
HAL Id: hal-04247041
https://hal.science/hal-04247041

Submitted on 17 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizations of a fast multipole symmetric Galerkin
boundary element method code

Anicet Dansou, Saïda Mouhoubi, Cyrille Chazallon

To cite this version:
Anicet Dansou, Saïda Mouhoubi, Cyrille Chazallon. Optimizations of a fast multipole symmet-
ric Galerkin boundary element method code. Numerical Algorithms, 2020, 84 (3), pp.825-846.
�10.1007/s11075-019-00781-z�. �hal-04247041�

https://hal.science/hal-04247041
https://hal.archives-ouvertes.fr


AUTHOR'S PROOF!

Metadata of the article that will be visualized in OnlineFirst

1 Article Title Optimizations of a fast multipole symmetric Galerkin boundary
element method code

2 Article Sub-Title
3 Article Copyright -

Year
Springer Science+Business Media, LLC, part of Springer Nature
2019 
(This will be the copyright line in the final PDF)

4 Journal Name Numerical Algorithms
5

Corresponding
Author

Family Name Dansou
6 Particle
7 Given Name Anicet
8 Suffix
9 Organization ICube UMR 7357, CNRS, INSA Strasbourg
10 Division
11 Address 24 bd de la victoire, 67084, Strasbourg, France
12 e-mail anicet.dansou@insa-strasbourg.fr
13

Author

Family Name Mouhoubi
14 Particle
15 Given Name Saïda
16 Suffix
17 Organization ICube UMR 7357, CNRS, INSA Strasbourg
18 Division
19 Address 24 bd de la victoire, 67084, Strasbourg, France
20 e-mail saida.mouhoubi@insa-strasbourg.fr
21

Author

Family Name Chazallon
22 Particle
23 Given Name Cyrille
24 Suffix
25 Organization ICube UMR 7357, CNRS, INSA Strasbourg
26 Division
27 Address 24 bd de la victoire, 67084, Strasbourg, France
28 e-mail cyrille.chazallon@insa-strasbourg.fr
29

Schedule
Received 7 February 2019

30 Revised
31 Accepted 9 July 2019
32 Abstract This paper presents some optimizations of a fast multipole symmetric

Galerkin boundary element method code. Except general optimizations,
the code is specially sped up for crack propagation problems. Existing
useful computational results are saved and re-used during the
propagation. Some time-consuming phases of the code are accelerated
by a shared memory parallelization. A new sparse matrix method is
designed based on coordinate format and compressed sparse row format
to limit the memory required during the matrix construction phase. The
remarkable performance of the new code is shown through many
simulations including large-scale problems.

33 Keywords
separated by ' - '

SGBEM - FMM - Parallelization - Sparse matrix - Fatigue crack
propagation

34 Foot note
information



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms
https://doi.org/10.1007/s11075-019-00781-z

ORIGINAL PAPER 1

1

Optimizations of a fast multipole symmetric Galerkin 2

boundary element method code 3

Anicet Dansou1 · Saı̈da Mouhoubi1 · Cyrille Chazallon1 4

Received: 7 February 2019 / Accepted: 9 July 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract 4

This paper presents some optimizations of a fast multipole symmetric Galerkin 5

boundary element method code. Except general optimizations, the code is specially 6

sped up for crack propagation problems. Existing useful computational results are 7

saved and re-used during the propagation. Some time-consuming phases of the code 8

are accelerated by a shared memory parallelization. A new sparse matrix method is 9

designed based on coordinate format and compressed sparse row format to limit the 10

memory required during the matrix construction phase. The remarkable performance 11

of the new code is shown through many simulations including large-scale problems. 12

Keywords SGBEM · FMM · Parallelization · Sparse matrix · 13

Fatigue crack propagation 14

1 Introduction 15

Crack problems are of great interest in civil engineering. This research area has been

Q1

16

very vast and active since many centuries ago. Many numerical methods are used to 17

simulate crack problems, for example the well-known finite element method (FEM), 18

the boundary element method (BEM), and the discrete element method (DEM). The 19

principal advantages of the BEM in crack problems are the dimension reduction of

Q2

20

� Anicet Dansou
anicet.dansou@insa-strasbourg.fr

Saı̈da Mouhoubi
saida.mouhoubi@insa-strasbourg.fr

Cyrille Chazallon
cyrille.chazallon@insa-strasbourg.fr

1 ICube UMR 7357, CNRS, INSA Strasbourg, 24 bd de la victoire, 67084 Strasbourg, France

mailto: anicet.dansou@insa-strasbourg.fr
mailto: saida.mouhoubi@insa-strasbourg.fr
mailto: cyrille.chazallon@insa-strasbourg.fr


AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

the problem, the accuracy of the stress field results ahead of singularities, and the21

simplicity of the re-meshing during the propagation. An interesting approach of the22

BEM is the symmetric Galerkin BEM (SGBEM). The SGBEM yields symmetric23

coefficient matrix and presents an important gain from a numerical point of view as it24

reduces the computational cost and also permits BEM/FEM coupling (see references25

