Skip to main content
Log in

New strong convergence theorem of the inertial projection and contraction method for variational inequality problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new algorithm which combines the inertial projection and contraction method and the viscosity method for solving monotone variational inequality problems in real Hilbert spaces and prove a strong convergence theorem of our proposed algorithm under the standard assumptions imposed on cost operators. Finally, we give some numerical experiments to illustrate the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alber, Y, Iusem, A.N.: Extension of subgradient techniques for nonsmooth optimization in Banach spaces. Set-Valued Anal. 9, 315–335 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14, 773–782 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Attouch, H., Goudon, X., Redont, P.: The heavy ball with friction. I. The continuous dynamical system. Commun. Contemp. Math. 2, 1–34 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Attouch, H., Czarnecki, M. O.: Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria. J. Differ. Equ. 179, 278–310 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Bot, R. I., Csetnek, E. R., Laszlo, S.C.: An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions. EURO J. Comput. Optim. 4, 3–25 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Bot, R. I., Csetnek, E. R.: An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems. J. Optim. Theory Appl. 171, 600–616 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Bot, R. I., Csetnek, E. R.: An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer. Algorithms 71, 519–540 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Bot, R. I., Csetnek, E. R., Hendrich, C.: Inertial Douglas-Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Bot, R. I., Csetnek, E. R.: An inertial alternating direction method of multipliers. Minimax Theory Appl. 1, 29–49 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Bot, R. I., Csetnek, E. R.: A hybrid proximal-extragradient algorithm with inertial effects. Numer. Funct. Anal. Optim. 36, 951–963 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Cai, X., Gu, G., He, B.: On the \(O(\frac {1}t)\) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators. Comput. Optim. Appl. 57, 339–363 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Meth. Softw. 26, 827–845 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Ceng, L. C., Hadjisavvas, N., Wong, N. C.: Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems. J. Glob. Optim. 46, 635–646 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Chen, C., Ma, S., Yang, J.: A general inertial proximal point algorithm for mixed variational inequality problem. SIAM J. Optim. 25, 2120–2142 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Dong, Q. L., Jiang, D., Gibali, A.: A modified subgradient extragradient method for solving the variational inequality problem. Numer Algorithms. https://doi.org/10.1007/s11075-017-0467-x (2018)

  20. Dong, Q. L., Cho, Y. J., Rassias, T. M.: The projection and contraction methods for finding common solutions to variational inequality problems. Optim. Lett. https://doi.org/10.1007/s11590-017-1210-1 (2017)

  21. Dong, Q.L., Gibali, A., Jiang, D., Ke, S.H.: Convergence of projection and contraction algorithms with outer perturbations and their applications to sparse signals recovery. J. Fixed Point Theory Appl. https://doi.org/10.1007/s11784-018-0501-1(2018)

  22. Dong, L. Q., Cho, J. Y., Zhong, L. L., Rassias, M. T. h.: Inertial projection and contraction algorithms for variational inequalities. J. Glob. Optim. 70, 687–704 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Goebel, K., Reich, S.: Uniform convexity, hyperbolic geometry, and nonexpansive mappings: Marcel Dekker, New York (1984)

  24. Harker, P. T., Pang, J. S.: A damped-Newton method for the linear complementarity problem. In: Allgower, E.L., Georg, K. (eds.) Computational Solution of Nonlinear Systems of Equations. AMS Lectures on Applied Mathematics 26, 265–284 (1990)

  25. He, B. S.: A class of projection and contraction methods for monotone variational inequalities. Appl. Math. Optim. 35, 69–76 (1997)

    MathSciNet  MATH  Google Scholar 

  26. Kraikaew, R., Saejung, S.: Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 163, 399–412 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Korpelevich, G. M.: The extragradient method for finding saddle points and other problems. Ekonomikai Matematicheskie Metody. 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  28. Liu, L. S.: Ishikawa and Mann iteration process with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. 194, 114–125 (1995)

    MathSciNet  MATH  Google Scholar 

  29. Gibali, A., Thong, D. V., Tuan, P. A.: Two simple projection-type methods for solving variational inequalities Anal.Math.Phys. https://doi.org/10.1007/s13324-019-00330-w (2019)

