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Abstract

Iterative methods based on matrix splittings are useful in solving large sparse linear

systems. In this direction, proper splittings and its several extensions are used to deal with

singular and rectangular linear systems. In this article, we introduce a new iteration scheme

called three-step alternating iterations using proper splittings and group inverses to find an

approximate solution of singular linear systems, iteratively. A preconditioned alternating

iterative scheme is also proposed to relax some sufficient conditions and to obtain faster

convergence as well. We then show that our scheme converges faster than the existing one.

The theoretical findings are then validated numerically.

1. Introduction

A real square matrix A is called a Z-matrix if the off-diagonal entries of A are non-positive.

A Z-matrix A can be written as A = sI−B, where s ≥ 0 and B ≥ 0. Here B ≥ 0 means all

the entries of B are non-negative. A Z-matrix A is called an M-matrix if s ≥ ρ(B), where

ρ(B) denotes the spectral radius of B and is the maximum of the moduli of the eigenvalues of

B. If s > ρ(B), it follows that A−1 exists and A−1 ≥ 0. Many interesting characterizations

of nonsingular M-matrices can be found in the book by Berman and Plemmons [4]. The set

of nonsingular M-matrices are one of the most important subclass of monotone matrices.

A real n × n matrix A is called monotone if Ax ≥ 0 ⇒ x ≥ 0. The book by Collatz [7]

has discussed the natural occurrence of monotone matrices in finite difference approximation

methods for certain type of partial differential equations. This class of matrices also arises in

linear complementary problems in operations research, input-output production and growth

models in economics and Markov processes in probability and statistics, to name a few.

Singular M-matrices (when s = ρ(B)) very often appear in the same context as nonsingular

M-matrices, in particular in the study of Markov processes (see Meyer [19]). These matrices
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also arise in finite difference methods for solving certain partial differential equations such

as the Neumann problem and Poissons equation on a sphere (see Plemmons [29]). The

books by Berman and Plemmons [4] and Varga [32] give an excellent account of many

characterizations of the notion of monotonicity to singular and rectangular matrices. In this

article, we focus on the convergence of iterative methods for solving singular linear systems

using group (generalized) inverses. This study will help us to find an approximate solution

of a singular linear system of the form

Ax = b, (1)

where A is a real n × n matrix of index 1 and x, b are real n-vectors. For a real square

matrix A, the index of A is defined as the smallest non-negative integer k, which satisfies

rank(Ak) = rank(Ak+1). We call a singular linear system Ax = b of index 1 if index of A is

1. The group (generalized) inverse of a matrix A ∈ Rn×n, denoted by A# (if it exists), is the

unique matrix X satisfying A = AXA, X = XAX and AX = XA. For index 1 matrices, it

always exists. A group invertible matrix A is called group monotone if A# ≥ 0.

Wei [33] showed that for a singular linear system Ax = b of index 1, the iteration scheme:

xi+1 = U#V xi + U#b (2)

converges to A#b if and only if ρ(U#V ) < 1 (see Corollary 3.2, [33]) by using proper splitting

A = U−V . A splitting A = U−V of A ∈ Rn×n is called a proper splitting [3] if R(U) = R(A)

and N(U) = N(A), where R(B) and N(B) stand for the range space and the null space

of a matrix B, respectively. Thereafter, he studied the convergence of the above iteration

scheme for different sub-classes of proper splittings (see Theorem 4.1 & 4.2, [33]).

However, the iteration scheme (2) converges very slow in many practical cases. To

overcome this, several comparison results are proposed in the literature (see [9], [13], [14],

[15] and [34] and the references cited therein). In case of a matrix having many proper

splittings, comparison results are not so useful to find the best splitting (in the sense that

the iteration matrix arising from a matrix splitting has the smallest spectral radius). To deal

with this case, we propose a three-step alternating iteration scheme by extending the idea

of Benzi and Szyld [2] who proposed the concept of two-step alternating iteration method.

The rest of the paper is sectioned as follows. In the next section, we introduce our

notations, definitions and some preliminary results which are basics for defining our prob-

lem. The notion of proper G-regular and proper G-weak regular splitting along with some

perquisite results are proved in section 3. Section 4 contains the main results which dis-

cuss convergence criteria for the proposed alternating iteration scheme. It also provides an
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algorithm for the three-step alternating iteration scheme with a little emphasis on precondi-

tioning technique. The theoretical results are then validated through computation and are

shown in section 5. The last one is about concluding remarks.

2. Preliminaries

In the subsequent sections, Rn means an n-dimensional Euclidean space while Rn×n denotes

the set of all real square matrices of order n. Assume that S and T are complementary

subspaces of Rn. Then PS,T is the projection on S along T . So, PS,TA = A if and only if

R(A) ⊆ S and APS,T = A if and only if N(A) ⊇ T . We next produce the definitions of

three important generalized inverses. The Drazin inverse of a matrix A ∈ Rn×n is the unique

solution X ∈ Rn×n satisfying the equations: Ak = AkXA, X = XAX and AX = XA, where

k is the index of A. It is denoted by AD. When k = 1, then Drazin inverse is said to be the

group inverse of A. For A ∈ Rm×n, the unique matrix Z ∈ Rn×m satisfying the following four

equations known as Penrose equations: AZA = A, ZAZ = Z, (AZ)t = AZ and (ZA)t =

ZA is called the Moore-Penrose inverse of A, where Bt denotes the transpose of B. It

always exists, and is denoted by A†. When the matrix A is nonsingular, then AD = A# =

A† = A−1. The criteria ‘index 1’ for the existence of the group inverse is also equivalent

to N(A) = N(A2) or R(A) = R(A2) or R(A) ⊕ N(A) = Rn. A few basic properties which

will be frequently used are: R(A) = R(A#); N(A) = N(A#); AA# = PR(A),N(A) = A#A. In

particular, if an element x ∈ R(A), then x = A#Ax.

The computation of the group inverse of an index one matrix is shown in Algorithm 1,

and the same method can be found in [18].
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Algorithm 1 Computation of the Group Inverse

1: procedure GINV(A)

2: if rank(A) = rank(A2) then

3: r = rank(A)

4: Q = [BR(A) BN(A)]

5: P = Q−1AQ

6: denote C = Top r × r sub matrix of P

7: D =

[

C−1 0

0 0

]

n×n

8: return A# = QDQ−1

9: else

10: “The matrix is not of index 1”

11: end if

12: end procedure

The remaining results are collected in the next two subsections.

2.1. Non-negative matrices

We call A ∈ Rn×n as non-negative (positive) if A ≥ 0, (A > 0). We write B ≥ C if

B−C ≥ 0. The same notation and nomenclature are also used for vectors. The next results

deal with the non-negativity of a matrix and the spectral radius.

Theorem 2.1 (Theorem 2.20, [32]). Let A ∈ Rn×n and A ≥ 0. Then

(i) A has a non-negative real eigenvalue equal to its spectral radius.