[6, 9, 22]). Another advantage of the SGBEM over the traditional collocation BEM26

is the ability to treat hypersingular and singular integrals solely by means of stan-27

dard continuous elements. For this reason, the SGBEM can easily capture the crack28

tip behavior and provide smoother solution in the neighborhood of geometric discon-29

tinuities. The SGBEM is used in many works for crack problems (see for example30

Frangi [7] for a simple fatigue crack growth simulation; Roberts et al. [18] and Kitey31

et al. [13] for crack growth in particulate composites; Xu et al. [26] for 2D crack32

propagation; Tavara [23] for cohesive crack growth in homogeneous media; Nguyen33

et al. [14] and Nguyen et al. [15] for exploiting the advantages of isogeometric34

analysis).35

The usual slow evaluation of double integrals in the SGBEM can be accelerated36

by the fast multipole method. Initially introduced by Rohklin [19], this algorithm37

considers one group of particles and represents it by an intermediate pole. As all the38

interactions with this group are transferred via this pole, the overall number of oper-39

ations is greatly reduced. By coupling the SGBEM with the fast multipole method40

(FMM) and an iterative solver, the complexity of the method is significantly reduced:41

O(N) for the storage requirements and O(NlogN) for the operation count [27].42

Therefore, the range of boundary analysis can be extended to large-scale practical43

issues with good performance (see, for example, application of FMM in elastody-44

namics [4]). Trinh [25] presented a fast multipole accelerated symmetric Galerkin45

BEM (FM-SGBEM) code to simulate crack problems.46

Over recent decades, computers have evolved a lot. Parallel architecture machines47

have become standard. Parallel computing techniques can significantly increase the48

performance of existing serial codes. Many researchers have used parallelization to49

accelerate the BEM (see for example [1, 11, 12, 16]). In this work, a parallel imple-50

mentation of the code presented by Trinh [25] is achieved. The matrices manipulated51

in FM-SGBEM are almost always sparse. Several techniques can reduce the stor-52

age space of sparse matrices. The simplest method is the coordinate format (COO).53

COO stores each non-zero value of the matrix with its coordinates in three vectors.54

The most popular method is the compressed sparse row (CSR) format, suggested55

in [3] and [20]. In this work, an efficient method is presented: the upper bounded56

incremental coordinate (UBI-COO) method. This new method takes advantage of the57

simplicity of the COO format and the performance of the CSR format to limit the58

memory required during the matrix construction phase.59

This paper is organized in the following way: Section 2 introduces the SGBEM,60

the FMM and the initial fast multipole symmetric Galerkin BEM code for crack61

propagation; Section 3 presents the different optimizations: data re-using for fast62

matrix computation, parallel implementation, and optimized use of sparse matrix for-63

mats. Numerical examples and performances of the optimized code are presented in64

Section 4.65



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

2 FM-SGBEM and initial crack propagation code 66

2.1 Symmetric Galerkin BEM 67

Let us consider a fractured solid Ω subjected to prescribed tractions tD on the 68

boundary St and displacement constraints uD on Su. The boundary of Ω (includ- 69

ing the crack Sc) is thus defined as S = St

⋃
Su

⋃
Sc. Sc is conceived as a locus of 70

displacement discontinuity (Fig. 1). The jump of the displacements can be computedQ3 71

as: 72

�u(x) = u(x+) − u(x−) (1)

where u(x+) and u(x−) are respectively the displacement of the upper and lower 73

faces of the crack
(
Sc = S−

c

⋃
S+

c

)
. The direction of the normal of the crack is by 74

convention, pointing from S− to S+. The boundary integral formulation for this 75

problem is written as follows: 76
⎧
⎨

⎩

Buu(u, ũ) + Btu(t, ũ) + B�uu(�u, ũ) = Fu(ũ)

But (u, t̃) + Bt t (t, t̃) + B�ut (�u, t̃) = Ft (t̃)
Bu�u(u, �ũ) + Bt�u(t, �ũ) + B�u�u(�u, �ũ) = F�u(�ũ)

(2)

We introduce here Bt t , Btu and B�u�u for example the bilinear forms: 77

Bt t (t, t̃) =
∫

Su

∫

Su

tk(x)Uk
i (x, x̃)t̃i (x̃)dSx̃dSx

Btu(t, ũ) = −
∫

Su

∫

ST

tk(x)T k
i (x, x̃)ũi(x̃)dSx̃dSx

B�u�u(�u, �̃u) =
∫

Sc

∫

Sc

[R�u]iq (x)Bikqs(r)[R�ũ]ks(x̃)dSx̃dSx (3)

u, t and �u are respectively the unknown on St , Su and Sc; Uk
i (x, x̃) and T k

i (x, x̃) 78

are respectively the ith displacement and traction of x due to a point load at x̃ in 79

Fig. 1 An elastic cracked domain



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

the direction of the kth coordinate axis. For x and x̃ ∈ R3, they are called Kelvin80

fundamental solutions and are written as:81

Uk
i (x, x̃) = 1

16πμ(1 − ν)r
[r̂i r̂k(3 − 4ν) + δik] (4)

