eigenvectors, and we denote by
S=col(s1, · · · , sm) the corresponding transition matrix. To simplify the presentation, we will assume that
the eigenvalues are all non-zero. Such a system is called hyperbolic [51,54,29,30]. Notice that in the basis
of eigenvectors, the system is diagonal, and can then be rewritten as an uncoupled system{

∂tw + Λ∂xw = 0, (x, t) ∈ R× (0, T),
w(·, 0) = S−1u0, x ∈ R,

where Λ =diag(λ1, · · · , λm). The exact solution to this problem, for k = 1, · · · ,m, is given by

wk(x, t) = wk(x− λkt, 0). (3)

This solution can be obtained by the method of characteristics and corresponds to a streaming with
velocities (λk)k=1,··· ,m.

We can now look how such systems are discretized on a grid to obtain a numerical scheme. For this
purpose, we introduce a sequence of nodes {xj}j∈Z (resp. {xj±1/2}j∈Z), defined by xj = j∆x (resp.

xj±1/2 = (j ± 1/2)∆x) for a given lattice spacing ∆x > 0. We also define finite volumes
{
ωj
}
j∈Z, where

ωj = (xj−1/2, xj+1/2). We introduce a sequence of times {tn}n∈N and time steps {∆tn}n∈N ulteriorly

determined, as well as a sequence of vectors
{
Unj
}
(j,n)∈Z×N of Rm approximating u(xj , tn), for any j ∈ Z

and n ∈ N. Initially, for any j ∈ Z, the solution is projected on the mesh

U0
j =

1

∆x

∫
ωj

u0(x)dx,

corresponding to a finite volume formulation. For first order linear systems, the natural finite volume
method consists of upwinding the solution on each characteristics field. In other words, the corresponding
finite volume scheme reads

Un+1
j = Unj −

∆tn

∆x

(
Φnj+1/2 − Φ

n
j−1/2

)
, j ∈ Z, n > 0 (4)

where the interface flux is given by

Φnj−1/2 =
1

2

{
A
(
Unj + Unj−1

)
− V A

(
Unj − Unj−1

)}
,

7

with V = Sdiagk=1,··· ,m(sgn(λk))S−1 the so-called sign matrix. Thus

Un+1
j = Unj −

∆tn

2∆x
A
{(
I − V

)
(Unj+1 − Unj) +

(
I + V

)
(Unj − Unj−1)

}
. (5)

This is a straightforward generalization of the upwind scheme for transport equations. This is equivalent
in the basis of eigenvectors to solve

Wn+1
j = Wn

j −
∆tn

∆x
S−1

(
Φj+1/2 − Φj−1/2

)
,

where Wn
j = S−1Unj with Wn

j =
(
wn1;j , · · · , wnm;j

)T
, which simply becomes per characteristic field

wn+1
k;j = wnk;j −

λk∆tn

∆x
(wnk;j+1 − wnk;j), λk < 0, (6)

wn+1
k;j = wnk;j −

λk∆tn

∆x
(wnk;j − wnk;j−1), λk > 0 . (7)

This scheme is stable iff the CFL-condition

CFL =
∆tn

∆x
max

k=1,··· ,m
|λk| =

∆tn

∆x
|λm| 6 1

is satisfied. In practice, we choose CFL=1, which allows for avoiding numerical diffusion on the m’th
characteristic fields, but creating some on the other ones. However, if the eigenvalues have all the same
modulus, the scheme (4) provides the exact solution on the grid even if it is only first order accurate.
This is typically the case with the one-dimensional Dirac equation where eigenvalues are related to the
speed of light (see [25] for instance). The reservoir method [5,40,6] was precisely introduced as a tool to
avoid numerical diffusion for all characteristics fields in first order finite volume schemes for hyperbolic
systems of conservation laws.

We now turn to the principle of the reservoir method. The main two ingredients of the reservoir
techniques are i) the CFL counters and ii) the flux difference reservoirs at the finite volume inter-
faces {xj+1/2}j∈Z. Indeed, when the matrix is non-constant A(x) and the system is well-posed, the
reservoir technique requires the introduction of m time-dependent vectorial reservoirs at each inter-
face R1;j−1/2, · · · , Rm;j−1/2 ∈ Rm and initially taken null, as well as m scalar time-dependent counters
c1;j−1/2, · · · , cm;j−1/2 ∈ [0, 1) also initialized to 0. In the specific cases discussed in this paper with a
constant A matrix, the reservoirs and counters are actually interface independent, greatly simplifying the
notation/implementation of the scheme. Making this assumption allows us to consider only m reservoirs
R1, · · · , Rm ∈ Rm and m counters c1, · · · , cm. Furthermore, we denote by UkR(U,W) the solution of the
Riemann problem with left (resp. right) state U (resp. W), which lies between the k’th and k + 1st
wave, where we have set: U0

R(U,W) = U and UmR (U,W) = W . For linear systems, computing the solu-
tion of Riemann problems is almost straightforward (see [30,5] for details). Additionally, we introduce a
temporary variable:

Cn+1
k := cnk + |λk|

∆tn

∆x
.

Then, we update the solution as follows

Un+1
j = Unj +

m∑
k=1

(
Ũn+1
k;j−1/2 + Ũn+1

k;j+1/2

)
, (8)

where we have (if λk < 0)

 Ũn+1
k;j+1/2

cn+1
k

Rn+1
k

 =




0

cnk + |λk|
∆tn

∆x

Rnk −
∆tn

∆x
A
(
UkR(Unj , U

n
j+1)− Uk−1R (Unj , U

n
j+1)

)
 , when Cn+1

k < 1,

Rnk −
∆tn

∆x
A
(
UkR(Unj , U

n
j+1)− Uk−1R (Unj , U

n
j+1)

)
0
0

 , when Cn+1
k = 1

8

and if λk > 0, we have

 Ũn+1
k;j−1/2
cn+1
k

Rn+1
k

 =




0

cnk + |λk|
∆tn

∆x

Rnk −
∆tn

∆x
A
(
UkR(Unj−1, U

n
j)− Uk−1R (Unj−1, U

n
j))
)
 , when Cn+1

k < 1,

Rnk −
∆tn

∆x
A
(
UkR(Unj−1, U

n
j)− Uk−1R (Unj−1, U

n
j))
)

0
0

 , when Cn+1
k = 1 .

The time steps are finally chosen as

∆tn = min
k=1,··· ,m

[(
1− cnk

)∆x
|λk|

]
.

Although, the scheme may look complicated, it simply consists in updating the k’th components of the
solution in the basis of eigenvectors, when the corresponding local counter reaches 1 or any prescribed
value less or equal to 1.

The analysis of convergence is addressed in [40]. In particular, it was proven that the reservoir
method provides exact solutions at the discrete level for linear hyperbolic systems with constant rational
eigenvalues. This latter assumption was only technical, and the reservoir method is still applicable beyond
this condition. More specifically, it is proven that at time say T > 0, the reservoir method combined with
an order 1 finite volume method provides a L1-error ε, which is bounded by the product of the maximal
time step with the initial L1-norm error (L1-norm of the error between the exact initial data and its
projection on the finite volume mesh):

ε = ‖u(·, T)− UnT ‖L1 <
∥∥u(·, t0)− U0

∥∥
L1 + C max

k=1,··· ,nT

(∆tk),

where C > 0 is a real constant. As a consequence in one dimension, the error remains bounded for large
T ’s, unlike usual finite volume methods (including higher order ones, in general) for which the error
grows linearly in T .

A priori, it is challenging to design a quantum algorithm that implements this numerical scheme.
However, for the case considered here, where A is constant, the reservoir method can be formulated
in a very simple way, more suitable for a quantum implementation. In the diagonal basis, the upwind
scheme reads Eqs. (6) and (7). Then, at each time step, the reservoir technique consists of freezing the
components of the solution, until the corresponding CFL counter reaches 1. In practice, we proceed as
follows, assuming that we are at time tn:

– The time step is evaluated from

∆tn+1 = min
k=1,··· ,m

[(
1− cnk

)∆x
|λk|

]
.

– Then, the CFL counter reaches 1 for some set of components Kn = {k∗1 , · · · , k∗a} with k∗1 , · · · , k∗a ∈
{1, · · · ,m}, where a is the number of components that needs to be updated. We also define a set
which stores the sign of the corresponding eigenvalues, that is Qn = {σ(λk∗1), · · · , σ(λk∗a)}, where σ
is the sign function. Then, for all k ∈ Kn

wn+1
k;j = wnk;j−1, if λk > 0,

wn+1
k;j = wnk;j+1, if λk < 0.

This step corresponds to a simple translation of the solution, similar to the analytical solution given
in (3). Therefore, the reservoir method reproduces the exact solution on the grid, even if the scheme
is first order. Meanwhile, the other components are frozen, that is for any k /∈ Kn

wn+1
k;j = wnk;j .

9

– The counters are updated as follow. For k 6= k∗

cn+1
k = cnk + |λk∗ |

∆tn

∆x
, and cn+1

k∗ = 0.