(ii) There exists a non-negative eigenvector for its spectral radius.

Theorem 2.2 (Theorem 2.1.11, [4]). Let B ∈ Rn×n, B ≥ 0, x ≥ 0 (x 6= 0) and α is a

positive scalar.

(i) If αx ≤ Bx, then α ≤ ρ(B).

(ii) If Bx− αx ≤ 0, x > 0, then ρ(B) ≤ α.

The last result is a special case of Theorem 3.16, [32].

Theorem 2.3. Let X ∈ Rn×n and X ≥ 0. Then ρ(X) < 1 if and only if (I −X)−1 exists

and (I −X)−1 =

∞
∑

k=0

Xk ≥ 0.
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2.2. Proper Splittings

The notion of proper splitting introduced by Berman and Plemmons [3] plays a key role in

the study of the convergence of iterative methods to find an approximate solution of real

large singular and rectangular linear systems. It is extended to index splitting by Wei [33]

and index-proper splitting by Chen and Chen [6] to find the approximate iterative solution

of ADb which is helpful in the study of singular differential and difference equations (see

Chapter 9, [5]). A method of construction of proper splitting can be found in [27] while its

uniqueness is shown very recently in [28]. The result produced below is a combination of

Theorem 5.2, [25] and Theorem 4.1, [27], and is also a special case of Theorem 3.2 & 3.3,

[14] and Theorem 3.1, [33] when index 1 matrices are considered.

Theorem 2.4. Let A = U − V be a proper splitting of A ∈ Rn×n. Suppose that A# exists.

Then

(a) U# exists.

(b) AA# = UU#;A#A = U#U .

(c) A = U(I − U#V ) = (I − V U#)U .

(d) I − U#V and I − V U# are nonsingular.

(e) A# = (I − U#V )
−1
U# = U#(I − V U#)

−1
.

3. Proper G-regular & Proper G-weak regular Splitting

In this section, we recall first the definition of proper G-regular splittings and proper G-weak

regular splittings, and then present some new results for index 1 matrices. Definition 2.1

and 2.2, [13] reduce to the following two definitions, respectively when we use the group

inverse in the place of the Drazin inverse.

Definition 3.1. Let A = U − V be a proper splitting of A ∈ Rn×n. Then the splitting is

called proper G-regular splitting if U# exists, U# ≥ 0 and V ≥ 0.

Definition 3.2. Let A = U − V be a proper splitting of A ∈ Rn×n. Then the splitting is

called a proper G-weak regular splitting if U# exists, U# ≥ 0 and U#V ≥ 0.

Below is an algorithm which we have used for computing proper G-weak regular splittings

in this article.
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Algorithm 2 Generation of Proper G-weak regular splittings

1: procedure PROP G-WEAK REG(A)

2: Generate B = {K : R(A) = R(K) & N(A) = N(K)}

3: while (true) do

4: U = Random(B)

5: if (U# ≥ 0 & U#(U −A) ≥ 0) then

6: return U

7: end if

8: end while

9: end procedure

The next example shows that a proper G-weak regular splitting does not imply a proper

G-regular splitting.

Example 3.1. Let A =







1 −1 3

−1 10 −3

3 −3 9






=







2 −1 6

−2 10 −6

6 −3 18






−







1 0 3

−1 0 −3

3 0 9






= U − V .

Then R(U) = R(A), N(U) = N(A), U# =







0.0056 0.0056 0.0167

0.0112 0.1111 0.0335

0.0167 0.0167 0.05






≥ 0 and U#V =







0.5 0 0.15

0.0004 0 0.0012

0.15 0 0.45






≥ 0. Hence, the splitting A = U − V is a proper G-weak regular

splitting but not a proper G-regular splitting since V 6≥ 0.

From the above example, it is clear that the class of proper G-weak regular splittings

contains the class of proper G-regular splittings. We next recall convergence results for both

of these class of matrices which also characterize the notion of group monotonicity. The first

one concerns a proper G-regular splitting of a matrix, and a particular case of Theorem 3.2

and Theorem 3.4 of [1].

Theorem 3.1. Let A = U − V be a proper G-regular splitting of A ∈ Rn×n. Then A# ≥ 0

if and only if ρ(U#V ) < 1.

The next one is about the convergence of proper G-weak regular splittings. It follows

from Theorem 3.8, [1] and Theorem 4.2, [33].

Theorem 3.2. Let A = U − V be a proper G-weak regular splitting of A ∈ Rn×n. Then

A# ≥ 0 if and only if ρ(U#V ) < 1.
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The rate of convergence of the scheme (2) depends upon ρ(U#V ). Therefore, the smaller

spectral radius of the iteration matrix yields the faster convergence rate of the iterative

scheme (2) to solve the system (1). The next result helps us to choose an iteration scheme

having the faster convergence rate if A has two different subclasses of proper splitting which

leads to two different iteration schemes.

Theorem 3.3. Let A = B − C be a proper G-weak regular splitting and A = U − V be

a proper G-regular splitting of a group monotone matrix A ∈ Rn×n. If B# ≥ U#, then

ρ(B#C) ≤ ρ(U#V ) < 1.

Proof. By Theorem 3.1 and Theorem 3.2, we have ρ(U#V ) < 1 and ρ(B#C) < 1, respec-

tively. Since B#C ≥ 0, there exists an eigenvector x ≥ 0 such that xtB#C = ρ(B#C)xt,

by Theorem 2.1. Hence x ∈ R(Ct) ⊆ R(Bt) = R(At). Now, the condition B# ≥ U#

yields (I − B#C)A# ≥ A#(I − V U#) by using Theorem 2.4 (e). This implies B#CA# ≤

A#V U#. Pre-multiplying xt to B#CA# ≤ A#V U#, we obtain xtB#CA# ≤ xtA#V U#,

i.e., ρ(B#C)xtA# ≤ xtA#V U#. Setting xtA# = zt and taking transpose both sides, we

get ρ(B#C)z ≤ (V U#)tz. Therefore, by Theorem 2.2 (i), we have ρ(B#C) ≤ ρ(V U#)t =

ρ(V U#) = ρ(U#V ) < 1 as z ≥ 0 and z 6= 0 which is shown below by the method of

contradiction. Suppose that z = 0. Then (At)#x = (A#)tx = (xtA#)t = zt = 0. So

x = PR(At),N(At)x = At(At)#x = 0 as x ∈ R(At) which is a contradiction.

We remark that the problems mentioned to be open in the concluding section of [26] can

be easily now solved by using the Moore-Penrose inverse version of the above result which

is Theorem 2.8, [28]. The proof of the above result follows analogous technique as in the

proof of Theorem 2.8, [28]. However, these ideas are completely different from [8], where

the author proved the above result in the nonsingular matrix setting. The present proof is

much simple than Elsener[8]’s one. One may refer part (c) of a Lemma proved in section 3

of [8] for the same, and the same is produced below.