T k
i (x, x̃) = − 1

8π(1 − ν)r2
nj (x)[3r̂i r̂k r̂j + (1 − 2ν)(δik r̂j + δjkr̂i − δij r̂k)] (5)

having set r = x − x̃, r = ‖r‖, r̂ = r/r82

The formulations (7) are written in regularized form which contains only weakly83

singular double integrals: O
(
r−1

)
. The regularization procedure involves the Stokes84

theorem together with the indirect regularization. The surface curl operator R arises85

as a result of this manipulation and is defined as:86

[Ru]ks(x̃) = ejf snjuk,f (x̃) (6)

while the weakly singular fourth-order tensor Bikqs is given by:87

Bikqs(r) = 1

8π(1 − ν)r
[2δqs r̂i r̂k + 2(δikδqs − 2νδisδkq − (1 − ν)δiqδks)] (7)

Weak continuity requirements (C0,α) are enforced on u, �u, ũ, �ũ which is less88

restrictive than the collocation approach (C1,α). The SGBEM can therefore deal89

with hypersingular and other singular integral boundary equations only by means90

of standard continuous elements. Besides, the Galerkin discretized matrix is sym-91

metric since the role of x or x̃ can be exchanged and the fundamental solutions are92

symmetric.93

2.2 Fast multipole method94

The fast multipole method is an alternative technique to enhance the performance of a95

boundary integral analysis. The bottlenecks in BEM are due to the presence of Kernel96

function: the same calculation is repeated from one observation point to another thus97

entailing a high amount of operations. Furthermore, since the interactions between98

points are normally non-zero, the resulted matrix is fully populated. In FMM, inter-99

mediate points (called poles) are used to represent distant particle groups and then100

a local expansion is introduced to evaluate the distant contributions in the form of a101

series. The principle of the FMM can be illustrated in Fig. 2: We need to compute the102

interaction between 2 groups of points x and y (respectively, on Sx and Sy). Suppos-103

ing that we have n points on Sx and m points on Sy , we should therefore need m.n104

operations by conventional approach. FMM, on the other hand, uses the point O to105

represent Sy ; the contributions from Sy are thus carried out and transferred to every106

point x via O; the total number of operations is now reduced to only m + n which is107

much smaller than m.n. In conjunction with an iterative solver, FMM can generally108

reduce the computational complexity of a BEM problem from O(N2) to O(NlogN).109

In SGBEM, the FMM reformulates the kernels Uk
i , T k

i , Bikqs into multipole110

series, which achieves a complete separation of the variables x and x̃. For this111

purpose, the relative solution vector r = x − x̃ (see Fig. 3) is decomposed into112



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

Fig. 2 Illustration of the FMM

r = x′ + r0 − x̃′ with r0 = x0 − x̃0, x′ = x − x0 and x̃′ = x̃ − x̃0 in terms of 2 poles 113

x0, x̃0. With these notations, the multipole expansion of 1/r (see [27]) is given by: 114

1

r
=

∞∑

n=0

n∑

m=−n

(−1)nRnm(x̃′)
n∑

n′=0

n′
∑

m′=−n′
Sn+n′,m+m′(r0)Rn′m′(x′)

Rnm(y) = 1

(n + m)!P
m
n (cosα)eimβρn

Snm(y) = (n − m)!P m
n (cosα)eimβ 1

ρn+1
(8)

(ρ, α, β) being the spherical coordinates of the argument y and P m
n denoting the Leg- 115

endre polynomials, and with the overbar denoting complex conjugation. For given 116

poles x0, x̃0, the above expansion (18) is convergent for any x0, x̃0 such that: 117

‖x′‖ < ‖x̃′ − r0‖and‖x̃′‖ < ‖x′ + r0‖ (9)

Let 
(x0) and 
̃(x̃0) ⊂ ∂Ω denote two subsets of ∂Ω such that (18) holds for any 118

x ∈ 
(x0) and x̃ ∈ 
̃(x̃0). Then, the contribution of surfaces 
(x0), 
̃(x̃0) to the 119

bilinear form Bt t (t, t̃), denoted by Bt t (x0, x̃0), is given by: 120

Bt t (x0, x̃0) =
∫


(x0)

∫


̃(x̃0)

tk(x)Uk
i (x, x̃)t̃i (x̃)dSx̃dSx (10)

Fig. 3 Decomposition of the position vector



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

and can be evaluated by replacing the kernel Uk
i by its multipole expansion, and121

likewise for the other bilinear forms. For simplicity, only the contribution Bt t (x0, x̃0)122

is detailed here. The treatment of the other bilinear forms follows the same approach.123

By substituting (18) into (20), the contribution Bt t (x0, x̃0) can be written as:124

Bt t (x0, x̃0) =
∞∑

n=0

n∑

m=−n

(−1)n
∞∑

n′=0

n′
∑

m′=−n′

{
M̃1

knm(x̃0)Sn+n′,m+m′(r0)M
1
kn′m′(x0)

+ M̃1
knm(x̃0)r0kSn+n′,m+m′(r0)M

2
n′m′(x0)

+ M̃2
nm(x̃0)Sn+n′,m+m′(r0)M

2
n′m′(x0)

}
(11)