– At the end of the calculation, we can use the transition matrix S to obtain the approximate solution
UnT .

The reservoir method can be simply reformulated as a list of operations. Let us denote by nT the
total number of iterations, such that

∑nT

n=1∆tn = T . Next, we denote by In,Sn the ordered sets of
indices and signs, respectively, corresponding to the characteristic fields which have been updated up
to time tn. Generally, we have In :=

(
K1, · · · ,Kn) and Sn :=

(
Q1, · · · ,Qn), and we denote the k’th

element of InT ,SnT with k 6 nT , by Ik and Sk, respectively. The only relevant information required by
the quantum algorithm for linear systems with constant coefficients, is then the sets InT and SnT . In
particular, there will be no need for explicitly creating and updating reservoirs or even CFL counters. In
practice, a classical algorithm can be run to determine the sets InT and SnT .

Basic example. We now propose as an illustration, a simple example to construct InT . We consider
A ∈ S3(R) with eigenvalues λ1 = 10−1, λ2 = 1 and λ3 = 1 + 10−1. Numerically, we take ∆x = 10−2,
T = 10−1 and nT = 23. We then find

InT = (3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 1, 3, 2, 3), (9)

while the set SnT is trivial, containing only positive signs. The first time steps are given by ∆t1 =
9.09× 10−3, ∆t2 = 9.09× 10−4, ∆t3 = 8.18× 10−3, ∆t4 = 1.82× 10−3, · · · .

For A = diag(λ1, λ2, λ3) and with a domain given by [0, 1] (with Dirichlet boundary conditions), and
an initial data u0(x) = 1 for x 6 0.1 and u0(x) = 0, for x ∈ (0.1, 1], we report the solution components
at the final time in Fig. 3, and compare to the “CFL=1”-solution. As expected, the “CFL=1”-solution
displays some spurious diffusion for components with the lowest eigenvalues (u1 and u2), seen as a
smoothing of the discontinuity. On the other hand, the component with the largest eigenvalue (u3) does
not show this effect as the CFL condition is exactly one for this particular component, in stark contrast
with u1 and u2, for which the CFL condition is lower than 1, inducing diffusion in the numerical solution.
The solution obtained from the reservoir technique is very few diffused because the CFL condition is 1
at all time and space points.

3.2 Alternate direction iteration for multi-dimensional systems

We can now generalize the ideas presented in the previous section for multi-dimensional linear symmetric
hyperbolic systems. In particular, we consider, for u = u(x, t) and x = (x1, · · · , xd), the following system

{
∂tu+

∑d
j=1A

(j)∂xju = 0, (x, t) ∈ Rd × (0, T),

u(·, 0) = u0, x ∈ Rd
(10)

where the matrices A(j) ∈ Sm(R) and such that for any n = (n(1), · · · , n(d))T ∈ Rd,
∑d
j=1A

(j)n(j) has

real eigenvalues with linearly independent eigenvectors, and u0 has compact support and L2-norm equal
to 1. Again, the L2-norm is conserved under these conditions. Then, for any 1 6 j 6 d, the eigenvalues

of A(j) are denoted |λ(j)1 | < · · · < |λ
(j)
m |. By symmetry-assumption, for any j ∈ {1, · · · , d} there exists

S(j) ∈ Un(R) such that A(j) = S(j)diag
(
λ
(j)
1 , · · · , λ(j)d

)
(S(j))T . The corresponding reservoir-method for

constant matrices and with directional splitting can be proven to be L2−stable by construction.

As mentioned earlier, it is convenient to use the alternate direction iteration method in order to
apply the 1-D reservoir method for each dimension. The alternate direction iteration method proceeds

10

0 0.5 1
0

0.2

0.4

0.6

0.8

1

U
res

(1)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

U
res

(2)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

U
res

(3)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

U
exact

(1)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

U
exact

(2)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

U
exact

(3)

λ
1
=0.1 λ

2
=1 λ

3
=1.1

λ
1
=0.1 λ

2
=1 λ

3
=1.1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

U
CFL=1

(1)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

U
CFL=1

(2)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

U
CFL=1

(3)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

U
exact

(1)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

U
exact

(2)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

U
exact

(3)

λ
1
=0.1 λ

2
=1 λ

3
=1.1

λ
1
=0.1 λ

2
=1 λ

3
=1.1

Fig. 3 Reservoir method (on the left) and upwind scheme with CFL=1 (on the right) solutions at final time T = 0.1.

as follows [42]. From time tn to tn+1, and assuming u(·, tn) known, we successively solve

{
∂tu

(1) +A(1)∂x1
u(1) = 0, (x, t) ∈ Rd× ∈ (tn, tn1

),
u(1)(·, tn) = u(·, tn), x ∈ Rd{
∂tu

(2) +A(2)∂x2
u(2) = 0, (x, t) ∈ Rd× ∈ (tn1

, tn2
),

u(2)(·, tn) = u(1)(·, tn1
), x ∈ Rd

· · ·

· · ·{
∂tu

(d) +A(d)∂xd
u(d) = 0, (x, t) ∈ Rd× ∈ (tnd−1

, tn+1),
u(d)(·, tn) = u(d−1)(·, tnd−1

), x ∈ Rd

(11)

Finally, we define the approximate solution at time tn+1 by u(·, tn+1) = u(d)(·, tn+1). This corresponds
to a first order splitting scheme and therefore, has an error that scales like O(∆t2n). We note here that
just like in the 1-D case, the set of all (∆tn)n=1,··· ,nT

is still to be determined.
We can now discretize the solution on a space grid using finite volumes to obtain the full numer-

ical scheme. This process is very similar to the 1-D case. For this purpose, we introduce, for each
dimension i = 1, · · · , d, a sequence of nodes {xi;j}j∈Z (resp. {xi;j±1/2}j∈Z), defined by xi;j = j∆x
(resp. xi;j±1/2 = (j ± 1/2)∆x) for a given ∆x > 0. Then, we can define d-dimensional cubic cells as

ωj1,··· ,jd = ⊗di=1ωi;ji where ωi;j = (xi;j−1/2, xi;j+1/2). The discretization then proceeds as follows. Let us

introduce a sequence of vectors
{
Unj1,··· ,jd

}
(j1,··· ,jd,n)∈Zd×N in Rm, approximating the mean of u(x, tn)

11

over ωi;k for any (j1, · · · , jd) ∈ Zd, n ∈ N. The initial data is set to

U0
j1,··· ,jd =

1

(∆x)d

∫
ωj1,··· ,jd

u0(x)dx1 · · · dxd .

Then, the update of the solution parallels the 1-D case. This is possible because the splitting has trans-
formed the multi-dimensional system to a sequence of 1-D systems, using alternate direction iteration.
Therefore, we can introduce reservoirs and CFL counters at the interface between the finite volumes to
implement the reservoir method. However, it was demonstrated in Section 3.1 that for constant matrices
A(j), the reservoir are interface dependent, allowing for the introduction of d×m reservoirs {Ri;k} and
d × m counters {ci;k}, for i ∈ {1, · · · , d} and k ∈ {1, · · · ,m}. However, the method amounts to the
generation of a list of updated components where the reservoirs and CFL counters can be disregarded.
This can be carried to the multi-dimensional case, except for one new ingredient: before each update, the
system has to be diagonalized thanks to unitary operators {Si}16i6d ∈ Um(R), where i is the direction of
the streaming. Setting w(i) = S(i)Tu(i) for any i ∈ {1, · · · , d}, the equations in Eq. (11) are transformed
to uncoupled systems of transport equations in directions xi for 1 6 i 6 d, of the form

∂tw
(i) + Λ(i)∂xiw

(i) = 0,

which can be solved as in the 1-D case. In particular, it is necessary to create the lists InT and SnT ,
similar to the ones defined in Section 3.1, which allows for sorting the translation operators. The numerical

scheme at time tn reads as follows with Unj1,··· ,jd =
(
u1;j1 , · · · , unm;j

)T
and Wn

j1,··· ,jd =
(
w1;j1 , · · · , wnm;j

)T
.

– The time step is evaluated from

∆tn+1 = min
k=1,··· ,m

min
i=1,··· ,d

[(
1− cni;k

) ∆x
|λ(i)k |

]
.

– Then, the CFL counter reaches 1 for some set of pairs Kn = {(k∗1 , i∗1), · · · , (k∗a, i∗a)} with components
k∗1 , · · · , k∗a ∈ {1, · · · ,m} and dimensions i∗1, · · · , i∗a ∈ {1, · · · , d}, where a is the number of components
to be updated. We also define Qn as in the one-dimensional case. Then for all pairs (k, i) ∈ Kn, the
solution update proceeds in three steps:

1. We transform to the diagonal basis using Wn
j1,··· ,jd = (S(i))TUnj1,··· ,jd .

2. We evaluate the streaming step as

wn+1
k;j1,··· ,ji,···jd = wnk;j1,··· ,ji−1,ji−1,ji+1,···jd , if λ

(i)
k > 0,

wn+1
k;j1,··· ,ji,···jd = wnk;j1,··· ,ji−1,ji+1,ji+1,···jd , if λ

(i)
k < 0.

