Skip to main content
Log in

An augmented Lagrangian proximal alternating method for sparse discrete optimization problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we propose an augmented Lagrangian proximal alternating (ALPA) method for solving two classes of large-scale sparse discrete constrained optimization problems. Specifically, the ALPA method generates a sequence of augmented Lagrangian (AL) subproblems in the out iterations and utilizes a proximal alternating linearized minimization method and sparse projection techniques to solve these AL subproblems. And we study the first-order optimality conditions for these two classes of problems. Under some suitable assumptions, we show that any accumulation point of the sequence generated by the ALPA method satisfies the necessary first-order optimality conditions of these problems or is a local minimizer of these problems. The computational results with practical problems demonstrate that our method can find the suboptimal solutions of the problems efficiently and is competitive with some other local solution methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bertsimas, D., Shioda, R.: Algorithm for cardinality-constrained quadratic optimization. Comput. Optim. Appl. 43, 1–22 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bonami, P., Lejeune, M.: An exact solution approach for portfolio optimization problems under stochastic and integer constraints. Oper. Res. 57, 650–670 (2009)

    Article  MathSciNet  Google Scholar 

  3. Cesarone, F., Scozzari, A., Tardella, F.: Efficient algorithms for mean-variance portfolio optimization with hard real-world constraints. G. Ist. Ital. Attuari 72, 37–56 (2009)

    Google Scholar 

  4. Cui, X.T., Zheng, X.J., Zhu, S.S., Sun, X.L.: Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems. J. Glob. Optim. (2012)

  5. Li, D., Sun, X., Wang, J.: Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection. Math. Finance 16, 83–101 (2006)

    Article  MathSciNet  Google Scholar 

  6. Gao, J., Li, D.: Optimal cardinality constrained portfolio selection. Oper. Res. 61(3), 745–761 (2013)

    Article  MathSciNet  Google Scholar 

  7. Shaw, D., Liu, S., Kopman, L.: Lagrangian relaxation procedure for cardinality-constrained portfolio optimization. Optim. Methods Softw. 23, 411–420 (2008)

    Article  MathSciNet  Google Scholar 

  8. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51, 34–81 (2009)

    Article  MathSciNet  Google Scholar 

  9. Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems. Math. Program. 74(2, Ser. A), 121–140 (1996)

    Article  MathSciNet  Google Scholar 

  10. Miller, A.: Subset Selection in Regression, 2nd edn. Chapman & Hall, London (2002)

    Book  Google Scholar 

  11. Günlük, O., Linderoth, J.: Perspective reformulations of mixed integer nonlinear programs with indicator variables. Math. Program. 124, 183–205 (2010)

    Article  MathSciNet  Google Scholar 

  12. Feizollahi, M.J., Ahmed, S., Sun, A.: Exact augmented Lagrangian duality for mixed integer linear programming. Math. Program. 161(1–2), 365–387 (2017)

    Article  MathSciNet  Google Scholar 

  13. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0-1 mixed integer programs. Math. Program. 106, 225–236 (2006)

    Article  MathSciNet  Google Scholar 

  14. Frangioni, A., Gentile, C.: SDP diagonalizations and perspective cuts for a class of nonseparable MIQP. Oper. Res. Lett. 35, 181–185 (2007)

    Article  MathSciNet  Google Scholar 

  15. Frangioni, A., Gentile, C.: A computational comparison of reformulations of the perspective relaxation: SOCP vs. cutting planes. Oper. Res. Lett. 37, 206–210 (2009)

    Article  MathSciNet  Google Scholar 

  16. Tawarmalani, M., Sahinidis, N.: Semidefinite relaxations of fractional programs via novel convexification techniques. J. Glob. Optim. 20, 133–154 (2001)

    Article  MathSciNet  Google Scholar 

  17. Chang, T., Meade, N., Beasley, J., Sharaiha, Y.: Heuristics for cardinality constrained portfolio optimisation. Comput. Oper. Res. 27, 1271–1302 (2000)

    Article  Google Scholar 

  18. Crama, Y., Schyns, M.: Simulated annealing for complex portfolio selection problems. Eur. J. Oper. Res. 150, 546–571 (2003)