In terms of the multipole moments:125

M1
knm(x0) =

∫

Su

Rnm(x′)tk(x′)dS′
x

M2
nm(x0) =

∫

Su

Rnm(x′)x′
ktk(x

′)dS′
x (12)

associated to the pole x0 and:126

M̃1
knm(x̃0) =

∫

Su

[

δik − (3 − 4ν)x̃k

∂

∂x̃i

]

Rnm(x̃′)t̃i (x̃′)dS′
x

M̃2
nm(x̃0) = (3 − 4ν)

∫

Su

∂

∂x̃i

Rnm(x̃′)t̃i (x̃′)dS′
x (13)

associated to the pole x̃0. Equation (11) can be recast into the following equivalent127

form:128

Bt t (t, t̃) =
∞∑

n=0

n∑

m=−n

(−1)n
{
M̃1

knm(x̃0)L
1
knm(x̃0) + M̃2

nm(x̃0)L
2
nm(x̃0)

}
(14)

in terms of the local expansion coefficients, related to the multipole moments by the129

following multipole-to-local (M2L) relation:130

L1
knm(x0) =

n∑

n′=0

n′
∑

m′=−n′
Sn+n′,m+m′(r0)[M1

kn′m′(x0) + r0kM
2
n′m′(x0)]

L2
nm(x0) =

n∑

n′=0

n′
∑

m′=−n′
Sn+n′,m+m′(r0)M

2
n′m′(x0) (15)

2.3 Octree structure131

To optimize the acceleration permitted by (14), a hierarchical octree structure of ele-132

ments is introduced. For that purpose, a cube containing the whole boundary, called133

level-0 cell, is divided into eight cubes (level-1 cells), each of which is divided in the134

same way. The cell subdivision is continued until the number of elements in a cell is135



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

Fig. 4 An octree structure

smaller than a given value (which is called max elem). Any given boundary element 136

is deemed to belong to one cell of a given level only, even if is geometrically shared 137

by two or more same-level cells (see Fig. 4). 138

2.4 Initial crack propagation code 139

The initial FM-SGBEM code and its performance are well detailed in [24, 25]. This 140

Fortran code inherits a number of innovative algorithms from the BE community 141

such as (i) the singular integration schemes by Andrä and Schnack [2, 8], (ii) the 142

index of severity [17], (iii) the nested Flexible GMRES which makes use of the near- 143

interaction matrix [4]; and (iv) the extension of the BIEs to multizone configurations 144

[10]. Subroutines of matrix-vector operations are taken from BLAS library. Flexible 145

GMRES and GMRES scripts are downloaded from www.cerfacs.fr. 146

Figure 5 resumes the main phases of the code. In a nutshell, the aim is to solve a 147

linear system (K .X = b) with an iterative solver: the Flexible GMRES. The matrix 148

K which corresponds to (2) is composed of double surface integrals Bt t , Btu and 149

B�u�u presented in (3). Bt t for example, is double integral over two surfaces Su. 150

The generic double surface integral takes the following aspect: 151

I (Se, Sf ) =
∫

Se

∫

Sf

f (x)G(x, y)g(y)dSydSx (16)

www.cerfacs.fr


AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

Fig. 5 Initial FM-SGBEM code for crack propagation

where Se and Sf are the surfaces of source and field elements (x ∈ Se, y ∈ Sf ),152

f (x) and g(y) are respectively known and test function. G(x, y) is the Kernel which153

contains the singularity O
(
r−1

)
or O

(
r−2

)
.154

The matrix K can be separated in two parts: Knear and Kf ar . Kf ar consists155

of the integrals over far enough surfaces (according to (9)), calculated with the156



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

FMM (see (14) for Bt t ). Knear consists of the integrals over near surfaces. Sin- 157

gularities will occur when these two surfaces Se and Sf are coincident, adjacent 158

by edge, or adjacent by vertex. The singular integrals are evaluated using special 159

schemes (see [2, 25]). The regular integrals are evaluated with normal quadrature 160

rule: 161

I (Se, Sf ) =
∫

�e

∫

�f

f (x(η))G(x(η), y(ξ))g(y(ξ))Jy(ξ)Jx(η)dξdη (17)

where �e ∈ [−1, 1] × [−1, 1] and �f ∈ [−1, 1] × [−1, 1]. This integral can be 162

approximated by: 163

I (Se, Sf ) �
Npge∑

i=1

Npgf∑

j=1

f (ηi )G(ηi , ξ j )g(ξ j )Jy(ξ j )Jx(ηi )A
j

ξ j
Ai

ηi
(18)

where ηi and Ai
ηi

denote the abscissas and weights of the Gaussian points for exterior 164

elements; ξ j and A
j

ξ j
denote the corresponding parameters for the interior elements. 165

Npge and Npgf are the number of Gaussian points for exterior and interior elements 166

respectively. 167

With the separation, the linear system to solve can be written as in (19). It is 168

important to note that due to the FMM, Kf ar is not stored, and the matrix-vector 169

product Kf ar ∗ X is computed directly. When the convergence is achieved, the crack 170

propagates, and the elastostatic code is repeated. 171

(
Knear + Kf ar

)
.X = b (19)

3 Improvements and optimizations 172

3.1 Model description 173

Before the optimizations, let us present first the models used in this paper for per- 174

formance comparison. The models are about a crack array embedded in a clamped 175

cube of edge 3000 mm, subjected to uniform tensile load p = 1MPa at the top face. 176