Meanwhile, the other components are frozen, that is for any pairs for which k′ 6= k, we have

wn+1
k′;j1,··· ,jd = wnk′;j1,··· ,jd .

3. We transform back to the canonical basis using Unj1,··· ,jd = S(i)Wn
j1,··· ,jd .

– Finally, the CFL counters are updated as follows. For k′ 6= k with any i ∈ {1, · · · , d}, and for k = k′

with i′ 6= i

cn+1
i′;k′ = cni′;k′ + |λ(i)k |

∆tn

∆x
, and cn+1

i;k = 0 .

The list In is now a set of pairs of indices, corresponding to the characteristic fields and dimension
which have been updated. It is given by In =

(
K1, · · · ,Kn

)
. We also have the list Sn which stores the

sign of the eigenvalues. With these two lists, it is possible to evolve the solution in time and this is
equivalent to the reservoir method combined with alternate direction iteration.
Basic example. We illustrate this approach with a two-dimensional test (another example can be found
in Appendix A, for a diagonal system):{

∂tu+A(x)∂xu+A(y)∂yu = 0, (x, y, t) ∈ [0, L]2 × (0, T),
u(x, y, 0) = u0, (x, y) ∈ [0, L]2

12

The matrices are defined as A(x) = S(x)Λ(x)S(x)T , and A(y) = S(y)Λ(y)S(y)T with λ
(1)
1 = 1, λ

(1)
2 = 2 and

λ
(2)
1 = 1, λ

(2)
2 = 4 and with unitary transition matrices defined by

S(x) =
1
√

2

(
1 −1
1 1

)
, S(y) =

1
√

5

(
2 −1
−1 2

)
.

Notice that in this case, the matrices A(x) and A(y) do not commute, but A(x)A(y) −
(
A(y)A(x)

)T
= 0

and [S(x), S(y)] = 0.
The computational domain is [0, L = 10]2 and T = 1,m = 2, d = 2,∆x1 = ∆x2 = 0.1. The initial data

is u0,1(x1, x2) = exp
(
−4
(
(x1−5/2)2+(x2−5/2)2

))
, u0,2(x1, x2) = exp

(
−4
(
(x1−5/2)2+(x2−5/2)2

))
.

The reservoir solution components (first and second components at time T = 1) are represented in Fig.
4, showing no numerical diffusion, unlike the “CFL=1”-solutions also reported in Fig. 4.

(a) (b)

(c) (d)

Fig. 4 first (bottom-left corner) and second component solution at time T = 1. (Left column) CFL=1 solution. (Right
column) Reservoir method.

4 Quantum algorithm for linear first order hyperbolic systems

In this section, a quantum algorithm, i.e. an algorithm which can be implemented on a quantum com-
puter, is developed for solving linear symmetric first order hyperbolic systems. The algorithm will be

13

formulated as a quantum circuit which is equivalent to the reservoir method described in the previous
section.

4.1 Amplitude encoding of the solution

To develop a quantum algorithm and to benefit of the quantum nature of the computation, the first step
is the encoding of the solution into the quantum register. Here, we use the same notations as in Ref.
[27], and we map Unj1,··· ,jd into the probability amplitudes. First, we assume that the quantum register

is made of ` = p+
∑d
i=1 ni qubits. Therefore, its state is given by Eq. (1). However, for our purpose, it

is more convenient to split the Hilbert space of the register in different parts as H` = Hp ⊗di=1Hnxi
and

to relabel the states such that

|u`〉 =

m∑
k=1

Nx1∑
j1=1

· · ·
Nxd∑
jd=1

αk,j1,··· ,jd |k〉 ⊗ |j1, · · · , jd〉,

where m = 2p and Ni = 2ni and where the relabeling is performed as (k − 1)10 = (s1 · · · sp)2 and
(ji − 1)10 = (sp+

∑i−1
l=1 nl+1 · · · sp+∑i

l=1 nl
)2 := (si,1 · · · si,nx

)2. This means that the first p qubits label the

m = 2p components of the solution, while the other ñ :=
∑d
i=1 ni qubits serves to label the coordinate

space positions. Because this is a tensor product, there are N :=
∏d
i=1Nxi

= 2ñ available amplitudes to
store lattice coordinates.

Once the states of the quantum register are properly relabeled, the mapping of the solution using
amplitude encoding is straightforward:

unk;j1,··· ,jd 7→ αk,j1,··· ,jd ,

for a given time n. In other words, the coefficients of the discretized solution are mapped into the
probability amplitudes of the quantum register.

4.2 Updating the solution in the quantum algorithm

For the updating of the solution in the quantum algorithm, we are seeking a sequence of unitary trans-
formations that are equivalent to the reservoir method described in the last section. Precisely, we are
looking for a unitary transformation V̂ , such that, for all k, j1, · · · , jd

unk;j1,··· ,jd 7→ αk,j1,··· ,jd
V̂ |u`〉−−−→ α′k,j1,··· ,jd 7→ un+1

k;j1,··· ,jd ,

where un+1
k;j1,··· ,jd is the same as the one obtained by the reservoir method. We will discuss the complexity

of these mappings in the next section. Notice that here and in the following, we denote unitary operations
on the quantum register with the “hat” notation (V̂).

We saw in Section 3.2 that the reservoir method, for constant matrices, amounts to a sequence of
three operations: transformation to the diagonal basis, streaming and transformation to the canonical
basis. The components and dimension which are subjected to these transformations are given by the
list InT while the streaming direction is in SnT . We would like to perform the same operations on the
quantum register and therefore, we need to construct two types of operator: translation operators and
rotation operators.

4.2.1 Translation operators

The translation operators perform the streaming operations on the quantum register. Therefore, they
are defined, for any (k, l) in InT , by

T̂
[
(k, l)

]
|k〉 ⊗ |i1, · · · , id〉 = |k〉 ⊗ |i1, · · · , il−1, il 	 1 mod(Nl + 1), il+1, · · · id〉, if λ

(l)
k > 0,

T̂
[
(k, l)

]
|k〉 ⊗ |i1, · · · , id〉 = |k〉 ⊗ |i1, · · · , il−1, il ⊕ 1 mod(Nl + 1), il+1, · · · id〉, if λ

(l)
k < 0.

14

In

T [Sn]

|s1〉

...
· · · · · ·

|sp〉

|s1,1〉

...
· · · · · ·

|s1,n1〉

...
· · · · · ·

|sl,1〉

...
· · · · · ·

|sl,nl〉

...
· · · · · ·

|sd,1〉

...
· · · · · ·

|sd,nd〉

(a)

=In

(k)2

=

|s1〉 0

|s2〉 1

|s3〉 1

|s4〉 0

...
...

|sp〉 0

(b)

Fig. 5 (a) Circuit diagram for the implementation of the translation operator at time tn, for the element in the list
In = (k, l). The box T [Sn] is the shift operator on the nl-qubits (its decomposition is depicted in Fig. 6) and the box
In is a control on the first p-qubits (its explicit circuit is depicted in (b)). (b) Explicit implementation of the controlled
operations, where the control is set by the component value k in the pair In, expressed as a binary string.

and when k 6= k′

T̂
[
(k, l)

]
|k′〉 ⊗ |i1, · · · , id〉 = |k′〉 ⊗ |i1, · · · , id〉.

This is a unitary operation which can be represented by a quantum circuit that includes a shift operator
T̂ [±] controlled by some qubits. In particular, to translate a specific component k, the shift operator has
to be controlled by the first quantum register Hp. The quantum operation is a fully controlled gate on
this register and the explicit controls are determined by the value k expressed as a binary string with p
digits. In particular, we have (k)107→2 = (s1, · · · , sp)2. If the value of the digit si = 0, the control is on
state |si〉 = |0〉 (white dot). Conversely, if the value of the digit si = 1, the control is on state |si〉 = |1〉
(black dot). These controlled operations allow for selecting and translating the proper component. Then,

the sign of Sn determines which shift operator T̂ [±] is used. The corresponding circuit is displayed in
Fig. 5.

In practice, the computations are performed on finite domains. As u0 has compact support, for finite
time, the support of the solution to the considered system also has compact support. As a consequence,
the boundary conditions imposed have no influence on the solution assuming the domain is large enough
such that the solution is not scattered on the boundary. Here, we use periodic boundary conditions,
which can easily be implemented within the quantum algorithms developed above, thus explaining the
appearance of the mod(Nl + 1).

The shift operators T̂ [±] can be decomposed as a sequence of simpler unitary operations. One possible
decomposition is displayed in Fig. 6 where controlled operations are used. The left (resp. right) quantum
circuit corresponds to a shift from the left (resp. right) to the right (resp. left). This decomposition was
first studied in [23] and used for the solution of the Dirac equation in [27]. It has a complexity which
scales like O(n2l).