Corollary 3.1. [8] Let A = B − C be a weak regular splitting and A = U − V be a regular

splitting of A ∈ Rn×n. If B−1 ≥ U−1 and A−1 ≥ 0, then ρ(B−1C) ≤ ρ(U−1V ) < 1.

4. Three-step Alternating Iterations

Throughout this section, we consider the co-efficient matrix A in (1) as of index 1 unless

otherwise mentioned. Let A = K − L = U − V = X − Y be three proper splittings of

A ∈ Rn×n. Let us consider the following iterative schemes:
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xk+1/3 = K#Lxk +K#b (3)

xk+1/2 = U#V xk+1/3 + U#b (4)

xk+1 = X#Y xk+1/2 +X#b (5)

to introduce the three-step alternating iteration scheme. We form a single iteration scheme

by eliminating xk+1/3 and xk+1/2 from (3), (4) and (5) to do computation. So, we get

xk+1 = X#Y U#V K#Lxk +X#(Y U#V K# + Y U# + I)b, k = 0, 1, 2, · · ·, (6)

where H = X#Y U#V K#L is the iteration matrix of the new iterative scheme (6) called as

the three-step alternating iteration scheme. The convergence of the individual splitting need

not imply the convergence of the three-step alternating iteration scheme (6) which is shown

in the following example.

Example 4.1. Let A =







4 4 10

7 −29 31

−1 11 −7






, K =







17.6 0.8 50.3

−41.2 −41.8 −102.775

19.6 14.2 51.025






,

U =







2.4 15.2 1.2

18.6 −31 65.1

−5.4 15.4 −21.3






, X =







5.6 2.4 15.2

−91 −111 −220

32.2 37.8 78.4






.

Here A = K −L = U −V = X −Y are three proper splittings. Also ρ(K#L) = 0.6835 < 1,

ρ(U#V ) = 0.5957 < 1, ρ(X#Y ) = 0.8452 < 1 but ρ(H) = 1.3579 6< 1.

Note that all the computations in this paper are made in fractions but for the presentation

point of view, we have rounded to 4 decimal places. So, there might be a little rounding

error. The algorithm for the three-step alternating iterations is produced next, and the same

is also used in Example 4.1.

Example 4.1 motivates further to study the convergence criteria of the three-step alter-

nating iterations, and the next result is in the same direction.

Theorem 4.1. If A = K − L = U − V = X − Y are three proper G-weak regular splittings

of a group monotone matrix A, then ρ(X#Y U#V K#L) < 1.

Proof. We have H = X#Y U#V K#L ≥ 0 as A = K−L = U −V = X−Y are three proper

G-weak regular splittings. By Theorem 2.4 (b), A#A = K#K = U#U = X#X. Since

X#AU#AK#A = X#(X − Y )U#(U − V )K#A

= X#XU#UK#A−X#XU#V K#A−X#Y U#UK#A +X#Y U#V K#A

= K#A− U#V K#A−X#Y K#A+X#Y U#V K#A,
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so the iteration matrix H is expressed as

H = X#Y U#V K#L

= X#(X − A)U#(U − A)K#(K − A)

= (U#U − U#A−X#A+X#AU#A)(K#K −K#A)

= A#A− U#A−X#A+X#AU#A−K#A

+ U#AK#A +X#AK#A−X#AU#AK#A.

= A#A− U#A−X#A+X#AU#A−K#A + U#AK#A +X#AK#A

−K#A+ U#V K#A+X#Y K#A−X#Y U#V K#A.

This implies

HA# = A# − U# −X# +X#AU# −K# + U#AK#

+X#AK# −K# + U#V K# +X#Y K# −X#Y U#V K#,

and hence

(I −H)A# = U# +X# −X#AU# +K# − U#AK# −X#AK#

+K# − U#V K# −X#Y K# +X#Y U#V K#

= U# +X# − U#(A+ V )K# −X#(A+ Y )K# −X#AU#

+K# +X#Y U#V K# +K#

= X#XU# −X#AU# +X# +X#Y U#V K#

= X#Y U# +X# +X#Y U#V K# ≥ 0.

Now, 0 ≤ (I + H + H2 + · · · + Hm)(I − H)A# ≤ A# for each non-negative integer m.

Therefore, the partial sums of the series

∞
∑

m=0

Hm remain uniformly bounded in norm. Hence

ρ(H) = ρ(X#Y U#V K#L) < 1.

We have the following result in case of nonsingular A.

Corollary 4.1. If A = K − L = U − V = X − Y are three weak regular splittings of a

monotone matrix A, then ρ(X−1Y U−1V K−1L) < 1.

The above one extends the convergence criteria of two-step alternating iteration scheme

proved by Benzi and Szyld in the first part of Theorem 3.2, [2]. The same is produced next

as a corollary.
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Corollary 4.2. (Theorem 3.2, [2]) If A = U − V = X − Y are two weak regular splittings

of a monotone matrix A, then ρ(X−1Y U−1V ) < 1.

The next example shows that the converse of Theorem 4.1 is not true.

Example 4.2. Let A =







−11 4 15

12 2 9

23 −2 −6






. Now

A =







−33.5 20 76.8429

62 10 45.1714

95.5 −10 −31.6714






−







−22.5 16 61.8429

50 8 36.1714

72.5 −8 −25.6714






= K − L

=







−58 53 206.271

41 −26 −100.114

99 −79 −306.386






−







−47 49 191.271

29 −28 −109.114

76 −77 −300.386






= U − V

=







−53 39.5 152.893

61 −24 −90.4286

114 −63.5 −243.321






−







−42 35.5 137.893

49 −26 −99.4286

91 −61.5 −237.321






= X − Y

are three proper splittings of A. Then ρ(H) = ρ(X#Y U#V K#L) = 0.4938 < 1. Now, the

individual splitting have the following property:

K# =







0.0029 0.0025 0.0101

0.0138 0.0026 0.0117

0.0109 0.0002 0.0016






≥ 0 and K#L =







0.7883 −0.0140 0.0118

0.6658 0.1493 0.6520

−0.1224 0.1633 0.6402






6≥ 0,

U# =







0.1041 0.0142 0.0654

0.1100 0.0144 0.0667

0.0059 0.0002 0.0013






≥ 0 and U#V =







0.4884 −0.3314 −1.2792

0.3166 −0.1488 −0.5661

−0.1719 0.1826 0.7131






6≥ 0,

X# =







0.0490 0.0061 0.0284

0.0577 0.0064 0.0305

0.0087 0.0003 0.0021






≥ 0 and X#Y =







0.8291 −0.1687 −0.6011

0.6690 0.0040 0.0734

−0.1601 0.1727 0.6745






6≥ 0.

Hence A = K − L = U − V = X − Y are not G-weak regular splittings of A.

The following result shows that the iteration matrix H of the three-step alternating

iterations induces a unique proper G-weak regular splitting.