The crack array contains n3
c randomly oriented penny-shaped cracks (rc = 25mm) 177

on a cubic grid of step dc. The center of the crack array is located at the center of 178

the cube. The distance dc is sufficiently large to avoid influences between cracks. 179

Each crack of the crack array (see Fig. 8, the distance dc is reduced for this figure) is 180

meshed with 48 QUA8 elements with 161 nodes (see Fig. 6). For some simulations, 181

the cracks are meshed with 768 QUA8 elements with 2369 nodes, see Fig. 7. The

Q4

182

cube and the position of the cracks are presented in Figs.8, 9 and 10. The number 183

after C is the number of cracks. 184



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

Fig. 6 Circular crack mesh 48
elements

3.2 Fast computation of b and Knear185

In the initial algorithm, during each cycle, a layer of new elements is added to the186

geometry and the system (especially the matrix Knear ) needs to be recomputed. If187

one rebuilds the coefficient matrix, the interactions between pairs of old elements188

will be repeated and will require wasteful operations because nothing changes in189

the calculation of those interactions. Therefore, starting from the second cycle, the190

interactions between pairs of old elements are re-used. Only the parts of the matrix191

that are related to the newly added elements are computed (see Algorithms 1 and 2).192

Re-using the interactions between pairs of old elements for the computation of193

Knear is a simple idea, but one must be sure to keep in the same conditions as the194

initial configuration. For example, the octree structure must be fixed from one cycle195

to another so that near elements stay near elements and the same thing goes for far196

Fig. 7 Circular crack mesh 768
elements



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

Fig. 8 Crack array 2x2x2

elements. So, as shown in algorithm 2, the octree is built only during the first cycle as 197

described in Section 2.3 by taking as main input the maximum number of elements 198

in a leaf max elem. For the following cycles, only newly added elements must be 199

Fig. 9 Model C8



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

Fig. 10 Model C2744

affected to an existing octree cell by the Update Octree routine. At a given cycle i,200

for each existing octree cell c, this routine consists of:201

1. Identifying old crack front elements elem
f ront

c,i−1 belonging to cell c.202

2. Identifying for each elem
f ront

c,i−1 , the corresponding new crack front element203

elem
f ront
c,i .204

3. Adding the new element elem
f ront
c,i to the element list of cell c.205

In the initial co de, quater-point elements are used at the crack front, and they are
Q5

206

returned back to normal QUA 8 elements before adding new quater-point elements207

at the new crack-front. So, those elements are modified and their contributions in the208

matrix are not the same after the propagation. That means their contributions can not209

be simply re-used. To solve this problem, the contributions of modified elements are210

saved format in another matrix. After each increment, the contribution of modified211

elements is removed from the old matrix (algorithm 2, line 11). Then, those elements212

are set as new elements (algorithm 2, line 9) so that their new contributions are com-213

puted (algorithm 2, line 15). The treatment of crack front elements is therefore based214

on (20). It is important to note that the position of the unknowns can change from215

one cycle to another. Permutation operations must be performed in these cases on216

the matrices of the previous cycle. All of these matrix manipulations are performed217

while maintaining a compressed matrix format: the Compressed Sparse Row (CSR).218

Ki =
(
Ki−1 − K

f ront

i−1

)
+

(
K

oldf ront
i + K

f ront
i

)
(20)



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

With the fast computation, the cost of re-constructing the coefficients matrix Knear 219

can be greatly reduced especially in the case of few number of cracks. The effect of 220

the fast computation is shown in Table 1 for different models. In Table 1, Tpre is the 221

cumulated preparation time from cycle 2 to cycle 10. Figure 11 presents for model 222

C8, the duration of the preparation phase for each cycle. 223

224

225

226

227



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

Table 1 Fast Knear computation: results

No. Model Ninit
dof s Ncycles Nend

dof s Tpre (s) T old
pre (s) Speedup

1 C1 16,593 10 17,889 1051 478 2.2

2 C4 17,754 10 22,938 2892 440 6.6

3 C8 19,302 10 29,670 4925 857 5.7

4 C16 22,398 10 40,830 14,387 3059 4.7

3.3 Parallel implementation with OpenMP228

Parallelization is a technique for dividing a large problem into small problems that229

can be solved simultaneously. The aim is to solve the initial problem in the small-230

est possible time. A multiprocessing parallelization is achieved in this work by

Q6

231

using OpenMP [5]. OpenMP is an Application Program Interface (API) for paral-232

lel computing on shared memory architecture. It simplifies writing multi-threaded233

applications by using compiler directives and library routines.234

The goal here is to speed up the existing code by avoiding big changes. A sim-235

ple observation of Trinh’s [24] results (see Table 2) shows that the solving phase236

is time-consuming. To reduce this duration, it is necessary to reduce the number of237

iterations or the duration of one iteration. This work focuses on the duration of one238

Fig. 11 Fast Knear computation: C16 result



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

Table 2 Bi-material cube with crack array: Trinh’s results [24]

No. Ndof s Tpre (s) Niter Tsol (s) Ttot (s) Tsol/Ttot (%)