4.2.2 Rotation operators

A unitary operation (diagonalization) is applied to transform the system from the canonical basis of
eigenvectors of A(l) to the diagonal basis before and after any increment or decrement operator. In
the classical algorithm, these unitary operations were denoted by {S(l)}l∈{1,··· ,d}. We are now looking

for the corresponding operators {Ŝ[l]}l∈{1,··· ,d} which implement the same operations on the quantum
register. Because the transition operators are unitary operations that rotates the characteristic fields,

15

T [+]

· · · ...

=

σx

(a)

T [−]

· · · ...

=

σx

(b)

Fig. 6 Circuit diagram for the (a) increment and (b) decrement operator acting on qubits storing the space data of the
solution (the set of nx qubits). This implementation was first considered in [23].

the quantum operations are simply unitaries applied in the Hilbert space Hp, as (Ŝ[l]T |k〉)⊗ |i1, · · · , id〉.
Because of the tensor product, this operation is automatically carried over all grid points, i.e. at every
grid points, the fields are transformed to the diagonal basis. The explicit value of the rotation operators in
the computational basis is the same as the classical {S(l)}l∈{1,··· ,d} and thus, they should be determined

from the eigenvectors of {A(l)}l∈{1,··· ,d}.
The next fundamental issue is the decomposition of unitary operators {Ŝ[l]}l∈{1,··· ,d} in terms of

quantum elementary gates. This question can be treated using existing techniques:m×m unitary matrices
can be performed/simulated exactly using explicit quantum circuits with a quadratic complexity O(m2)
using a Gray code approach [58]. In this paper and for the sake of simplicity, we will present only examples
where the unitary transition matrices are relatively simple, but existing decomposition techniques for
more complex matrices can perfectly be coupled to the method presented. A simple example for a rotation
operator is given in Appendix B.

4.2.3 Full quantum algorithm

The quantum circuit corresponding to the full quantum algorithm for one time step is displayed in Fig.
7. The first p qubits (from top) label the components of the solution, and the next qubits label the

coordinate space positions in each of the d dimensions. For In = (k, l), i) we apply a rotation Ŝ[l]T

(change of basis, to diagonalize A(l)) to the system, followed ii) by a translation operator T̂ [±k] of the

kth component of the solution (upwinding), and finally iii) we apply Ŝ[l] (back to canonical basis).

The resulting quantum algorithm is relatively simple because it does not use sophisticated quantum
techniques such as amplitude amplification, phase estimation or the quantum solution of linear systems
[34]. This is possible because hyperbolic systems with constant symmetric matrices conserve the L2-norm.
Therefore, the algorithm relies on straightforward mappings from the classical unitary operators to the
quantum operators.

5 Efficiency and resource requirements

In this section, the efficiency of the preceding algorithms is analyzed. This is performed by comparing
the number of required operations on a quantum computer and on a classical computer, for the same
numerical method, i.e. the reservoir scheme discussed in previous sections. In particular, we are interested
in the quantum speedup defined by the asymptotic behavior of [48,49]

S ∼
Nclassical(N)

Nquantum(N)
as N →∞

where N characterizes the system size, Nclassical(N) is the computational cost (or complexity) of the
classical algorithm and Nquantum(N) is the cost of the quantum algorithm. These costs are evaluated by
counting the number of operations required to evolve the solution in time.

16

S[l] In

T [Sn]

S−1[l]

|s1〉

...
· · · · · ·

|sp〉

|s1,1〉

...
· · · · · ·

|s1,n1〉

...
· · · · · ·

|sl,1〉

...
· · · · · ·

|sl,nl〉

...
· · · · · ·

|sd,1〉

...
· · · · · ·

|sd,nd〉

Fig. 7 Circuit diagram for the implementation of the algorithm for the d-dimensional linear system at time tn and where
In = (k, l). Here, S[l] is the unitary operation that implements the diagonalization of the system. The latter has to be
decomposed into a set of fundamental gates.

Proposition 51 Let us denote by N the number of grid points in each dimension, d the number of
dimensions, nT the number of iterations, and m the number of characteristic fields. Let consider a
hyperbolic system of equations with constant symmetric matrices. Then, the quantum speedup for the
numerical resolution of this system using the reservoir method is

S = O

(
m2

log2m

Nd

log2N

)
, for O

(
m2

log2m

[
1 + d

m + dm2

nT

])
= O(log2N),

corresponding to an exponential quantum speedup, when N and nT are much larger than d and m.

Proof. The number of operations can be evaluated as follows. On a classical computer, the shift op-
erations defined in Fig. 6 requires O(Nd) swap operations to translate the solution along a given axis.
Accessing the array for the component that is translated, given from the list InT , requires O(1) oper-
ations. On the other hand, the rotation operation is a matrix-vector multiplication at all grid points,
thus requiring O(m2Nd) operations. Finding the rotation operators is equivalent to solving an eigenvalue
problem for each matrix {A(j)}j=1,··· ,d, typically requiring O(dm3) operations. Finally, constructing the
list InT requires a classical algorithm with a scaling of O(nT dm). Then, the total number of operations
for nT iterations can be written as

Nclassical = O
(
nTm

2Nd + dm3 + nT dm
)
.

For the quantum algorithm, the shift operator along an axis can be implemented using O(ñ2) = O(log2N)
quantum logic gates [27], where ñ is the number of qubits labeling the grid points in the given direction.
However, these gates are controlled by the register p: controlled gates need O(p2) = O(log2m) operations
[9]. As discussed earlier, the rotation operator needs O(m2) gates. If a classical algorithm is used to find
the rotation matrices, the number of operations is also O(dm3), as in the classical case. This however
could be improved by using a quantum algorithm, such as the Abrams-Lloyd technique [1]. Therefore,
the total number of quantum logic gates after nT iterations is

Nquantum = O
(
nT log2m log2N + nTm

2 + dm3 + nT dm
)
.

17

Finally, taking the ratio of Nclassical and Nquantum, and using the fact that nT = O(N), we can evaluate
the quantum speedup which proves the proposition. �

The last proposition is an important result of this article, stating that in some regimes, for a large
number of grid points, our algorithm which generates a state representing the solution of a hyperbolic
system of equations using the quantum algorithm is much more efficient than its classical counterparts.
In terms of computational complexity, the quantum implementation has an exponential speedup over
the classical implementation for the time evolution of the solution.

Here, we have neglected the initialization and reading phases of the quantum register. In particular,
it is assumed that the initialization of U0 can be implemented in polylog(N) operations. However, this
is not true in the general case. As a matter of fact, the initialization of the quantum register to a general
initial state U0 requires the implementation of diagonal unitary gates, which can be implemented with
uniformly controlled gates having a computational cost scaling like O(N2) [13]. For a certain class of
functions, which can be integrated analytically, this can be improved to O(logN) by using the algorithm
described in [65,38,33], recovering the exponential quantum speedup.

In addition, the reading of the solution is not more efficient in the quantum case in general because
UnT is stored in O(N) quantum amplitudes. Reconstructing these amplitudes, a process called quantum
tomography [21], necessitates that the quantum algorithm is performed at least O(N) times, an expo-
nential number of operations. Therefore, to keep the efficiency of the algorithm, the final solution stored
on the quantum register should either be post-processed with other efficient quantum algorithms or the
measurement should be performed on some given observable 〈u`|Ô|u`〉, where the operator Ô allows for
extracting some relevant informations on the solution. In some particular cases, it may be possible to
reconstruct the quantum state with some polynomial speedup using the method given in [20].

For a given error ε > 0, we estimate the computational resources and complexity necessary to im-
plement the algorithm proposed above. We consider a d-dimensional m = 2p-equation systems. We also
assume that u0 smooth with compact support, and the problem is set on a cubic domain Ω of size Ld.
For a Nd-point lattice, we define ∆x := L/N . The analysis of convergence for d = 1 is provided in [40],
Theorem 2.4. We notice that the projection error of the initial data on the lattice ‖u0−u0h‖`1 is bounded
by 6 C‖∇u0‖∞∆xd, for some C > 0. In addition the directional splitting, when the matrices do not
commute, creates an error in O(∆t2) per time iteration. For a total of nT time iterations and using that
∆t is proportional to ∆x (CFL or stability condition), there exists a constant E = E(u0, c,m, d,Ω) > 0,
F > 0, such that

‖u(·, tnT
)− unT

h ‖1 6 εreservoir + εsplitting, (12)

6 ‖u0 − u0h‖`1 + E∆x+ F (nT∆t)∆x, (13)

where u (resp. unT

h) denotes the exact (resp. approximate) solution, at T = tnT
. The main feature of

the reservoir method for linear systems with constant coefficients, is that the error remains bounded in
time. Thus, the first term (εreservoir) on the right-and-side of (12) and (13) is independent of nT = T/∆t.
However, the splitting error εsplitting grows linearly with time. As a consequence, we have the condition
r := εreservoir/εsplitting � 1, i.e. the error due to reservoir is negligible compared to the splitting, for
a long enough final time T , when T = Ω(Ld−1/Nd−1). Then, for a given error ε > 0, the necessary
resources are such that

ε = F (nT∆t)∆x(1 + r) = FT
L

N
(1 + r).

