Skip to main content
Log in

A computational approach for the non-smooth solution of non-linear weakly singular Volterra integral equation with proportional delay

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper develops a well-conditioned Jacobi spectral Galerkin method for the analysis of Volterra-Hammerstein integral equations with weakly singular kernels and proportional delay. A recursive formula reduces the computational load when approximating the solutions of badly conditioned and complex non-linear algebraic systems. Additionally, the convergence properties of the method are also investigated. The spectral accuracy is obtained regardless of the discontinuities in the derivatives solution. Three examples illustrate the performance of the new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hambre, C.P.L.: Nonlinear heat transfer problem. J. Appl. Phys. 30(11), 1683–1688 (1959)

    Article  MathSciNet  Google Scholar 

  2. Chambré, P.L., Acrivos, A.: On chemical surface reactions in laminar boundary layer flows. J. Appl. Phys. 27(11), 1322–1328 (1956). https://doi.org/10.1063/1.1722258

    Article  Google Scholar 

  3. Lighthill, M.J.: Contributions to the theory of heat transfer through a laminar boundary layer. Proc. R. Soc. Lond. A 202(1070), 359–377 (1950)

    Article  MathSciNet  Google Scholar 

  4. Mann, W.R., Wolf, F.: Heat transfer between solids and gases under nonlinear boundary conditions. Q. Appl. Math. 9(2), 163–184 (1951). https://doi.org/10.1090/qam/42596

    Article  MathSciNet  MATH  Google Scholar 

  5. Padmavally, K.: On a non-linear integral equation. J. Math. Mech. 7(4), 533–555 (1958)

    MathSciNet  MATH  Google Scholar 

  6. Moghaddam, B.P., Machado, J.A.T.: A computational approach for the solution of a class of variable-order fractional integro-differential equations with weakly singular kernels. Fract. Calcul. Appl. Anal. 20(4), 1023–1042 (2017). https://doi.org/10.1515/fca-2017-0053

    Article  MathSciNet  MATH  Google Scholar 

  7. Mokhtary, P., Ghoreishi, F.: Convergence analysis of the operational tau method for abel-type volterra integral equations. Electron. Trans. Numer. Anal. 41, 289–305 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Cai, H., Chen, Y.: A fractional order collocation method for second kind V olterra integral equations with weakly singular kernels. J. Sci. Comput. 75(2), 970–992 (2017). https://doi.org/10.1007/s10915-017-0568-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Pishbin, S., Ghoreishi, F., Hadizadeh, M.: The semi-explicit V olterra integral algebraic equations with weakly singular kernels: the numerical treatments. J. Comput. Appl. Math. 245, 121–132 (2013). https://doi.org/10.1016/j.cam.2012.12.012

    Article  MathSciNet  MATH  Google Scholar 

  10. Allaei, S.S., Diogo, T., Rebelo, M.: The J acobi collocation method for a class of nonlinear V olterra integral equations with weakly singular kernel. J. Sci. Comput. 69(2), 673–695 (2016)

    Article  MathSciNet  Google Scholar 

  11. Allaei, S.S., Diogo, T., Rebelo, M.: Analytical and computational methods for a class of nonlinear singular integral equations. Appl. Numer. Math. 114, 2–17 (2017)

    Article  MathSciNet  Google Scholar 

  12. Zhang, R., Zhu, B., Xie, H.: Spectral methods for weakly singular V olterra integral equations with pantograph delays. Front. Math. China 8(2), 281–299 (2013). https://doi.org/10.1007/s11464-013-0282-1

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghoreishi, F., Hadizadeh, M.: Numerical computation of the T au approximation for the V olterra–H ammerstein integral equations. Numerical Algorithms 52(4), 541–559 (2009). https://doi.org/10.1007/s11075-009-9297-9

    Article  MathSciNet  MATH  Google Scholar 

  14. Mokhtary, P.: Operational Müntz-G alerkin approximation for A bel–H ammerstein integral equations of the second kind. Electron. Trans. Numer. Anal. 45, 183–200 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Zakeri, G. -A., Navab, M.: Sinc collocation approximation of non-smooth solution of a nonlinear weakly singular V olterra integral equation. J. Comput. Phys. 229(18), 6548–6557 (2010). https://doi.org/10.1016/j.jcp.2010.05.010

    Article  MathSciNet  MATH  Google Scholar 

  16. Rebelo, M., Diogo, T.: A hybrid collocation method for a nonlinear V olterra integral equation with weakly singular kernel. J. Comput. Appl. Math. 234(9), 2859–2869 (2010). https://doi.org/10.1016/j.cam.2010.01.034

    Article  MathSciNet  MATH  Google Scholar 

  17. Quarteroni, A., Canuto, C., Hussaini, M.Y., Zang, T.A.: Spectral methods fundamentals in single domains. Springer Verlag 4(8), 16 (2006)

    MATH  Google Scholar 

  18. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press. https://doi.org/10.1017/cbo9780511618352 (2007)

  19. Shen, J., Tang, T., Wang, L.-L.: Spectral methods: algorithms, analysis and applications, vol. 41. Springer Science & Business Media (2011)

  20. Chen, Y., Tang, T.: Convergence analysis of the J acobi spectral-collocation methods for V olterra integral equations with a weakly singular kernel. Math. Comput. 79(269), 147–147 (2010). https://doi.org/10.1090/s0025-5718-09-02269-8

    Article  MathSciNet  MATH  Google Scholar 

  21. Mokhtary, P.: High-order modified tau method for non-smooth solutions of A bel integral equations. Electron. Trans. Numer. Anal. 44, 462–471 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Li, X., Tang, T.: Convergence analysis of J acobi spectral collocation methods for A bel–V olterra integral equations of second kind. Front. Math. China 7(1), 69–84 (2012). https://doi.org/10.1007/s11464-012-0170-0

    Article  MathSciNet  MATH  Google Scholar 

  23. Shen, J., Sheng, C., Wang, Z.: Generalized J acobi spectral-G alerkin method for nonlinear V olterra integral equations with weakly singular kernels. J. Math. Study 48(4), 315–329 (2015). https://doi.org/10.4208/jms.v48n4.15.01

    Article  MathSciNet  MATH  Google Scholar 

  24. Xie, Z., Li, X., Tang, T.: Convergence analysis of spectral G alerkin methods for V olterra type integral equations. J. Sci. Comput. 53(2), 414–434 (2012). https://doi.org/10.1007/s10915-012-9577-8

    Article  MathSciNet  MATH  Google Scholar 

  25. Rivlin, T.J.: An Introduction to the Approximation of Functions. Courier Corporation (2003)

  26. Diogo, T., Ma, J., Rebelo, M.: Fully discretized collocation methods for nonlinear singular V olterra integral equations. J. Comput. Appl. Math. 247, 84–101 (2013). https://doi.org/10.1016/j.cam.2013.01.002

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Moghaddam.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtary, P., Moghaddam, B.P., Lopes, A.M. et al. A computational approach for the non-smooth solution of non-linear weakly singular Volterra integral equation with proportional delay. Numer Algor 83, 987–1006 (2020). https://doi.org/10.1007/s11075-019-00712-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00712-y

Keywords

Mathematics Subject Classification (2010)

Navigation