1 401,412 5457 79 44,319 50,986 87

2 683,148 12,197 66 79,464 95,584 83

3 1,061,928 11,903 102 190,944 206,114 93

iteration. Almost all the time of one iteration (more than 90%) is spent in the routine 239

Sub MVP. So the time-consuming parts of the routine Sub MVP are parallelized by 240

using OpenMP directives. 241

As illustrated in Fig. 5, Sub MVP consists of the computation of matrice vec- 242

tor products. Code profiling shows that Kf ar .wj evaluated with (14) for Bt t , is the 243

most time-consuming part of Sub MVP due to multiple imperfectly nested loops. In 244

multizone configurations, the number of these deeply nested loops can reach 12: 245

nzones∑

zone

ncells∑

cell

nel∑

el

4,9,16∑

gauss

4,8∑

node

3∑

dir

7∑

order

N∑

M=−N

3∑

A

3∑

B

3∑

J

3∑

I

(21)

This part of the code is completely reorganized and parallelized. Loop invariants 246

are identified and moved out of loops. Vectorization work is performed for the inner- 247

most loops. For this part, the parallelization of the first loop is not interesting due to 248

the large amount of data that would be in private. Also, the problems considered here 249

have a maximum of three zones. Thus, the second and the third outer loops are par- 250

allelized. In the second loop, the number of iterations is the number of octree cells 251

ncells, while in the third it is the number of elements in a cell nel. These numbers 252

vary from one problem to another and depend on the octree construction, especially 253

on the parameter max elem. A parameterized nested parallelism is performed with 254

OpenMP (see Listings 1 and 2). The user can enable or disable one or both of the par- 255

allel loops and if enabled, the number of threads can be given. For small problems, 256

the parameter max elem can have a high value (100, 200, 1000, ...). nel is thus high 257

and ncells is small. For these cases, the third parallel loop should be activated. For 258

large-scale problems, max elem is generally limited (50, 30, 15,...) by the computer 259

RAM memory. nel is thus small, ncells is high, and the second parallel loop should 260

be activated. 261

The speedup and the efficiency of the parallelization are shown in Table 3 for the 262

model C216 and for one iteration. Simulations are done on a 20-core Intel Xeon E5- 263

2630v4 processor running at 2.2 GHz. After the acceleration of the solving phase, 264

the preparation phase is also accelerated by the parallelization of the time-consuming 265

part of subroutine Sub b knear. The speedup and the efficiency of the parallelization 266

are similar to those of the solving phase (Table 3). Table 4 shows the global speedup 267

and efficiency due to the parallel implementation for the model C216. The code can 268

be more parallelized but it will become more complex and extension work will be 269

difficult. Although the code is not entirely parallelized, the parallelization results are 270

very good. 271



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

Listing 1 A parameterized nested parallelism: part 1

Listing 2 A parameterized nested parallelism: part 2



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

Table 3 Parallelization:
efficiency (Sub MVP) Nth TSub MV P (s) Speedup Efficiency(%)

1 221 – –

2 113 2.0 98

4 64 3.5 86

8 34 6.6 82

12 24 9.4 78

16 18 12.0 75

20 17 13.3 67

3.4 Upper bounded incremental coordinate method 272

In large-scale simulations, the memory usage requires special attention, especially in 273

a context of parallel computing. In the initial code, the CSR format is used to store 274

the matrices after computation, but dense format (DNS) is used before and during the 275

computation (see subroutine Sub b knear). Using DNS for construction causes large 276

allocated but not used memory. Since the construction is in parallel, dense format 277

causes pic of allocated memory. To avoid this, an upper bounded incremental coor- 278

dinate method (UBI-COO) is designed for the construction of the matrices. Based 279

on Sparsekit subroutines written by Youcef Saad [21], necessary subroutines for the 280

manipulation of the matrices in COO or CSR format are written. The coordinate 281

format (COO) is well known for constructing sparse matrices. 282

A comparison between DNS and UBI-COO is presented in Fig. 12. Using DNS 283

is simple: a dense matrix is allocated and is converted to CSR format at the end of 284

the construction. With the UBI-COO, the coordinate format is used in an incremental 285

way. A parameter fixes the maximal number of data in the COO. When the limit is 286

reached (Fig. 12: step 1.6 and 2.6), the COO matrix is converted to CSR (step 1.7 287

and 2.7) and the CSR is cumulated with an existing CSR (step 1.8). At this step, 288

multiple entries are also cumulated. The COO is then re-initialized for the rest of the 289

construction. In fact, the number of non-zero is not known before the computation, 290

so the dimension of the arrays which contain the coordinates and the non-zero values 291

is not known. So, two parameters (p1 and p2) are used to achieve incremental COO. 292

Table 4 Parallelization: global
efficiency Nth Ttot (s) Speedup Efficiency(%)

1 3 771 – –

2 2 217 1.7 85

4 1 241 3.0 76

8 760 5.0 62

12 603 6.3 52

16 534 7.0 44

20 528 7.1 36



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

Fig. 12 DNS and UBI-COO principles

The first is the initial dimension of the arrays and the second is the increment to re-293

size the arrays. Optimal value must be found for each parameter. While constructing294

a matrix, multiple entries often happen. Multiple entries can greatly increase the size295

of the COO arrays because each entry is saved independently. It is difficult to deal296

with multiple entries in the COO format while the matrix is in construction. So, a297

parameter (p3) is used. p3 represents the maximum size of the COO arrays. When298