    Article  Google Scholar 

  19. Maringer, D., Kellerer, H.: Optimization of cardinality constrained portfolios with a hybrid local search algorithm. IEEE Spectr. 25, 481–495 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Schaerf, A.: Local search techniques for constrained portfolio selection problems. Comput. Econ. 20, 177–190 (2002)

    Article  Google Scholar 

  21. Gulpinar, N., An, L.T.H., Moeini, M.: Robust investment strategies with discrete asset choice constraints using DC programming. Optimization 59(1), 45–62 (2010)

    Article  MathSciNet  Google Scholar 

  22. Zheng, X., Sun, X., Li, D., Sun, J.: Successive convex approximations to cardinality-constrained convex programs: a piecewise-linear DC approach. Comput. Optim. Appl. 59(1–2), 379–397 (2014)

    Article  MathSciNet  Google Scholar 

  23. Burdakov, O.P., Kanzow, C., Schwartz, A.: Mathematical programs with cardinality constraints: Reformulation by complementarity-type conditions and a regularization method. SIAM J. Optim. 26(1), 397–425 (2016)

    Article  MathSciNet  Google Scholar 

  24. Červinka, M, Kanzow, C, Schwartz, A.: Constraint qualifications and optimality conditions for optimization problems with cardinality constraints. Math. Program. 160(1-2), 353–377 (2016)

    Article  MathSciNet  Google Scholar 

  25. Lu, Z., Zhang, Y.: Sparse approximation via penalty decomposition methods. SIAM J. Optim. 23(4), 2448–2478 (2013)

    Article  MathSciNet  Google Scholar 

  26. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1-2), 459–494 (2014)

    Article  MathSciNet  Google Scholar 

  27. Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Imag. Sci. 6(3), 1758–1789 (2013)

    Article  MathSciNet  Google Scholar 

  28. Xu, Y., Yin, W.: A globally convergent algorithm for nonconvex optimization based on block coordinate update. J. Sci. Comput. 72(2), 700–734 (2017)

    Article  MathSciNet  Google Scholar 

  29. Lu, Z., Zhang, Y.: An augmented Lagrangian approach for sparse principal component analysis. Math. Program. 135, 149–193 (2012)

    Article  MathSciNet  Google Scholar 

  30. Chen, X., Guo, L., Lu, Z., Ye, J.: An augmented Lagrangian method for non-Lipschitz nonconvex programming. SIAM J. Numer. Anal. 55, 168–193 (2017)

    Article  MathSciNet  Google Scholar 

  31. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116, 5–16 (2009)

    Article  MathSciNet  Google Scholar 

  32. Teng, Y., Yang, L., Yu, B., Song, X.L.: A penalty PALM method for sparse portfolio selection problems. Optim. Methods Softw. 32(1), 126–147 (2017)

    Article  MathSciNet  Google Scholar 

  33. Bai, Y., Liang, R., Yang, Z.: Splitting augmented Lagrangian method for optimization problems with a cardinality constraint and semicontinuous variables. Optim. Methods Softw. 31(5), 1089–1109 (2016)

    Article  MathSciNet  Google Scholar 

  34. Rockafellar, R.T., Wets, R.: Variational Analysis. Grundlehren der Mathematis-chen Wissenschaften, pp. 317. Springer (1998)

  35. Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of Łojasiewicz inequalities: Subgradient flows, talweg, convexity. Trans. Am. Math. Soc., 362 (2010)

  36. Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2007)

    Article  Google Scholar 

  37. Beasley, J.E.: OR-Library: Distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11), 1069–1072 (1990)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to anonymous reviewers for many very helpful suggestions.

Funding

This work was supported by the National Natural Science Foundation of China (11571061, 11301050) and the Fundamental Research Funds for the Central Universities (DUT17RC(4)38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, Y., Yang, L., Song, X. et al. An augmented Lagrangian proximal alternating method for sparse discrete optimization problems. Numer Algor 83, 833–866 (2020). https://doi.org/10.1007/s11075-019-00705-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00705-x

Keywords

Navigation