Theorem 4.2. Let A = K − L = U − V = X − Y be three proper G-weak regular splittings

of a group monotone matrix A. If R(A) = R(K+X−A+Y U#L) and N(A) = N(K+X−
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A+ Y U#L), then there exists a unique proper G-weak regular splitting A = B − C induced

by H with B = K(K +X − A+ Y U#L)#X.

Proof. It is specified that A = K − L = U − V = X − Y are three proper splittings of A.

So, by Theorem 2.4 (b), A#A = K#K = U#U = X#X and AA# = KK# = UU# = XX#.

Equation (6) yields

B# = X#(Y U#V K# + Y U# + I)

= X#(X −A)U#(U −A)K# +X#(X − A)U# +X#

= X#XU#UK# −X#XU#AK# −X#AU#UK#

+X#AU#AK# +X#XU# −X#AU# +X#XX#

= X#XK# −X#XU#AK# −X#AK# +X#AU#AK#

+X#XU#KK# −X#AU#KK# +X#KK#

= X#(X −XU#A− A+ AU#A+XU#K −AU#K +K)K#.

On further simplification of AU#A−XU#A−AU#K +XU#K, we get AU#A−XU#A−

AU#K +XU#K = (A−X)(U#A− U#K) = Y U#L. Therefore,

B# = X#(K +X −A + Y U#L)K#. (7)

Since R(K + X − A + Y U#L) = R(A) and N(K + X − A + Y U#L) = N(A), we have

(K+X−A+Y U#L)#(K+X−A+Y U#L) = (K+X−A+Y U#L)(K+X−A+Y U#L)#.

Let G = K(K +X −A+Y U#L)#X , then B#GB# = X#(K +X −A+Y U#L)K#K(K +

X − A + Y U#L)#XX#(K + X − A + Y U#L)K# = B# and GB#G = K(K + X −

A + Y U#L)#XX#(K + X − A + Y U#L)K#K(K + X − A + Y U#L)#X = G. Also

B#G = X#(K + X − A + Y U#L)K#K(K + X − A + Y U#L)#X = X#X = XX# =

K(K +X −A+ Y U#L)#XX#(K +X −A+ Y U#L)K# = GB#. Hence G = (B#)# = B.

Next, we prove that A = B − C is a proper splitting. First, we show that N(A) = N(B).

Clearly, N(X) ⊆ N(B) since B = K(K +X − A + Y U#L)#X . Let Bx = 0 which implies

K(K+X−A+Y U#L)#Xx = 0. Pre-multiplying byK#, we get (K+X−A+Y U#L)#Xx =

0.

Again, pre-multiplying the last equation by K +X − A + Y U#L, we have Xx = 0. So
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N(B) ⊆ N(X). Hence N(A) = N(B). From (7), we have

B# = X#(K +X −A + Y U#L)K#

= X# +K# −X#AK# +X#(X − A)U#(K − A)K#

= X# +K# −X#AK# + U# − U#AK# −X#AU# +X#AU#AK#

= A# − (A# − U# −X# +X#AU# −K# + U#AK# +X#AK# −X#AU#AK#)

= A# − (A#AA# − U#AA# −X#AA# +X#AU#AA# −K#AA#

+ U#AK#AA# +X#AK#AA# −X#AU#AK#AA#)

= A# − (U#U − U#A−X#A+X#AU#A)(K#K −K#A)A#

= A# −X#Y U#V K#LA# = (I −H)A#.

But, we have ρ(H) < 1 by Theorem 4.1. So, I − H is nonsingular by Theorem 2.3. Let

G1 = B = A(I − H)−1. Now B#G1B
# = (I − H)A#A(I − H)−1(I − H)A# = B#.

Similarly, G1B
#G1 = G1. Again, B

#G1 = (I−H)A#A(I−H)−1 = (A#A−H)(I−H)−1 =

(A#A − A#AH)(I − H)−1 = A#A = AA# = G1B
#. Therefore, B = A(I − H)−1. Hence

A = B(I −H), and thus R(A) = R(B). Therefore, A = B − C is a proper splitting. Next,

to show uniqueness of proper splitting A = B − C. Suppose there exists another induced

splitting A = B1 −C1 such that H = B
#
1 C1. Then B1H = B1B

#
1 C1 = C1 = B1 −A. So, we

get B1(I−H) = A and thus B1 = A(I−H)−1 = B. Finally, B# = X#(Y U#V K#+Y U#+

I) = X#Y U#V K# + X#Y U# + X# ≥ 0 and B#C = X#Y U#V K#L ≥ 0. Therefore,

A = B − C is a unique proper G-weak regular splitting.

The above result in case of a nonsingular monotone matrix is stated by the following

corollary.

Corollary 4.3. Let A = K − L = U − V = X − Y be three weak regular splittings of a

monotone matrix A. Then there exists a unique weak regular splitting A = B − C induced

by H with B = K(K +X − A+ Y U−1L)−1X.

We also remark that this extends jointly Theorem 3.2 and 3.4 of [2]. To support Theorem

4.2, we have the following example.

Example 4.3. Let A =







9 −3 6

−3 5 −2

6 −2 4






, K =







9.9 −3.3 6.6

−3.3 5.5 −2.2

6.6 −2.2 4.4






, U =







13.5 −4.5 9

−4.5 7.5 −3

9 −3 6






,

X =







12.6 −4.2 8.4

−4.2 7 −2.8

8.4 −2.8 5.6






. Now A# =







0.0666 0.0577 0.0444

0.0577 0.2500 0.0385

0.0444 0.0385 0.0296






≥ 0 ,
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K# =







0.0605 0.0524 0.0403

0.0524 0.2273 0.0350

0.0403 0.0350 0.0269






≥ 0, K#L =







0.0629 0 0.0420

0 0.0909 0

0.0420 0 0.0280






≥ 0,

U# =







0.0444 0.0385 0.0296

0.0385 0.1667 0.0256

0.0296 0.0256 0.0197






≥ 0, U#V =







0.2308 0 0.1538

0 0.3333 0

0.1538 0 0.1026






≥ 0,

X# =







0.0475 0.0412 0.0317

0.0412 0.1786 0.0275

0.0317 0.0275 0.0211






≥ 0 and X#Y =







0.1978 0 0.1319

0 0.2857 0

0.1319 0 0.0879






≥ 0.

Then A = K − L = U − V = X − Y are three proper G-weak regular splittings of A. Also

R(K +X −A + Y U#L) = R(A) and N(K +X − A+ Y U#L) = N(A). So,

B = K(K +X − A+ Y U#L)#X =







9.0786 −3.0262 6.0524

−3.0262 5.0437 −2.0175

6.0524 −2.0175 4.0349







and

C = B − A =







0.0786 −0.0262 0.0524

−0.0262 0.0437 −0.0175

0.0524 −0.0175 0.0349






.