Fig. 13 UBI-COO results: 3 cycles with model C8



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

Table 5 Static tests

No. Model Ndof s (s) Ttot (s) T old
tot (s) Speedup

1 C8 19,302 169 1469 8.7

2 C64 40,974 611 6417 10.5

3 C1000 403,206 4478 72,107 16.1

4 C1728 684,942 8721 119,249 13.7

5 C1000 1,075,206 15,446 166,808 10.8

6 C8000 3,112,206 53,288 848,162 15.9

the COO size reaches p3, the COO matrix is converted to CSR and cumulated with a 299

temporal CSR matrix and the COO arrays are re-set and then the multiple entries are 300

cumulated in the temporal CSR matrix. 301

This upper bounded incremental coordinate method erases memory peaks. 302

Figure 13 presents the virtual memory needed using DNS and UBI-COO during the 303

matrix computation for the model C8. There is no memory variation during the solu- 304

tion phase, so only one iteration is performed in order to focus on the preparation 305

phase (matrix computation). It can be noticed that the maximum memory needed is 306

greatly reduced. It can also be noticed that the duration of the construction phase is 307

reduced (for cycles 2 and 3) because less data are manipulated. 308

4 Numerical examples 309

This section presents the results of all the optimizations presented in this paper. The 310

calculation times are measured on an Intel Xeon (20 cores, 2.2 GHz) computer with 311

128 Go of RAM. Ttot is the total time including pre-processing (input reading, octree 312

construction, etc.) and post-processing (results writing in files). This duration is com- 313

pared with Trinh’s code [24] duration noted T old
tot . Table 5 shows computational data 314

for static analyses. Table 6 shows computational data for propagation analyses. For 315

the cube with 8 cracks (model C8), the evolution of the total time according to the 316

cycle number is presented in Fig. 14. 317

Table 6 Propagation tests: cube with crack array

No. Model Ninit
dof s Ncycles Nend

dof s Ttot (s) T old
tot (s) Speedup

1 C8 19,302 10 29,670 889 31,396 35.3

2 C64 40,974 8 123,918 3445 220,685 64.1

3 C512 214,350 8 656,718 48,556 2,500,000 51.5

4 C2744 1,078,134 3 1,868,406 399,600 8,000,000 20.1



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

Fig. 14 Evolutions of total time

5 Conclusion318

The paper has presented an optimized version of the fast multipole symmetric319

Galerkin boundary element method for crack problems. Three main optimizations320

have been achieved: data re-using which allows fast matrix computation for crack321

propagation problems, parallel implementation for shared memory systems with322

OpenMP, and memory reduction by a new sparse matrix storage method. Using the323

computer configuration presented in the paper, the speedup is in the range of 10324

to 15 for static crack problems and can exceed 60 for crack propagation problems.325

This means saving much time for the simulation of crack problems in civil engineer-326

ing. Furthermore, numerical results on problems involving up to 3.106 unknowns327

have been discussed. They show the applicability of the proposed FM-SGBEM to328

large-scale multicrack configurations such as composite structures.329

Other optimizations will be investigated in future, for example the use of hierachi-330

cal matrix representation and the coupling of the FM-SGBEM code with the FEM.331

The coupled code will make use of the advantages of the FEM and thus will extend332

the code to inhomogeneous and anisotropic materials and non-linear constitutive333

behavior.334

Funding information This work is supported in part by the French National Research Agency (SolDuGri335
project ANR-14-CE22-0019) and in part by the region “Grand-Est, France.”336



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

References 337

1. Adelman, R., Gumerov, N.A., Duraiswami, R.: Fmm/gpu-accelerated boundary element method for 338
computational magnetics and electrostatics. IEEE Trans. Magn. 53(12), 1–11 (2017) 339

2. Andrä, H., Schnack, E.: Integration of singular galerkin-type boundary element integrals for 3d 340
elasticity problems. Numer. Math. 76(2), 143–165 (1997) 341

3. Brameller, A., Allan, R.N., Hamam, Y.M.: Sparsity: its practical application to systems analysis 342
London. Pitman, New York (1976) 343

4. Chaillat, S.: Fast Multipole Method for 3-D elastodynamic boundary integral equations. Application 344
to seismic wave propagation. Theses, Ecole des Ponts ParisTech (2008) 345

5. Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R.: Parallel Programming in 346
OpenMP. Morgan Kaufmann Publishers Inc., San Francisco (2001) 347

6. Costabel, M.: Symmetric methods for the coupling of finite elements and boundary elements (invited 348
contribution). In: Brebbia, C.A., Wendland, W.L., Kuhn, G. (eds.) Mathematical and computational 349
aspects, pp. 411–420. Springer, Berlin (1987) 350

7. Frangi, A.: Fracture propagation in 3d by the symmetric galerkin boundary element method. Int. J. 351
Fract. 116(4), 313–330 (2002) 352