As a consequence, we obtain that the number of grid points, for given error, final time and domain size
should be

N = F (1 + r)
TL

ε
= O

(
TL

ε

)
. (14)

As log2(N) = ñ, the total number of qubits necessary for representing the solution after nT iterations,
with an error ε and for T large enough, is given by

ñ = log

(
F (1 + r)

TL

ε

)
= O

[
log

(
TL

ε

)]
. (15)

Notice that in the case of diagonal matrices, N is “only” a O(L/ε), due to the commutation of the
matrices. Reporting these results for N and ñ in the cost of the algorithm, we can evaluate the speedup
in terms of the problem parameters. We finally deduce the following proposition:

18

Proposition 52 Let us denote by T the final time, d the number of dimensions, L the size of the domain
in each dimension, m the number of characteristic fields, and ε the numerical error. We consider a
hyperbolic system of equations with constant symmetric matrices. Then, the quantum speedup for the
numerical computation of this system using the reservoir method is

S = O

(
m2

log2m

T dLd

εd
1

log2
(
TL
ε

)) ,

which corresponds to an exponential quantum speedup.

The proof essentially follows the same logic as for Proposition 51, but replacing N and ñ by (14) and
(15), respectively.

The previous results considered the asymptotic computational complexity of the classical and quan-
tum algorithms. However, it is interesting to look at minimal examples to verify if a proof-of-principle
calculation could be performed on actual quantum computers. Two such examples are described in
Appendix C where explicit gate decompositions are carried out with Quipper.

6 Some possible extensions of the proposed quantum algorithms

In this section, we propose some ideas to extend the algorithms proposed above. First, we discuss the
extension of the above quantum algorithms to linear hyperbolic equations with space-dependent veloc-
ity. In the second part of this section, we discuss method-of-line based quantum algorithms for linear
hyperbolic systems.

6.1 Reservoir method for linear hyperbolic equations with non-constant velocity

As introduction to this problem, we consider the following one-dimensional transport equation{
∂tu+ ∂x

(
A(x)u

)
= 0, (x, t) ∈ R× (0, T),

u(·, 0) = u0, x ∈ R (16)

where A is assumed smooth, with a derivative denoted a(x) := ∂xA(x). We also assume that u0 is
assumed smooth with compact support. For the sake of simplicity of the presentation and notation, we
will assume that a(x) > 0.The L2−norm of the solution to (16) is not preserved in general, instead:

d

dt

∫
R
A(x)|u(x, t)|2dx = 0.

However, it is still possible to implement a quantum algorithm preserving the `2(Z)−norm of the quantum
register. This problem can be reduced to a constant velocity transport equation by using a change of
variable y = f(x) =

∫ x
a−1(x′)dx′, allowing for an analytical solution when f can be obtained in

analytical form. If this is not available, one should resort to a numerical approach like the reservoir
method. In this case however, the reservoirs and counters are space-dependent. Quantum algorithms are
based on unitary transformations. By default, the reservoir method for non-constant velocity on uniform
mesh, is a priori not based on unitary operations. We then propose a version of the reservoir method on
non-uniform mesh. More specifically, we define a sequence grid points

{
xj+1/2

}
j∈Z, and one-dimensional

volumes {ωj}j∈Z, with ωj := (xj−1/2, xj+1/2) of lengths ∆xj := xj+1/2 − xj−1/2. We denote, for any
j ∈ Z

u0j :=
1

∆xj

∫
ωj

u0(x)dx

and we denote {unj }(j,n)∈Z×N the sequences approximating

{∆tn
∆xj

∫
ωj

u(x, t)dx
}
(j,n)∈Z×N

.

19

We also denote for j ∈ Z, aj−1/2 := a(xj−1/2).
For a(x) assumed fixed (and positive), it is convenient to consider a non-uniform mesh as follows:

ωj = (xj−1/2, xj+1/2) with non-constant ∆xj = xj+1/2 − xj−1/2 such that

∆xj =


aj−1/2

1 + baj−1/2c
, if aj−1/2 > 1,

aj−1/2, if aj−1/2 6 1 .

Notice that by construction, for any j ∈ Z

`j :=
aj−1/2

∆xj
∈ N∗ .

Thus, the reservoir method can then be rewritten

 un+1
j

cn+1
j−1/2
rn+1
j−1/2

 =



 0
cnj−1/2 + `j∆tn

rnj−1/2 − `j∆tn(unj − unj−1)

 , when cnj−1/2 + `j∆tn < 1,unj + rnj−1/2 −∆tn`j(u
n
j − unj−1)

0
0

 , when cnj−1/2 + `j∆tn = 1 .

The counters can then be defined by cnj−1/2 = `j
∑n−1
k=pj

∆tk, for some 0 6 pj 6 n and

∆tn = min
j

[
(1− cnj−1/2)

1

`j

]
.

Notice that if a is small enough, we can simplify even more the algorithm, and we can determine a priori
the time steps and the list of space indices to be updated per iteration, InT as in the case of constant
velocity. In order to achieve this procedure, we construct the grid nodes {xj+1/2}j∈Z such that for all
j ∈ Z, aj−1/2/∆xj = ` with ` constant. Initially, the counters and reservoirs are as usual, empty. The

counters are of the form cnj−1/2 = `
∑n−1
k=p ∆tk, for some 0 6 p 6 n (for p = n, the counters are null). In

other words, the counters as well as the time steps are spatially independent:

∆tn =
1

`

(
1− `

n−1∑
k=p

∆tk

)
.

In practice, we then have for any n ∈ N :

∆tn =
1

`
, and un+1

j = unj−1 .

At the quantum level for a(x) > 0, the algorithm is simply given by Tx|i〉 = |i	1 mod(N)〉. Recall though
that this diffusion-less approach only works for very specific velocities, and is a priori not conservative.

This algorithm should also be efficient on a quantum computer, as it is based on the application of
the shift operator, as in the constant velocity cases, and therefore, scales like O(nT log2N). However,
finding the grid point positions and the time step may require an exponential amount of resources. A
naive classical algorithm for this task requires O(N) operations. Therefore, the method is more efficient
on a quantum computer as long as it is possible to find a quantum algorithm that can evaluate these
grid positions more efficiently than O(N).
Example. We illustrate the above approach with the following simple example.

∂tu+ a(x)∂xu = 0, (x, t) ∈ (0, 70)× (0, T)

where a velocity is randomly constructed, using a uniform probability density function, U(0, 1). It is
defined {aj−1/2}j with aj−1/2 = a(xj−1/2) see Fig. 8 (Left), and where xj+1 = xj + ∆xj with ∆xj =
aj−1/2. In particular aj−1/2/∆xj = ` with ` = 1 in the following, and T = 400. We report in Fig. 8

20

0 10 20 30 40 50 60 70 80
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Initial data

CFL=1 solution

Reservoir solution

Fig. 8 (Left) Non-constant velocity {(x, a(x)), x ∈ (0, 70)}. (Right) CFL=1 (on uniform mesh) and reservoir (CFL=1 on
non-uniform mesh) solutions.

(Right), the solution reservoir solution1 {unj }(j,n)∈Z×N

un+1
j = unj−1

The `2(Z)− norm of {unj }j is trivially well-preserved, while `2(∆xZ) is not. The CFL=1 solution
{vnj }(j,n)∈Z∈N is constructed on uniform mesh ∆xj = ∆x, given by (as the a(x) > 0):

vn+1
j = vnj − aj−1/2

∆t

∆x
(vn+1
j − vnj)

at CFL=1, corresponding to a time step satisfying

∆t =
∆x

maxj |aj−1/2|
.

Notice that using a directional splitting, it is easy to extend this idea to d-dimensional transport equations
for u := u(x1, · · · , xd, t), of the form

∂tu+

d∑
i=1

ai(xi)∂xiu = 0, (x1 · · · , xd, t) ∈ Rd × R+

where {ai(xi)}16i6d is a sequence of given functions. In this case, the space steps are simply defined
directionally as follows: {∆xi;j}j∈Z = {ai(xi;j+1/2)}j∈Z.

1 this terminology is here a bit abusive, as this is nothing but a ”CFL=1”-solution on a non-uniform mesh.

21

6.2 Generalization to other numerical scheme: Method of lines

Other numerical schemes could also be considered. For instance, the method of lines is particularly
interesting [14]. In this case, the hyperbolic system is discretized in space only, and can be written as

dU

dt
= AU, (17)

where A is a sparse matrix obtained from the space discretization. When the matrix A is skew-symmetric
the solution to the initial value problem is given by an orthogonal transformation as

UnT = eATU0. (18)

The orthogonal operation eAT can then be implemented efficiently for sparse matrices on a quantum
computer, see for instance [15,2]. However, the construction of the matrix A may be efficient only for a
subclass of all matrices. This promising avenue will be also explored in a forthcoming paper.

