Skip to main content
Log in

A second-order artificial compression method for the evolutionary Stokes-Darcy system

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we present a second-order decoupled scheme based on the artificial compression method for the time-dependent Stokes-Darcy equations. This method not only uncouples the velocity and hydraulic head by implicit-explicit method but also uncouples the velocity and pressure by artificial compression method; therefore, it only requires one velocity, one pressure, and one hydraulic head problem at each time step by treating the coupling terms explicitly and relaxing the incompressibility constraint. We derive the long-time stability for the velocity and the hydraulic head and give the error analysis for the fully discrete scheme with finite element spatial discretization. Numerical tests are presented to show the accuracy and efficiency of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  2. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43(1–2), 57–74 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gatica, G.N., Meddahi, S., Oyarźua, R.: A conforming mixed finite element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29(1), 86–108 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cao, Y.Z., Gunzburger, M., Hu, X.L., Hua, F., Wang, X.M., Zhao, W.D.: Finite element approximations for Stokes-Darcy flow with Beavers-Joseph interface conditions. SIAM J. Numer. Anal. 47(6), 4239–4256 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Shan, L., Zheng, H.B.: Partitioned time stepping method for fully evolutionary Stokes-Darcy flow with Beavers-Joseph interface boundary condition. SIAM J. Numer. Anal. 51(2), 813–839 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Zuo, L.Y., Du, G.Z.: A parallel two-grid linearized method for the coupled Navier-Stokes-Darcy problem. Numer. Algor. 151-165, 77 (2018)

    MATH  MathSciNet  Google Scholar 

  7. Li, R., Li, J., He, X.M., Chen, Z.X.: A stabilized finite volume element method for a coupled Stokes-Darcy problem. Appl. Numer. Math. https://doi.org/10.1016/j.apnum.2017.09.013 (2017)

  8. Li, R., Gao, Y.L., Li, J., Chen, Z.X.: A weak Galerkin finite element method for a coupled Stokes-Darcy problem on general meshes. J. Comput. Appl. Math. 111-127, 334 (2018)

    MATH  MathSciNet  Google Scholar 

  9. Riviére, B.: Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput. 22/23(1), 479–500 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wang, G., He, Y.N., Li, R.: Discontinuous finite volume methods for the stationary Stokes-Darcy problem. Int. J. Numer. Meth. Eng. 107(5), 395–418 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  11. Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. Electron. Trans. Numer. Anal. 26(29), 350–384 (2007)

    MATH  MathSciNet  Google Scholar 

  12. Discacciati, M., Quarteroni, A., Valli, A.: Robin-Robin domain decomposition methods for the Stokes-Darcy coupling. SIAM J. Numer. Anal. 45(3), 1246–1268 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zuo, L.Y., Hou, Y.R.: A two-grid decoupling method for the mixed Stokes-Darcy model. J. Comput. Appl. Math. 275(275), 139–147 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mu, M., Xu, J.C.: A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45(5), 1801–1813 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hou, Y.R: Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Stokes-Darcy model. Appl. Math. Lett. 57, 90–96 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cai, M.C., Mu, M.: A multilevel decoupled method for a mixed Stokes/Darcy model. J. Comput. Appl. Math. 236(9), 2452–2465 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mu, M., Zhu, X.H.: Decoupled schemes for a non-stationary mixed Stokes-Darcy model. Math. Comput. 79(270), 707–731 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Layton, W., Tran, H., Trenchea, C.: Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater-surface water flows. SIAM J. Numer. Anal. 51(51), 248–272 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Layton, W., Tran, H., Xiong, X.: Long time stability of four methods for splitting the evolutionary Stokes-Darcy problem into Stokes and Darcy subproblems. J. Comput. Appl. Math. 236(13), 3198–3217 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Li, Y., Hou, Y.R., Li, R.: A stabilized finite volume method for the evolutionary Stokes-Darcy system. Computers and Mathematics with Applications 75(2), 596–613 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  21. Li, R., Gao, Y.L., Li, J., Chen, Z.X.: Discontinuous finite volume element method for a coupled non-stationary Stokes-Darcy problem. J Sci Comput. 74(2), 693–727 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  22. Chen, W.B., Gunzburger, M., Sun, D., Wang, X.M.: Efficient and long-time accurate second-order methods for Stokes-Darcy System. SIAM J. Numer. Anal. 51(5), 2563–2584 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Chen, W.B., Gunzburger, M., Sun, D., Wang, X.M.: Efficient and long-time accurate third-order methods for Stokes-Darcy system. Numerische Mathematik 134 (4), 857–879 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  24. Michaela, K., Marina, M.: Analysis of a second-order, unconditionally stable, partitioned method for the evolutionary Stokes-Darcy model. Int. J. Numer. Anal. Model. 12(4), 704–730 (2015)

    MathSciNet  Google Scholar 

  25. Shan, L., Zheng, H.B., Layton, W.: A decoupling method with different sub-domain time steps for the nonstationary Stokes-Darcy model. Numer. Methods Partial Differential Equations 29(2), 549–583 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rybak, I., Magiera, J.: A multiple-time-step technique for coupled free flow and porous medium systems. J. Comput. Phys. 272(5), 327–342 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  27. Li, Y., Hou, Y.R.: A second-order partitioned method with different subdomain time steps for the evolutionary Stokes-Darcy system. Math. Methods Appl. Sci. 41 (5), 2178–2208 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  28. Shen, J.: On error estimates of projection methods for the Navier-Stokes equations: first order schemes. SIAM J. Numer. Anal. 29(1), 57–77 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  29. Shen, J.: On error estimates of the projection method for the Navier-Stokes equations: second order schemes. Math. Comp. 65, 1039–1065 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Engrg. 195, 6011–6045 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Shen, J.: On error estimates of the penalty method for unsteady Navier-Stokes equations. SIAM J. Numer. Anal. 32(2), 386–403 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kan, J.: A second order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Computing. 7, 870–891 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  33. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comp. 22, 745–762 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  34. Chen, Z.X.: Finite Element Methods and their Applications. Scientific Computation. Springer, Berlin (2005)

    Google Scholar 

  35. Hecht, F., Pironneau, O., Ohsuka, K.: FreeFEM++. Available at: http://www.freefem.org/ff++/ (2010)

  36. Shen, J.: On a new pseudocompressibility method for the incompressible Navier-Stokes equations. Applied Numerical mathematics 21, 71–90 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  37. DeCaria, V., Layton, W., McLaughlin, M.: A conservative, second order, unconditionally stable artificial compression method. Comput. Methods Appl. Mech. Engrg. 733-747, 325 (2017)

    MATH  MathSciNet  Google Scholar 

  38. Kubacki, M., Moraiti, M.: Analysis of a second-order, unconditionally stable, partitioned method for the evolutionary Stokes-Darcy model. Int. J. Numer. Anal. Model. 12(4), 704–730 (2015)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Foundng information

This work is supported by NSFC (Grant No. 11571274) and China Scholarship Council grant (2017062 80334).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Hou, Y. & Rong, Y. A second-order artificial compression method for the evolutionary Stokes-Darcy system. Numer Algor 84, 1019–1048 (2020). https://doi.org/10.1007/s11075-019-00791-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00791-x

Keywords

Navigation