Now B# =







0.0660 0.0572 0.0440

0.0572 0.2478 0.0381

0.0440 0.0381 0.0293






≥ 0 and B#C =







0.0060 0 0.0040

0 0.0087 0

0.0040 0 0.0027






≥ 0.

Therefore, the splitting A = B − C induced by H is a proper G-weak regular splitting.

The next result confirms that the proposed alternating iterative scheme converges faster

than (2) under suitable assumptions.

Theorem 4.3. Suppose A = K −L = U − V = X − Y are three proper G-regular splittings

of a group monotone matrix A with R(A) = R(K +X − A + Y U#L) and N(A) = N(K +

X −A+ Y U#L). Then ρ(H) ≤ min{ρ(K#L), ρ(U#V ), ρ(X#Y )} < 1.

Proof. By Theorem 4.2, A = B−C is a proper G-weak regular splitting induced by H , and

from (6),

B# = X#(Y U#V K# + Y U# + I) = X#Y U#V K# +X#Y U# +X# ≥ X#.
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Again,

B# = X#Y U#V K# +X#Y U# +X#

= X#Y U#V K# +X#XU# −X#AU# +X#UU#

= X#Y U#V K# + U# +X#(U − A)U#

= X#Y U#V K# + U# +X#V U# ≥ U#.

Also,

B# = X#(K +X −A + Y U#L)K#

= X#KK# +X#XK# −X#(K − L)K# +X#Y U#LK#

= X# +K# −X#KK# +X#LK# +X#Y U#LK#

= X# +K# −X# +X#LK# +X#Y U#LK#

= K# +X#LK# +X#Y U#LK# ≥ K#.

Applying Theorem 3.3 to the pair of the splittings A = B −C and A = K −L, A = B −C

and A = U − V , and A = B − C and A = X − Y , we have ρ(H) ≤ ρ(K#L) <

1, ρ(H) ≤ ρ(U#V ) < 1 and ρ(H) ≤ ρ(X#Y ) < 1, respectively. Therefore, ρ(H) ≤

min{ρ(K#L), ρ(U#V ), ρ(X#Y )} < 1.

The result below is the case when A is nonsingular.

Corollary 4.4. Let A = K −L = U − V = X −Y be three regular splittings of a monotone

matrix A. Then ρ(H) ≤ min{ρ(K−1L), ρ(U−1V ), ρ(X−1Y )} < 1.

Again, we have the following corollary when two splitting are considered, and is proved

in [2].

Corollary 4.5. (Theorem 4.1, [2]) Let A = U − V = X − Y be two regular splittings of a

monotone matrix A. Then ρ(H) ≤ min{ρ(U−1V ), ρ(X−1Y )} < 1.

The converse of Theorem 4.3 does not hold. The next example justifies the claim.

Example 4.4. Let A =







−1 0 −3

0 1 2

0 2 4






, K =







−2 0 −6

0 1 2

0 2 4






, U =







−3 0 −9

0 1 2

0 2 4






,

X =







−4 0 −12

0 1 2

0 2 4






. Then A = K − L = U − V = X − Y are three proper split-

tings with ρ(H) = ρ(K#LU#V X#Y ) = 0.25 < 1. But A = K − L = U − V = X − Y
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are not proper G-regular splittings as K# =







−0.5000 0.3600 −0.7800

0 0.0400 0.0800

0 0.0800 0.1600






6≥ 0, L =







−1 0 −3

0 0 0

0 0 0






6≥ 0, U# =







−0.3333 0.1600 −0.6800

0 0.0400 0.0800

0 0.0800 0.1600






6≥ 0, V =







−2 0 −6

0 0 0

0 0 0






6≥ 0,

X# =







−0.2500 0.0600 −0.6300

0 0.0400 0.0800

0 0.0800 0.1600






6≥ 0 and Y =







−3 0 −9

0 0 0

0 0 0






6≥ 0.

The next example shows that the condition of G-regular cannot be dropped.

Example 4.5. Let

A =







25 −6 1

−7 4 0

4 6 1






, A# =







0.0428 0.0200 0.0054

0.0539 0.2218 0.0305

0.2044 0.6854 0.0968






≥ 0,

K =







−8.75 30.5 3.0776

8.25 −15.5 −1.3017

16 −16 −0.8276






, U =







−17.75 43 3.9655

14.25 −19 −1.3103

25 −14 0.0345






,

X =







−58.5 64.75 3.7802

24.5 −11.75 0.2716

15 29.5 4.5948






. Now X# =







0.0911 0.1619 0.0258

0.0370 0.0195 0.0049

0.2020 0.2203 0.0405






,

K# =







0.0436 0.0956 0.0145

0.0283 0.0214 0.0045

0.1285 0.1597 0.0281






and U# =







0.0031 0.0430 0.0054

0.0147 0.0290 0.0045

0.0473 0.1299 0.0189






.

Then A = K − L = U − V = X − Y are three proper splittings with R(A) = R(K +X −

A+ Y U#L) and N(A) = N(K +X −A+ Y U#L). But A = K − L = U − V = X − Y are

not G-regular splittings as

L =







−33.75 36.5 2.0776

15.25 −19.5 −1.3017

12 −22 −1.8276






6≥ 0, V =







−42.75 49 2.9655

21.25 −23 −1.3103

21 −20 −0.9655






6≥ 0
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and

Y =







−83.5 70.75 2.7802

31.5 −15.75 0.2716

11 23.5 3.5948






6≥ 0. Therefore,

ρ(H) = 1.7746 6≤ min{ρ(K#L) = 1.2987, ρ(U#V ) = 1.2530, ρ(X#Y ) = 1.2975} 6≤ 1.

Theorem 4.1 shows that the assumption of group monotonicity of A guarantees the

convergence of the three-step alternating iteration scheme. If we drop this assumption, then

the proposed theory may fail. To overcome this, the concept of a preconditioned matrix is

introduced next. In such a case, we consider the following system

QAx = Qb (8)

where Q is a nonsingular matrix called preconditioned matrix. Milaszewicz [23], used the

iteration matrix T which is irreducible and non-negative to improve the convergence rate of

the Gauss-Seidel and the Jacobi method. Gunawardena et al. [12] proposed the precondi-

tioned matrix Pc = I + S, (where S is the matrix shown in remark 3.3 [12]). Kohno et al.

[16] and Kotakemori et al. [17] extended the upper triangular approach by considering a

parametric preconditioned matrix Pc = I+S(α) to obtain faster convergence in the iterative

schemes which used for solving consistent linear systems. In case of a singular linear system,

we discuss the system (8) converges to A#b under suitable choice of Q. The iterative scheme

of the modified system (8) is defined by,

xk+1 = K#
q Lqx

k +K#
q Qb, (9)

where QA = Kq − Lq be a proper splitting of the matrix QA ∈ Rn×n, will converge to A#b

for any initial guess x0 if and only if ρ(K#
q Lq) < 1.