8. Frangi, A., Novati, G., Springhetti, R., Rovizzi, M.: 3d fracture analysis by the symmetric galerkin 353
bem. Comput. Mech. 28(3), 220–232 (2002) 354

9. Ganguly, S., Layton, J.B., Balakrishna, C.: Symmetric coupling of multi-zone curved galerkin 355
boundary elements with finite elements in elasticity. Int. J. Numer. Methods Eng. 48(5), 633–654 356
(2000) 357

10. Gray, L.J., Paulino, G.H.: Symmetric galerkin boundary integral formulation for interface and multi- 358
zone problems. Int. J. Numer. Methods Eng. 40(16), 3085–3101 (1997) 359

11. Greengard, L., Gropp, W.: A parallel version of the fast multipole method. Computers & Mathematics 360
with Applications 20(7), 63–71 (1990) 361

12. Gu, J., Zsaki, A.M.: Accelerated parallel computation of field quantities for the boundary element 362
method applied to stress analysis using multi-core cpus, gpus and fpgas. Cogent Engineering 5(1), 363
1–21 (2018) 364

13. Kitey, R., Phan, A.V., Tippur, H.V., Kaplan, T.: Modeling of crack growth through particulate clus- 365
ters in brittle matrix by symmetric-galerkin boundary element method. Int. J. Fract. 141(1), 11– 366
25 (2006) 367

14. Nguyen, B., Tran, H., Anitescu, C., Zhuang, X., Rabczuk, T.: An isogeometric symmetric galerkin 368
boundary element method for two-dimensional crack problems. Comput. Methods Appl. Mech. Eng. 369
306, 252–275 (2016) 370

15. Nguyen, B., Zhuang, X., Wriggers, P., Rabczuk, T., Mear, M., Tran, H.: Isogeometric symmetric 371
galerkin boundary element method for three-dimensional elasticity problems. Comput. Methods Appl. 372
Mech. Eng. 323, 132–150 (2017) 373

16. Ptaszny, J.: Parallel fast multipole boundary element method applied to computational homogeniza- 374
tion. AIP Conference Proceedings 1922(1), 140003 (2018) 375

17. Rezayat, M., Shippy, D., Rizzo, F.: On time-harmonic elastic-wave analysis by the boundary element 376
method for moderate to high frequencies. Comput. Methods Appl. Mech. Eng. 55(3), 349–367 (1986) 377

18. Roberts, D.J., Phan, A.V., Tippur, H.V., Gray, L.J., Kaplan, T.: Sgbem modeling of fatigue crack 378
growth in particulate composites. Arch. Appl. Mech. 80(3), 307–322 (2010) 379

19. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60(2), 380
187–207 (1985) 381

20. Rose, D., Willoughby, R.A. (eds.): Sparse matrices and their applications (1972) 382
21. Saad, Y.: Sparskit, a basic tool kit for sparse matrix computations. Tech. rep., Center for Supercom- 383

puting Research and Development (1990) 384
22. Springhetti, R., Novati, G., Margonari, M.: Weak coupling of the symmetric galerkin bem with fem 385

for potential and elastostatic problems. Computer Modeling in Engineering and Sciences (2006) 386
23. Távara, L., Mantič, V., Salvadori, A., Gray, L.J., Parı́s, F.: Sgbem for cohesive cracks in homogeneous 387

media. Key Eng. Mater. 454, 1–10 (2011) 388
24. Trinh, Q.T.: Modelling multizone and multicrack in three-dimensional elastostatic media: a fast 389

multipole galerkin boundary element method. Ph.D. thesis, INSA de Strasbourg (2014) 390



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

UNCORRECTED
PROOF

Numerical Algorithms

25. Trinh, Q.T., Mouhoubi, S., Chazallon, C., Bonnet, M.: Solving multizone and multicrack elastostatic391
problems: A fast multipole symmetric galerkin boundary element method approach. Engineering392
Analysis with Boundary Elements 50, 486–495 (2015)393

26. Xu, K., Lie, S.T., Cen, Z.: Crack propagation analysis with galerkin boundary element method. Int. J.394
Numer. Anal. Methods Geomech. 28(5), 421–435 (2004)395

27. Yoshida, K.: Applications of fast multipole method to boundary integral equation method. Kyoto396
University, Ph.D. thesis (2001)397

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps398
and institutional affiliations.399



AUTHOR'S PROOF! JrnlID 11075 ArtID 781 Proof#1 - 13/07/2019

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES:

Q1. Anicet Dansou has been set as the corresponding author. Please
check and advise if correct.

Q2. Please check affiliation if captured and presented correctly.
Q3. Missing citation for Figure 1 was inserted here. Please check if

appropriate. Otherwise, please provide citation for Figure 1. Note
that the order of main citations of figures/tables in the text must
be sequential.

Q4. Dummy citation for Figure 8 was inserted here. Please check if
appropriate. Note that the order of main citations of figures in the
text must be sequential.

Q5. Please check “quater-point elements” for clarity and/or correct-
ness.

Q6. Please provide significance for bold/italicized entries found in
Tables 1, 2, 3, 4, 5, and 6. Otherwise, please remove empha-
sis. Also, thousands separator (comma) was used; please check if
appropriate.