7 Conclusion

In this paper, we have proposed an efficient quantum scheme for the solution of first order linear hyper-
bolic systems by combining the diffusion-less reservoir method, and operator splitting. We demonstrated
that in some cases, namely for a large class of multi-dimensional hyperbolic systems with constant
symmetric matrices and for one-dimensional scalar hyperbolic equations with non-constant velocity, the
reservoir method, along with alternate direction iteration, can be simplified significantly and becomes
a set of streaming steps InT . These steps can be implemented efficiently on a quantum computer. We
have also shown that the combination of these techniques yields a speedup over the classical implemen-
tation of the same numerical scheme, promising interesting performance. However, as with other similar
quantum algorithms, the measurement of the solution, encoded in the probability amplitudes, requires
O(N) operations which is not more efficient than a classical algorithm. To be useful, the algorithm has
to be combined with some efficient post-processing procedure that either computes some observables or
that yields some general properties of the solution.

The generalization of this quantum algorithm to more general hyperbolic systems is certainly harder
to obtain. First, for other types of matrices (non-constant and non-symmetric), the L2-norm is not
preserved, implying that non-unitary operations has to be implemented on the quantum computer. It
is possible in principle to use non-unitary operations by using projective measurements at every time
steps [16] but this is certainly more challenging to implement. Second, the space-dependent matrices has
to be diagonalized at every grid points, which requires O(Ndm3) operations for a classical algorithm,
instead of O(dm3) for constant matrices. It is unclear how efficient this operation can be on a quantum
computer. Finally, when the matrices depends on space, the reservoir and CFL counters has to be
considered explicitly at each volume interface and updated according to (8). Again, it is unclear if an
efficient quantum algorithm can be formulated for this purpose.

The techniques and ideas developed in this paper, can be generalized to the derivation of efficient
algorithms solving other types of linear differential systems. However, the required key element is the
use of an efficient implementation of translation operators which allow for an efficient overall algorithm.
We are currently investigating the extension of some of the ideas presented in this paper to first order
nonlinear hyperbolic equations. In principle, it is possible to derive explicit quantum versions of simple
first order finite difference/volume schemes for any linear partial differential equation; however in addition
to the poor accuracy, deriving efficient quantum versions of these classical algorithms, that is having
exponential speedups w.r.t. classical algorithms, is far from trivial and is even the source of many open
problems, which could certainly be investigated by numerical analysts.

References

1. Daniel S. Abrams and Seth Lloyd. Quantum algorithm providing exponential speed increase for finding eigenvalues
and eigenvectors. Phys. Rev. Lett., 83:5162–5165, Dec 1999.

2. Dorit Aharonov and Amnon Ta-Shma. Adiabatic quantum state generation and statistical zero knowledge. In Pro-
ceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages 20–29. ACM, 2003.

22

3. F. Alouges, F. De Vuyst, G. Le Coq, and E. Lorin. A process of reduction of the numerical diffusion of usual order
one flux difference schemes for nonlinear hyperbolic systems [un procédé de réduction de la diffusion numérique des
schémas à différence de flux d’ordre un pour les systèmes hyperboliques non linéaires]. Comptes Rendus Mathematique,
335(7):627–632, 2002.

4. F. Alouges, F. De Vuyst, G. Le Coq, and E. Lorin. The reservoir scheme for systems of conservation laws. In Finite
volumes for complex applications, III (Porquerolles, 2002), pages 247–254. Hermes Sci. Publ., Paris, 2002.

5. F. Alouges, F. De Vuyst, G. Le Coq, and E. Lorin. The reservoir technique: a way to make godunov-type schemes zero
or very low diffuse. application to Colella-Glaz solver. European Journal of Mechanics, B/Fluids, 27(6):643–664, 2008.

6. F. Alouges, G. Le Coq, and E. Lorin. Two-dimensional extension of the reservoir technique for some linear advection
systems. J. of Sc. Comput., 31(3):419–458, 2007.

7. Pablo Arrighi, Vincent Nesme, and Marcelo Forets. The Dirac equation as a quantum walk: higher dimensions,
observational convergence. Journal of Physics A: Mathematical and Theoretical, 47(46):465302, 2014.

8. Alán Aspuru-Guzik, Anthony D. Dutoi, Peter J. Love, and Martin Head-Gordon. Simulated quantum computation of
molecular energies. Science, 309(5741):1704–1707, 2005.

9. A. Barenco, C.H. Bennett, R. Cleve, D.P. Divincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, and H. Weinfurter.
Elementary gates for quantum computation. Physical Review A, 52(5), 1995.

10. R Barends, L Lamata, J Kelly, L Garćıa-Álvarez, AG Fowler, A Megrant, E Jeffrey, TC White, D Sank, JY Mutus,
et al. Digital quantum simulation of fermionic models with a superconducting circuit. Nature communications, 6,
2015.

11. Rami Barends, Alireza Shabani, Lucas Lamata, Julian Kelly, Antonio Mezzacapo, Urtzi Las Heras, Ryan Babbush,
AG Fowler, Brooks Campbell, Yu Chen, et al. Digitized adiabatic quantum computing with a superconducting circuit.
Nature, 534(7606):222–226, 2016.

12. Giuliano Benenti and Giuliano Strini. Quantum simulation of the single-particle schroedinger equation. American
Journal of Physics, 76(7):657–662, 2008.

13. Ville Bergholm, Juha J. Vartiainen, Mikko Möttönen, and Martti M. Salomaa. Quantum circuits with uniformly
controlled one-qubit gates. Phys. Rev. A, 71:052330, May 2005.

14. Dominic W Berry. High-order quantum algorithm for solving linear differential equations. Journal of Physics A:
Mathematical and Theoretical, 47(10):105301, 2014.

15. Dominic W. Berry, Graeme Ahokas, Richard Cleve, and Barry C. Sanders. Efficient quantum algorithms for simulating
sparse hamiltonians. Communications in Mathematical Physics, 270(2):359–371, 2007.

16. Andreas Blass and Yuri Gurevich. Ancilla-approximable quantum state transformations. Journal of Mathematical
Physics, 56(4):042201, 2015.

17. Bruce M Boghosian and Washington Taylor. Simulating quantum mechanics on a quantum computer. Physica D:
Nonlinear Phenomena, 120(1):30–42, 1998.

18. Katherine L. Brown, William J. Munro, and Vivien M. Kendon. Using quantum computers for quantum simulation.
Entropy, 12(11):2268, 2010.

19. Yudong Cao, Anargyros Papageorgiou, Iasonas Petras, Joseph Traub, and Sabre Kais. Quantum algorithm and circuit
design solving the poisson equation. New Journal of Physics, 15(1):013021, 2013.

20. Marcus Cramer, Martin B Plenio, Steven T Flammia, Rolando Somma, David Gross, Stephen D Bartlett, Olivier
Landon-Cardinal, David Poulin, and Yi-Kai Liu. Efficient quantum state tomography. Nature Communications, 1:149,
2010.

21. G Mauro D’Ariano, Matteo GA Paris, and Massimiliano F Sacchi. Quantum tomography. Advances in Imaging and
Electron Physics, 128:206–309, 2003.

22. D. Deutsch. Quantum theory, the church-turing principle and the universal quantum computer. Proceedings of the
Royal Society of London A: Mathematical, Physical and Engineering Sciences, 400(1818):97–117, 1985.

23. B. L. Douglas and J. B. Wang. Efficient quantum circuit implementation of quantum walks. Phys. Rev. A, 79:052335,
May 2009.

24. Richard P Feynman. Simulating physics with computers. International journal of theoretical physics, 21(6):467–488,
1982.

25. F. Fillion-Gourdeau, E. Lorin, and A. D. Bandrauk. Numerical solution of the time-dependent Dirac equation in
coordinate space without fermion-doubling. Comput. Phys. Comm., 183(7):1403 – 1415, 2012.

26. F. Fillion-Gourdeau, E. Lorin, and A.D. Bandrauk. Resonantly enhanced pair production in a simple diatomic model.
Phys. Rev. Lett., 110(1), 2013.

27. François Fillion-Gourdeau, Steve MacLean, and Raymond Laflamme. Algorithm for the solution of the dirac equation
on digital quantum computers. Phys. Rev. A, 95:042343, Apr 2017.

28. I. M. Georgescu, S. Ashhab, and Franco Nori. Quantum simulation. Rev. Mod. Phys., 86:153–185, Mar 2014.
29. E. Godlewski and P.-A. Raviart. Hyperbolic systems of conservation laws, volume 3/4 of Mathématiques & Applications

(Paris) [Mathematics and Applications]. Ellipses, Paris, 1991.
30. E. Godlewski and P.-A. Raviart. Numerical approximation of hyperbolic systems of conservation laws, volume 118 of

Applied Mathematical Sciences. Springer-Verlag, New York, 1996.
31. A.S. Green, P.L. Lumsdaine, N.J. Ross, P. Selinger, and B. Valiron. An introduction to quantum programming in

quipper. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 7948 LNCS:110–124, 2013.