Next, we discuss the existence of preconditioned matrix for some particular cases as well

as the convergence of the iterative scheme for proper G-weak regular splittings.

Lemma 4.4. If there exists a nonsingular matrix Q ∈ Rn×n such that QA = AQ, then

(QA)# = A#Q−1 = Q−1A#.

Proof. The assumption QA = AQ yields A = Q−1AQ. Now A# = Q−1A#Q is the group

inverse of A which can be easily verified by the definition of group inverse. Pre-multiplying Q

in A# = Q−1A#Q we obtain QA# = A#Q. Let B = QA and X = A#Q−1. By the definition

of the group inverse: BXB = QAA#Q−1QA = B, XBX = A#Q−1QAA#Q−1 = X and

BX = QAA#Q−1 = AQA#Q−1 = AA#QQ−1 = A#A = A#Q−1QA = XB. Now post-

multiplying Q−1 in A# = Q−1A#Q we have A#Q−1 = Q−1A#.
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Remark 4.1. For A# ≤ 0, if we choose Q = −cI, (c > 0) and for A# ≥ 0, if we choose

Q = cI, (c > 0) then Lemma 4.4 along with (QA)# ≥ 0 holds.

Lemma 4.5. Let A# � 0. If there exists a nonsingular matrix Q ∈ Rn×n such that QA =

AQ, A#Q−1 ≥ 0, and QA = Kq − Lq is a proper G-weak regular splittings of QA, then the

iterative scheme (9) converges to A#b.

Proof. Since QA = AQ and A#Q−1 ≥ 0, we obtain (QA)# = A#Q−1 ≥ 0. As QA = Kq−Lq

is a proper G-weak regular splittings of a group monotone matrix QA. Then, the iterative

scheme (9) converges to (QA)#Qb = (QA)#Qb = A#Q−1Qb = A#b, by Theorem 3.2.

Remark 4.2. If A# is neither non-positive nor non-negative, i.e., some elements of A#

are positive and some are negative, then the construction of such Q seems to be an open

problem.

Remark 4.3. Under the same assumptions as in Lemma 4.5, and if QA = Kq − Lq =

Uq − Vq = Xq − Yq are three proper G-weak regular splittings of QA. Then, by Theorem 4.1

the alternating iterative scheme generated from the splittings of QA, i.e.,

xk+1 = X#
q YqU

#
q VqK

#
q Lqx

k +X#
q (YqU

#
q VqK

#
q + YqU

#
q + I)b (10)

will converge to A#b, for any initial value x0. The numerical implementation of the iterative

scheme (10) and its comparison are discussed in the next section.

The next result shows that the preconditioned approach is also more preferable even for

group monotone matrices.

Theorem 4.6. Let A = K − L be a proper G-weak regular splitting of a group monotone

matrix A. Assume that there exists a nonsingular matrix Q such that QA = AQ and

A#Q−1 ≥ 0. If QA = Kq − Lq is a proper G-regular splitting of QA and QK#
q ≥ K#, then

ρ(K#
q Lq) ≤ ρ(K#L) < 1.

Proof. By Theorem 3.2 and Theorem 3.1, we have ρ(K#
q Lq) < 1 and ρ(K#L) < 1, respec-

tively. Since LqK
#
q ≥ 0, there exists an eigenvector x ≥ 0 such that

LqK
#
q x = ρ(K#

q Lq)x, (11)

by Theorem 2.1. This implies x ∈ R(LqK
#
q ) ⊆ R(A). Since N(Lq) ⊇ N(Kq), so QA =

(I −LqK
#
q )Kq. Therefore, A

# = QK#
q (I −LqK

#
q )

−1 by Theorem 2.4 (e). Now QK#
q ≥ K#

implies A#(I − LqK
#
q ) ≥ (I −K#L)A#. Further simplification yields

A#LqK
#
q ≤ K#LA#. (12)

17



Post-multiplying x in (12) and using equation (11), we have ρ(K#
q Lq)A

#x ≤ K#LA#x. Let

us assume z = A#x. We obtain z ≥ 0 and z 6= 0 (z = 0 leads to x ∈ R(A) ∩N(A) which is

not possible). Hence, by Theorem 2.2 (i) the required result follows.

5. Numerical Examples

In this section, we discuss a few examples and its numerical implementation for the proposed

theory in the previous section. The performance measures calculated are the number of

iterations (IT), the mean processing time in seconds (MT) and the estimation of error

bounds. All the numerical examples are worked out by using Mathematica 10.0 (for examples

5.1-5.5) and MATLAB R2017a (for examples 5.6-5.7) on an Intel(R) Core(TM)i5, 2.5GHz,

4GBRAM, which runs on the operating system: Mac OS X El Capitan Version 10.11.6. We

use the following stopping criterion to terminate the process: The iteration is terminated if

‖xk − xk−1‖2 ≤ ǫ or it reaches to the maximum allowed iterations 2000.

Example 5.1. Let us consider a linear system Ax = b with A =







3 1 2

1 −12 13

2 13 −11






and

b = (1, 1, 0)t. Then A# =







0.1471 0.0691 0.0781

0.0691 0.0120 0.0571

0.0781 0.0571 0.0210






≥ 0. Consider the following three

proper G-weak regular splittings of A as

A =







4.75 2.5 2.25

1.5833 −11.5 13.0833

3.1667 14 −10.8333






−







1.75 1.5 0.25

0.5833 0.5 0.0833

1.1667 1 0.1667






= K − L = (Splitting 1)

=







5 2 3

2 −12 14

3 14 −11






−







2 1 1

1 0 1

1 1 0






= U − V = (Splitting 2)

=







5.2083 2.9583 2.25

2.25 −10.8333 13.0833

2.9583 13.7917 −10.8333






−







2.2083 1.9583 0.25

1.25 1.1667 0.0833

0.9583 0.7917 0.1667






= X − Y = (Splitting 3)

with K# =







0.0937 0.0476 0.0462

0.0424 0.0013 0.0411

0.0514 0.0463 0.0051






≥ 0, K#L =







0.2456 0.2105 0.0351

0.1228 0.1053 0.0175

0.1228 0.1053 0.0175






≥ 0,
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U# =







0.0885 0.0417 0.0469

0.0417 0 0.0417

0.0469 0.0417 0.0052






≥ 0, U#V =







0.2656 0.1354 0.1302

0.1250 0.0833 0.0417

0.1406 0.0521 0.0885






≥ 0,

X# =







0.0855 0.0446 0.0409

0.0409 0.0007 0.0401

0.0446 0.0439 0.0007






≥ 0 and X#Y =







0.2838 0.2519 0.0319

0.1297 0.1127 0.0170

0.1541 0.1392 0.0149






≥ 0.

Therefore, ρ(H) = 0.0614 ≤min{ρ(K#L) = 0.3684, ρ(U#V ) = 0.3983, ρ(X#Y ) = 0.4163} <

1. The numerical results for the convergence analysis is provided in Table and comparison

results discussed in Table .