  30. Maingé, P. E.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499–1515 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Maingé, P. E., Gobinddass, M. L.: Convergence of one step projected gradient methods for variational inequalities. J. Optim. Theory Appl. 171, 146–168 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Maingé, P. E.: Inertial iterative process for fixed points of certain quasi-nonexpansive mappings. Set Valued Anal. 15, 67–79 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Maingé, P. E.: Regularized and inertial algorithms for common fixed points of nonlinear operators. J. Math. Anal. Appl. 34, 876–887 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Malitsky, Y. V., Semenov, V. V.: A hybrid method without extrapolation step for solving variational inequality problems. J. Glob. Optim. 61, 193–202 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Malitsky, Y. V.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25, 502–520 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Moudafi, A., Elisabeth, E.: An approximate inertial proximal method using enlargement of a maximal monotone operator. Int. J. Pure Appl. Math. 5, 283–299 (2003)

    MathSciNet  MATH  Google Scholar 

  37. Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155, 447–454 (2003)

    MathSciNet  MATH  Google Scholar 

  38. Nadezhkina, N., Takahashi, W.: Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings. SIAM J. Optim. 16, 1230–1241 (2006)

    MathSciNet  MATH  Google Scholar 

  39. Polyak, B. T.: Some methods of speeding up the convergence of iteration methods. Zh. Vychisl. Mat. Mat. Fiz. 4, 1–17 (1964)

    Google Scholar 

  40. Reich, S.: Constructive Techniques for Accretive and Monotone Operators. Applied Nonlinear Analysis, pp 335–345. Academic Press, New York (1979)

    Google Scholar 

  41. Solodov, M. V., Svaiter, B. F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1993)

    MathSciNet  MATH  Google Scholar 

  42. Sun, D. F.: A class of iterative methods for solving nonlinear projection equations. J. Optim. Theory Appl. 91, 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  43. Thong, D. V., Hieu, D. V.: Weak and strong convergence theorems for variational inequality problems. Numer. Algorithms 78, 1045–1060 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Thong, D. V., Hieu, D. V.: Modified subgradient extragradient method for inequality variational problems. Numer. Algorithms 79, 597–610 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Thong, D. V., Vuong, P. T.: Modified Tseng’s extragradient methods for solving pseudo-monotone variational inequalities optimization. https://doi.org/10.1080/02331934.2019.1616191 (2019)

  46. Thong, D.V., Vinh, N.T., Cho, Y.J.: Accelerated subgradient extragradient methods for variational inequality problems. J. Sci. Comput. https://doi.org/10.1007/s10915-019-00984-5 (2019)

  47. Thong, D. V., Vinh, N. T., Cho, Y. J.: A strong convergence theorem for Tseng’s extragradient method for solving variational inequality problems. Optim Lett. https://doi.org/10.1007/s11590-019-01391-3 (2019)

  48. Thong, D. V., Vinh, N. T., Hieu, D. V.: Accelerated hybrid and shrinking projection methods for variational inequality problems. Optimization 68, 981–998 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    MathSciNet  MATH  Google Scholar 

  50. Wang, F. H., Xu, H. K.: Weak and strong convergence theorems for variational inequality and fixed point problems with Tseng’s extragradient method. Taiwanese J. Math. 16, 1125–1136 (2012)

    MathSciNet  MATH  Google Scholar 

  51. Xiu, N. H., Zhang, J. Z.: Some recent advances in projection-type methods for variational inequalities. J. Comput. Appl. Math. 152, 559–587 (2003)

    MathSciNet  MATH  Google Scholar 

  52. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)

    MathSciNet  MATH  Google Scholar 

  53. Wang, Y. M., Xiao, Y. B., Wang, X., Cho, Y. J.: Equivalence of well-posedness between systems of hemivariational inequalities and inclusion problems. J. Nonlinear Sci. Appl. 9, 1178–1192 (2016)

    MathSciNet  MATH  Google Scholar 

  54. Xiao, Y. B., Huang, N. J., Wong, M. M.: Well-posedness of hemivariational inequalities and inclusion problems. Taiwan. J. Math. 15, 1261–1276 (2011)

    MathSciNet  MATH  Google Scholar 

  55. Xiao, Y. B., Huang, N. J., Cho, Y. J.: A class of generalized evolution variational inequalities in Banach spaces. Appl. Math. Lett. 25, 914–920 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Aviv Gibali and two anonymous reviewers for their comments on the manuscript which helped us very much in improving and presenting the original version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duong Viet Thong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thong, D.V., Vinh, N.T. & Cho, Y.J. New strong convergence theorem of the inertial projection and contraction method for variational inequality problems. Numer Algor 84, 285–305 (2020). https://doi.org/10.1007/s11075-019-00755-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00755-1

Keywords

Mathematics Subject Classification (2010)

Navigation