32. A.S. Green, P.L. Lumsdaine, N.J. Ross, P. Selinger, and B. Valiron. Quipper: A scalable quantum programming
language. pages 333–342, 2013.

33. Lov Grover and Terry Rudolph. Creating superpositions that correspond to efficiently integrable probability distribu-
tions. arXiv preprint quant-ph/0208112, 2002.

34. A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear systems of equations. Phys. Rev. Lett.,
103(15):150502, 4, 2009.

35. Stephen P Jordan, Keith SM Lee, and John Preskill. Quantum algorithms for quantum field theories. Science,
336(6085):1130–1133, 2012.

23

36. Ivan Kassal, Stephen P Jordan, Peter J Love, Masoud Mohseni, and Alán Aspuru-Guzik. Polynomial-time quantum
algorithm for the simulation of chemical dynamics. Proceedings of the National Academy of Sciences, 105(48):18681–
18686, 2008.

37. Ivan Kassal, James D Whitfield, Alejandro Perdomo-Ortiz, Man-Hong Yung, and Aln Aspuru-Guzik. Simulating
chemistry using quantum computers. Annual review of physical chemistry, 62:185207, 2011.

38. Phillip Kaye and Michele Mosca. Quantum networks for generating arbitrary quantum states. arXiv preprint quant-
ph/0407102, 2004.

39. Julian Kelly, R Barends, AG Fowler, A Megrant, E Jeffrey, TC White, D Sank, JY Mutus, B Campbell, Yu Chen,
et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature, 519(7541):66–69,
2015.

40. S. Labbé and E. Lorin. On the reservoir technique convergence for nonlinear hyperbolic conservation laws. I. J. Math.
Anal. Appl., 356(2):477–497, 2009.

41. B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma, F. Zähringer, P. Schindler, J. T. Barreiro, M. Rambach,
G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt, and C. F. Roos. Universal digital quantum simulation with trapped
ions. Science, 334(6052):57–61, 2011.

42. Randall J LeVeque. Finite volume methods for hyperbolic problems, volume 31. Cambridge university press, 2002.
43. S. Lloyd. Universal Quantum Simulators. Science, 273:1073–1078, August 1996.
44. David A. Meyer. Quantum computing classical physics. Philosophical Transactions of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, 360(1792):395–405, 2002.
45. A Mezzacapo, M Sanz, L Lamata, IL Egusquiza, S Succi, and E Solano. Quantum simulator for transport phenomena

in fluid flows. Scientific reports, 5, 2015.
46. C. Negrevergne, T. S. Mahesh, C. A. Ryan, M. Ditty, F. Cyr-Racine, W. Power, N. Boulant, T. Havel, D. G. Cory, and

R. Laflamme. Benchmarking quantum control methods on a 12-qubit system. Phys. Rev. Lett., 96:170501, May 2006.
47. Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cambridge university press,

2010.
48. Anargyros Papageorgiou and Joseph F. Traub. Measures of quantum computing speedup. Phys. Rev. A, 88:022316,

Aug 2013.
49. Troels F. Rønnow, Zhihui Wang, Joshua Job, Sergio Boixo, Sergei V. Isakov, David Wecker, John M. Martinis, Daniel A.

Lidar, and Matthias Troyer. Defining and detecting quantum speedup. Science, 345(6195):420–424, 2014.
50. Y. Salathé, M. Mondal, M. Oppliger, J. Heinsoo, P. Kurpiers, A. Potočnik, A. Mezzacapo, U. Las Heras, L. Lamata,

E. Solano, S. Filipp, and A. Wallraff. Digital quantum simulation of spin models with circuit quantum electrodynamics.
Phys. Rev. X, 5:021027, Jun 2015.

51. D. Serre. Systèmes de lois de conservation. I. Fondations. [Foundations]. Diderot Editeur, Paris, 1996. Hyperbolicité,
entropies, ondes de choc. [Hyperbolicity, entropies, shock waves].

52. P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM
Journal on Computing, 26(5):1484–1509, 1997.

53. Siddhartha Sinha and Peter Russer. Quantum computing algorithm for electromagnetic field simulation. Quantum
Information Processing, 9(3):385–404, 2010.

54. J. Smoller. Shock waves and reaction-diffusion equations, volume 258 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Science]. Springer-Verlag, New York-Berlin, 1983.

55. R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme. Simulating physical phenomena by quantum
networks. Phys. Rev. A, 65:042323, Apr 2002.

56. Andrew Steane. Quantum computing. Reports on Progress in Physics, 61(2):117, 1998.
57. J. C. Strikwerda. Finite Difference Schemes and Partial Differential Equations. Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, PA, second edition, 2004.
58. J.J. Vartiainen, M. Mtinen, and M.M. Salomaa. Efficient decomposition of quantum gates. Physical Review Letters,

92(17):177902–1, 2004.
59. Xi-Lin Wang, Luo-Kan Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu,

Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Yu-Ao Chen, Chao-Yang Lu, and Jian-Wei Pan. Experimental ten-photon
entanglement. Phys. Rev. Lett., 117:210502, Nov 2016.

60. Nathan Wiebe, Dominic Berry, Peter Hyer, and Barry C Sanders. Higher order decompositions of ordered operator
exponentials. Journal of Physics A: Mathematical and Theoretical, 43(6):065203, 2010.

61. Stephen Wiesner. Simulations of many-body quantum systems by a quantum computer. arXiv preprint quant-
ph/9603028.

62. Man-Hong Yung, Daniel Nagaj, James D. Whitfield, and Alán Aspuru-Guzik. Simulation of classical thermal states
on a quantum computer: A transfer-matrix approach. Phys. Rev. A, 82:060302, Dec 2010.

63. Man-Hong Yung, James D. Whitfield, Sergio Boixo, David G. Tempel, and Aln Aspuru-Guzik. Introduction to Quantum
Algorithms for Physics and Chemistry, pages 67–106. John Wiley & Sons, Inc., 2014.

64. Christof Zalka. Efficient simulation of quantum systems by quantum computers. Fortschritte der Physik, 46(6-8):877–
879, 1998.

65. Christof Zalka. Simulating quantum systems on a quantum computer. Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, 454(1969):313–322, 1998.

A Numerical example for the reservoir method with diagonal system

We now illustrate this approach with a simple classical diagonal two-dimensional test, with λ
(1)
1 = 1, λ

(1)
2 = 4, λ

(1)
3 = 8 and

λ
(2)
1 = 1, λ

(2)
2 = 2, λ

(2)
3 = 4. The computational domain is [0, 10]2, and T = 0.75, m = 3, d = 2, ∆x1 = ∆x2 = 0.1. The

time step is given by ∆tn = 0.012488 for all n 6 nT = 60. The initial data is U0;1(x1, x2) = exp
(
− 2

(
(x1 − 5/2)2 + (x2 −

24

5/2)2
))

, U0;2(x1, x2) = exp
(
− 4

(
(x1 − 5/2)2 + (x2 − 5/2)2

))
, U0;3(x1, x2) = exp

(
− 8

(
(x1 − 5/2)2 + (x2 − 5/2)2

))
. The

reservoir solution components are represented in Fig. 9 (2nd column), showing no numerical diffusion whatsoever, unlike
the “CFL=1”-solutions also represented in Fig. 9 (3rd column).

Fig. 9 Solution components (rows 1 to 3): initial data (1st column), CFL=1 solution (2nd column), and reservoir method
solution (3rd column), at final time T = 0.75.

25

B Example for a rotation operator

A simple explicit example for a rotation operator can easily be constructed, inspired from [27]. We consider for d = 3,
m = 22 the following system{

∂tu+A(x)∂xu+A(y)∂yu+A(z)∂zu = 0, (x, y, z, t) ∈ R3 × (0, T),
u(·, 0) = u0, (x, y, z) ∈ R3 (19)

with A(x) = S(x)Λ(x)S(xT) (resp. A(y) = S(y)Λ(y)S(y)T , A(z) = S(z)Λ(z)S(z)T), where S(γ) with γ = x, y, z, are defined
by

S(γ) =
1
√

2

(
I2 σγ
σγ −I2

)
(20)

and where
{
σγ

}
γ=x,y,z

are the Pauli matrices. From a quantum algorithm point of view, these rotations operators can be

decomposed [27] as

S[γ] = C(σγ)H⊗ I2C(σγ)

where C(σγ) (resp. H) is σγ -controlled (resp. Hadamard) gate, see Fig. 1 in [27]. In this case the construction of the
quantum circuit can directly be deduced from [27], thanks to a simple decomposition in elementary quantum gates of S(γ).
More elaborated cases corresponding to more complex S(γ) can be considered as discussed above, but then necessitate
more complex quantum circuits.