The next example shows the importance of the study of the alternating iteration scheme

in the group inverse setting. Note that existing theory in the literature uses the non-

negativity of the Moore-Penrose inverse, see [10, 24, 26] which fails here.

Example 5.2. Let us consider another system Ax = b with A =







10 −4 17

54 −42 77

−12 15 −13






and

b = (−1,−11, 4)t. The matrix A has non-negative group inverse but does not have non-

negative Moore-Penrose inverse. Since

A† =







−0.0028 0.0043 −0.0064

0.0577 0.0033 0.0849

0.0363 0.0109 0.0489






6≥ 0 but A# =







0.0242 0.0113 0.0565

0.0548 0.0102 0.1164

0.0090 0.0119 0.0265






≥ 0.

Now consider A asA = K−L = U−V = X−Y, whereK =







14.8681 −0.1590 29.4750

73.5383 −42.9540 115.1930

−14.4671 21.2385 −13.3840






,

U =







16.1942 −0.9500 31.5405

76.0650 −35.7555 125.4440

−13.7411 16.4528 −15.4113






, X =







16.9186 −2.1315 32.1250

76.7119 −39.0705 124.3265

−12.9780 16.3380 −13.9758






.

Clearly,

K# =







0.0098 0.0049 0.0230

0.0269 0.0012 0.0544

0.0012 0.0068 0.0073






≥ 0, K#L =







0.0874 0.1763 0.3018

0.0197 0.4414 0.3595

0.1212 0.0438 0.2729






≥ 0,
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U# =







0.0122 0.0047 0.0277

0.0357 0.0015 0.0722

0.0004 0.0063 0.0054






≥ 0, U#V =







0.1313 0.1067 0.3388

0.1283 0.2230 0.4170

0.1328 0.0486 0.2996






≥ 0,

X# =







0.0129 0.0043 0.0288

0.0365 0.0004 0.0730

0.0011 0.0063 0.0068






≥ 0, X#Y =







0.1593 0.0754 0.3718

0.1899 0.1670 0.4992

0.1440 0.0296 0.3081






≥ 0.

The spectral radius of the individual splittings and the alternating iteration matrix are as

follows: ρ(K#L) = 0.5841, ρ(U#V ) = 0.5515, ρ(X#Y ) = 0.5541, ρ(H) = 0.1728 < 1. The

convergence analysis is provided in the Table ??.

Example 5.3. Let us consider a system Ax = b with A =







3 −1 −9

−5 −5 −12

−18 −14 −27






and b =

(−18,−4, 6)t. Here A# =







0.0972 0.0294 −0.0413

0.0099 0.0007 −0.0137

−0.0674 −0.0274 0.0001






� 0. We find a nonsingular matrix

Q =







4.9000 −1.8600 −0.5300

−2.0371 7.5984 −2.8996

−1.8670 −2.7776 0.9755







such that with QA = AQ and (QA)# ≥ 0. Now consider the new system QAx = Qb, where

QA has three different proper G-weak regular splittings i.e., QA = Kq − Lq = Uq − Vq =

Xq − Yq. Now Kq =







36.0660 12.5447 −8.7030

9.8863 6.1737 8.6910

−6.4071 5.9764 34.7760






,

Uq =







35.6316 12.4668 −8.3015

9.4460 5.8062 7.9290

−7.2936 4.9516 32.0885






, Xq =







34.9083 12.2843 −7.8472

8.7488 5.3427 7.2025

−8.6617 3.7439 29.4545






.

Clearly,

K#
q =







0.0222 0.0091 0.0001

0.0077 0.0052 0.0084

0.0008 0.0066 0.0254






≥ 0, K#

q Lq =







0.0725 0.0303 0.0030

0.0530 0.0465 0.1007

0.0866 0.1091 0.2990






≥ 0,
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U#
q =







0.0225 0.0092 0.0001

0.0081 0.0056 0.0092

0.0018 0.0075 0.0277






≥ 0, U#

q Vq =







0.0597 0.0255 0.0048

0.0428 0.0381 0.0838

0.0686 0.0889 0.2466






≥ 0,

X#
q =







0.0231 0.0094 0.0001

0.0088 0.0061 0.0102

0.0034 0.0089 0.0304






≥ 0, X#

q Yq =







0.0379 0.0175 0.0083

0.0223 0.0251 0.0649

0.0290 0.0578 0.1863






≥ 0.

The spectral radius of the individual splittings and the alternating iteration matrix are as

follows: ρ(K#
q Lq) = 0.3417, ρ(U#

q Vq) = 0.2823, ρ(X#
q Yq) = 0.2097, ρ(H) = 0.0203 < 1. The

convergence analysis is shown in the Table .

Example 5.4. Let us consider a system Ax = b with A =







47 −9 −5

5 0 4

−14 3 3






and b =

(6, 3,−1)t. Clearly A is group monotone matrix since A# =







0.0843 0.0311 0.2145

0.2801 0.1526 0.9462

0.0653 0.0405 0.2439






≥ 0.

Let

A = K − L =







52.2707 −9.3666 −2.5190

7.1598 1.8711 14.5844

−15.0370 3.7459 5.7011






−







5.2707 −0.3666 2.4810

2.1598 1.8711 10.5844

−1.0370 0.7459 2.7011







is a proper G-weak regular splitting of A since

K# =







0.0380 0.0065 0.0610

0.0884 0.0449 0.2834

0.0168 0.0128 0.0741






≥ 0 and K#L =







0.1510 0.0436 0.3274

0.2693 0.2630 1.4604

0.0394 0.0731 0.3777






≥ 0.

Then there exists a nonsingular matrix

Q =







12.1426 2.4576 7.0308

7.1770 22.2770 26.4823

4.3098 0.6414 24.3790






, QA =







484.5610 −88.1914 −29.7904

77.9525 14.8537 132.6700

−135.536 34.3484 54.1534







such that QA = AQ and (QA)# =







0.0041 0.0007 0.0068

0.0092 0.0049 0.0308

0.0017 0.0014 0.0080






≥ 0. Now let us consider a

new system QAx = Qb, where QA has a proper G-regular splitting i.e., QA = Kq − Lq.
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Now

Kq =







493.1640 −76.7488 31.2533

89.3695 28.7235 207.4530

−134.5980 35.1574 58.7334






and Lq =







8.6028 11.4425 61.0437

11.4170 13.8697 74.7837

0.9386 0.8091 4.5800






.

K#
q =







0.0032 0.0002 0.0035

0.0063 0.0032 0.0202

0.0010 0.0010 0.0056






≥ 0 and Lq ≥ 0.

Since QK#
q − K# =







0.0235 0.0109 0.0703

0.1029 0.0543 0.3393

0.0265 0.0145 0.0897






≥ 0. Therefore, ρ(K#

q Lq) = 0.3318 ≤

0.6993 = ρ(K#L) < 1. The numerical results for comparison is discussed in Table.