C Determining minimal resource requirements of the quantum algorithm with Quipper

Quipper is a Haskell-based embedded functional language whose purpose is to emulate the implementation of quantum
algorithms on realistic quantum computers by providing explicit gate decompositions of quantum algorithms [31,32]. In
particular, functions for transforming complex quantum circuits into elementary gates (Hadamard, CNOT, Clifford,...)
are included in Quipper, along with many other functionalities allowing for circuit assembly and for resource requirement
diagnosis. In this section, we will implement some of the algorithms presented above.

Throughout, it is assumed that all logical operations are implemented without error. In a real quantum device, the
quantum system interacts with its environment, generating some noise and error in each operation. In this sense, the gate
counts given below represent a lower bound estimates for the “true” algorithm, which may require error-correcting steps.

The algorithm for the solution of hyperbolic systems was formulated in the abstract Hilbert space of the quantum
register. Therefore, it is independent of the computer architecture and thus, is amenable to any digital quantum devices.
For example, quantum computers based on superconducting circuits [39,10,11], trapped ions [41] and cavity quantum
electrodynamics [50], have been used with some success for other problems and could be used in principle to implement
our algorithm. The main limitations however are i) the number of available qubits in current register and ii) the coherence
time of these devices that restricts the number of logic quantum gates. State-of-the-art quantum computations on actual
digital computers reach ≈ 1000 quantum logic gates on ≈ 9 qubits [11].

In all the examples considered in the following, minimal requirements are studied in order to assess the feasibility
of simulations on these real quantum devices. In particular, we count the number of quantum gates (circuit depth) and
the total number of qubits (circuit width) required to evolve the initial condition data to a given final time. Due to
physical limitations in terms of the number of qubits and the coherence time, only systems with overly small meshes are
investigated. As emphasized in [27], this may be enough for proof-of-principle calculations but is far from outperforming
classical computations. Nevertheless, given the amount of effort and resources devoted to the development of these quantum
devices, these numbers will likely be improved in the future.

C.1 One-dimensional hyperbolic system

We consider a one-dimensional system with a computational domain as [0, 1]× [0, T]:

∂tu+ Λ∂xu = 0, (x, t) ∈ [0, 1]× [0, T]

where A = Λ is a diagonal matrix in M2(R), with eigenvalues λ1 = 1, λ2 = −3. If A were not diagonal, it would be necessary
to add a transition operator at the beginning and the end of the circuit. For T = 10−1 and nT = 40 we can determine the
sets

InT = (2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1,

2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1) ,

SnT = (−,−,−,+,−,−,−,+,−,−,−,+,−,−,−,+,−,−,−,+,−,−,−,+,
−,−,−,+,−,−,−,+,−,−,−,+,−,−,−,+,) .

We then implement the quantum algorithm described in Subsection 6.1, with Quipper. In this case, it is only necessary to
implement the decrement and increment operators, thanks to the preliminarily established list InT of characteristics to
be updated. Following Table I from [27], we report the minimal requirements for simulating the one-dimensional system

26

(a)

(b)

Fig. 10 Circuit diagram with Nx = 16. (a) first 4 iterations of the quantum reservoir method and first component. (b)
Second component.

E
N

T
E

R
: t

of
fo

li_
A

M
M

R c1.+

q

c2.-

H T

T

T S S S

T S S S

T S S S

T

T

H

E
X

IT
: t

of
fo

li_
A

M
M

R c1.+

q

c2.-

Fig. 11 Circuit diagram obtained from the gate decomposition with Nx = 4 in 1-D for one iteration.

described above, for proof-of-principle calculations. More specifically using Quipper, we can evaluate precisely the number
of elementary gates necessary to implement the quantum algorithm. Say for respectively nx = 2, nx = 4, and nx = 8,
the circuit depth computed by Quipper is 780, 5520, 27960, and the circuit width is respectively 3, 7, 15. For instance for
nx = 4 that is Nx = 16, the respective number of Hadamard, Clifford, Toffoli, CNOT gates, is found to be 540, 1890, 1350,
1560. We report in Fig. 10 the quantum circuit for the first 4 iterations with Nx = 16. This quantum circuit has a width
equal to 5, that is 4 qubits for labeling the coordinate space positions, and 1 qubit for the labeling of the component. The
circuits which are represented corresponds to the first 4 time iterations. We notice that the circuit for the first component
(top) has 4 times the same pattern (elementary circuit), corresponding to 4 translations from the left to the right, while
the circuit for the second component (bottom) corresponds to only 1 iteration from the right to the left, for the same lapse
of time. This is due to the fact that λ2 = −3 × λ1, so that after 4 iterations, 4 translations to the right are applied to
the first component, while the second component is only translated once to the left. The quantum circuit for 1 iteration is
generated by Quipper.

As an illustration for the same test, but with Nx = 4, we also report in Fig. 11 the quantum circuit for the corresponding
gate decomposition and which is still generated by Quipper. This time we only have 3 qubits, 1 for the component index,
and 2 for the positions.

The case with the smallest circuit depth, for the lower number of lattice points (nx = 2, Nx = 4), could possibly
be implemented on actual device for a proof-of-principle calculation, as long as the initialization phase requires less than
approximately 300 gates. However, the results obtained from the gate decomposition demonstrate that it would be a
challenging task to perform quantum simulations of hyperbolic systems on actual quantum device with larger lattice size.
Moreover, performing a relevant quantum simulation outperforming classical computation demands much improvement
from both the coherence time and the number of qubits.

C.2 Three-dimensional hyperbolic system

In this subsection, we implement with Quipper the quantum version of the reservoir method for a three-dimensional linear

hyperbolic system (19) with λ
(x)
1 = λ

(x)
2 = −1, λ

(x)
3 = λ

(x)
4 =

√
2, λ

(y)
1 = λ

(y)
2 = −2, λ

(y)
3 = λ

(y)
4 = 2

√
2, λ

(z)
1 = λ

(z)
2 = −4,

λ
(z)
3 = λ

(z)
4 = 4

√
2. Notice that we have associated the following upper indices: (x) ↔ (1), (y) ↔ (2), (z) ↔ (3). We then

select S(γ) as in (20), where we recall that Pauli’s matrices are defined by:

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
and σz =

[
1 0
0 −1

]
. (21)

27

H H

H

H H

E
N

T
E

R
: t

of
fo

li_
A

M
M

R c1.+

q

c2.+

H T

T

T

T S S S

T

T S S S

T S S S

H

E
X

IT
: t

of
fo

li_
A

M
M

R c1.+

q

c2.+

H H

H

H H

Fig. 12 Circuit diagram obtained from the gate decomposition with Nx = 16 in 3-D for the first iteration.

The motivation for considering such “simple” transition matrices is to design simple quantum circuit portion for diago-
nalization. As mentioned in Section 4.2.2, more complex transition unitary matrices could be considered, but would then
require additional work for decomposing in elementary quantum gates. The quantum algorithm is applied from time 0 to
10−2, with ∆x = 10−2, corresponding to nT = 30 iterations. In addition, InT and SnT are such that:

InT = ((3, 3), (4, 3), (1, 3), (2, 3), (3, 2), (3, 3), (4, 2), (4, 3), (1, 2), (1, 3),

(2, 2), (2, 3), (3, 3), (4, 3), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3),

(1, 3), (2, 3), (3, 3), (4, 3), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3))

SnT = (+,+,−,−,+,+,+,+,−,−,
−,−,+,+,+,+,+,+,+,+,
−,−,+,+,−,−,−,−,−,−)

The corresponding time steps take the value 0.0177, 0.0073, 0.0104, 0.0030, 0.0177, 0.0043, · · · . We then encode InT in the
quantum algorithm in order to implement the quantum reservoir method. This list provides the directional characteristic
field to update. Say for respectively nx = ny = nz = 2, nx = ny = nz = 4, and nx = ny = nz = 8, the circuit depth
computed by Quipper is 672, 3042, 14262, and the circuit width is respectively 8, 16, 32. For instance for nx = ny = nz = 4
that is Nx = Ny = Nz = 16, the respective numbers of Hadamard, Clifford, Toffoli, CNOT gates, are found to be 400,
1037, 675, 840. We report in Fig. 12 the quantum circuit for the first iteration with Nx = Ny = Nz = 4, and a circuit
width equal to 8. The quantum circuit which is generated by Quipper is much more complex (Toffoli, Hadamard, Clifford
quantum gates, etc), as it also includes the changes of basis (rotations), and the translations.

The same conclusion as in the 1-D case can be reached from these results, i.e. a proof-of-principle calculation could
possibly be performed with the smaller systems, but relevant calculations would require improvements in quantum tech-
nologies.

28

	1 Introduction
	2 Survival kit on quantum computing
	3 Reservoir method for symmetric linear first order hyperbolic systems
	4 Quantum algorithm for linear first order hyperbolic systems
	5 Efficiency and resource requirements
	6 Some possible extensions of the proposed quantum algorithms
	7 Conclusion
	A Numerical example for the reservoir method with diagonal system
	B Example for a rotation operator
	C Determining minimal resource requirements of the quantum algorithm with Quipper