The concept of the three-step alternating iteration scheme and comparison results can

be applied to nonsingular system. The validation of the proposed approach is explained in

the next example.

Example 5.5. Let us consider the nonsingular M-matrix

A =





































10.8654 −0.3333 −1.4444 −1.2222 −0.6667 −0.1111 −1.3333 −2 −0.5556

−1.6667 9.0877 −2 −1.3333 −0.8889 −2 −0.2222 −0.5556 −0.3333

−1.6667 −1.5556 9.8654 −1.1111 −1.2222 −1.3333 −1.5556 −1.8889 −2.2222

−0.7778 −0.8889 −2.2222 9.1988 −1.8889 −1 −0.1111 −0.5556 −0.5556

−1.4444 −0.4444 −1.2222 −1.2222 10.6432 −0.1111 −0.1111 −1.8889 −2.1111

−1.5556 −0.5556 −0.4444 −0.3333 −1.7778 9.9765 −1.5556 −1.1111 −2

−1.8889 −1.1111 −0.3333 −0.5556 −2.1111 −1.5556 9.6432 −1.8889 −2.1111

−0.8889 −2 −0.1111 −0.1111 −0.5556 −0.3333 −0.2222 10.8654 −0.3333

−0.6667 −0.6667 −1.3333 −1.4444 −1.5556 −1.4444 −1.6667 −2.2222 9.5321





































= K − L = U − V = X − Y are three weak regular splitting of A such that A−1 ≥ 0. In
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this case

K =





































11.1529 0.0167 −1.5694 −1.0347 −0.3042 0.3014 −1.2333 −1.6875 −0.5931

−1.3417 8.9502 −1.7125 −1.1333 −0.4639 −2.2750 0.1278 −0.7556 −0.7083

−1.7292 −1.2306 10.0779 −1.2611 −1.0097 −1.5833 −1.4556 −1.9889 −2.2722

−0.5778 −1.0139 −2.2972 9.2488 −1.4139 −1 −0.4111 −0.3806 −0.2681

−1.8069 −0.0694 −1.3347 −1.2597 10.7057 0.2889 −0.0986 −1.4389 −1.9986

−1.1431 −0.7056 −0.1819 −0.1458 −1.3653 9.8390 −1.1056 −1.2236 −1.6375

−1.7139 −0.8986 −0.0208 −0.1806 −2.4361 −1.2056 9.8182 −1.7514 −2.2486

−0.4889 −1.95 −0.2361 −0.0236 −0.2431 0.1292 −0.0972 11.1279 0.0417

−0.2792 −0.3542 −1.0458 −1.7069 −1.7181 −1.0819 −1.8167 −1.9347 9.7696





































,

U =





































11.0404 −0.0458 −1.3569 −1.4097 −0.5542 0.0389 −1.5333 −1.7125 −1.0181

−1.1667 9.1002 −1.9250 −0.8958 −0.7389 −2.2750 −0.3097 −0.3681 −0.1083

−1.1792 −1.5806 9.5654 −0.8736 −0.9972 −0.9833 −1.3806 −1.7764 −2.0347

−1.0653 −0.6639 −1.8472 9.1113 −1.6139 −0.8250 0.0014 −0.5806 −0.1681

−1.6944 −0.1319 −1.0097 −1.1597 10.6557 0.1139 0.1014 −1.6139 −1.8986

−1.2181 −0.8931 −0.0319 −0.2458 −1.5903 10.2015 −1.6181 −0.8486 −1.5

−1.5014 −0.9986 −0.3458 −0.2056 −2.1111 −1.5806 10.1432 −1.6264 −1.6236

−0.6514 −1.5375 −0.1611 0.2139 −0.0556 −0.1458 0.1778 11.2529 0.0917

−0.8292 −0.7042 −0.8833 −1.4694 −1.7056 −1.1319 −1.4167 −2.1722 9.1446





































,

X =





































11.1779 −0.0833 −1.6069 −1.3972 −1.1167 0.3764 −0.8333 −1.5875 −0.8556

−2.1292 9.5502 −2.0250 −1.3833 −0.5389 −1.7375 0.2778 −0.1806 0.0667

−1.2417 −1.4681 9.9029 −1.2236 −1.2347 −0.8958 −1.9431 −2.1639 −2.3222

−0.5278 −1.1139 −2.4097 9.6363 −1.8264 −1.0750 −0.2611 −0.5806 −0.4931

−1.0319 −0.1319 −0.9597 −0.7347 11.0307 0.0264 0.2514 −1.7139 −2.4361

−1.3556 −0.5181 −0.2694 −0.6708 −1.6278 9.6890 −1.3931 −0.6611 −1.9250

−2.1389 −1.0111 −0.1833 −0.0931 −1.8361 −1.5181 9.5807 −1.8014 −1.8236

−0.7014 −2.2125 −0.1236 0.2764 −0.0681 −0.2458 −0.4472 10.7029 0.0292

−0.9417 −0.7667 −1.0708 −1.2569 −1.7056 −1.0319 −1.5792 −1.9347 10.0071





































.

Here ρ(X−1Y U−1V K−1L) = 0.1513 ≤ 0.3038 = ρ(U−1V K−1L) ≤ 0.5346 = ρ(K−1L).

The comparison analysis of one step, two-step and three-step alternating iteration scheme

is provided in the table. It also contains the same analysis for two random nonsingular

matrices of order 1000 and 2000.
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6. Conclusion

We have introduced the three-step alternating iterations for singular linear systems of index

1 and studied its convergence criteria. Three algorithms are also provided for numerical

computation and complexity. Finally, a comparison result is proved which guarantees the

fact that the three-step alternating iterations converges faster than the usual one, and is also

shown through examples. The authors of [10], [24] and [26] studied the two-step alternating

iterations for rectangular matrices using the Moore-Penrose inverses, very recently. However,

their works lack computational implementation which is addressed in this paper. Finally,

we conclude the paper with the comparative analysis of one step, two step and three step

iterations.

The iterative methods (i.e., matrix splitting methods) and semi-iterative methods are

among many methods that have been suggested in the literature to solve real singular linear

systems. A matrix is called an EP matrix if R(A) = R(At). If A is an EP matrix, then the

proposed scheme will converge to the least squares solution of minimum norm. Migallón

et al. [21] studied alternating two-stage methods for consistent linear systems to obtain

the parallel solution of Markov chains, recently. The same authors further extended the

same notion in [22]. Further applications of this theory to compute the PageRank of a

google matrix can also be found in the recent article [11]. Hence, we conclude this article

with the hope that our work may help to deal with singular linear systems which appear in

different areas of mathematics as mentioned above and in the introduction part. We hope

that this work will provide useful insights into extending this approach and thus help in

solving rectangular linear systems in a faster way.
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