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Abstract

We propose algorithms to take point sets for kernel-based interpolation of functions in
reproducing kernel Hilbert spaces (RKHSs) by convex optimization. We consider the case
of kernels with the Mercer expansion and propose an algorithm by deriving a second-order
cone programming (SOCP) problem that yields n points at one sitting for a given integer
n. In addition, by modifying the SOCP problem slightly, we propose another sequential
algorithm that adds an arbitrary number of new points in each step. Numerical experiments
show that in several cases the proposed algorithms compete with the P -greedy algorithm,
which is known to provide nearly optimal points.
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1 Introduction

We propose algorithms to take point sets for kernel-based interpolation of functions in repro-
ducing kernel Hilbert spaces (RKHSs). The algorithms are based on a convex optimization
problem derived by the Mercer series of the kernel.

Kernel-based methods are useful in various fields of scientific computing and engineering.
Their details and applications can be found in the references [6, 8, 9, 21, 24]. Many of the
applications include approximation of multivariate functions by scattered data as a fundamen-
tal component. Therefore we focus on kernel interpolation in this paper. Let d be a positive
integer and let Ω ⊂ Rd be a region. For a finite set {x1, . . . , xn} ⊂ Ω of n pairwise distinct
points and a set {y1, . . . , yn} ⊂ R, we aim to find a function s : Ω → R with the interpo-
lation condition s(xi) = yi (i = 1, . . . , n). To this end, we consider a positive definite kernel
K : Ω× Ω→ R and the function s given by

s(x) =

n∑

j=1

cj K(x, xj), (1.1)

where cj are determined by the interpolation condition.
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For a positive definite kernel K, there exists a unique Hilbert space HK(Ω) of functions
from Ω to R where K is a reproducing kernel, that is,

(a) ∀x ∈ Ω, K(·, x) ∈ HK(Ω), (1.2)

(b) ∀x ∈ Ω, ∀f ∈ HK(Ω), 〈f,K(·, x)〉HK (Ω) = f(x). (1.3)

The reproducing kernel Hilbert space (RKHS) HK(Ω) is called the native space of K. As the
kernel interpolation, we consider the case that yj = f(xj) for f ∈ HK(Ω). Then, we encounter
a problem of approximating functions in HK(Ω) by the kernel interpolation.

Such approximation is widely used, for example, for the numerical solution of partial differ-
ential equations via collocation [14]. In such situations, we can choose the point set {x1, . . . , xn}
to achieve accurate computation. The choice is critical for the kernel interpolation. Actually,
there are several fundamental results about the approximation power of the kernel interpola-
tion for well-distributed points [24, Chapter 11]. Based on these, many methods for choosing
well-distributed points have been proposed: geometric greedy algorithm [11, 12, 13], P -greedy
algorithm [11, 13, 19], f -greedy algorithm [20], and f/P -greedy algorithm [15]. Furthermore,
there are methods based on optimal designs and similar concepts to them. In the paper [5],
the authors compute (approximate) Fekete points, the points maximizing the Vandermonde
determinants with respect to a polynomial basis. For the computation, they use the routines
provided in Matlab for general nonlinear optimization. For other methods, see [9, Appendix
B] and the references therein.

In this paper, we focus on such methods that depend just on the space HK(Ω) and provide
universal interpolation on it. The P -greedy algorithm and the algorithms for the Fekete points
are in this category. The P -greedy algorithm is a sequential one adding a new point one by
one in each step as described in Section 2. It is easy to implement and known to be nearly
optimal [19]. On the other hand, the others are non-sequential algorithms providing a point
set at one sitting. The Fekete points for a polynomial basis are known to be well-distributed,
although they are given by non-convex optimization. Therefore we expect that algorithms
of this type for a general kernel K would provide good point sets for kernel interpolation in
HK(Ω). To investigate whether this expectation is the case or not, we propose an algorithm
for generating point sets by approximately maximizing the determinant of the kernel matrix
K = (K(xi, xj))ij . More precisely, we show that they can be computed by convex optimization

in the case of kernels with the Mercer expansion. Actually, we can formulate a second-order
cone programming (SOCP) problem yielding point sets. As a by-product of this formulation,
we provide a variant sequential algorithm that adds an arbitrary number of new points in
each step. By some numerical experiments, we observe that the point sets provided by the
proposed algorithms are well-distributed and compete with the points provided by the P -greedy
algorithm in several cases.

The rest of this paper is organized as follows. In Section 2, we summarize the fundamental
facts of positive definite kernels and reproducing kernel Hilbert spaces. In Section 3, we derive
a relaxed D-optimal design problem to generate a point set by using the Mercer expansion of a
kernel. Then, according to the paper [17], we describe the equivalent formulation of the design
problem as a SOCP problem in Section 4. We show the results of numerical experiments in
Section 5 and conclude this paper by Section 6.
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2 Interpolation in reproducing kernel Hilbert spaces

2.1 Positive definite kernels

Let Ω ⊂ Rd be a region and let K : Ω × Ω → R be a continuous, symmetric, and positive
definite kernel. That is, for any set Xn = {x1, . . . , xn} ⊂ Ω of distinct points, the kernel matrix

K =






K(x1, x1) · · · K(xn, x1)
...

. . .
...

K(x1, xn) · · · K(xn, xn)




 (2.1)

is positive definite. Throughout this paper, we assume that K has the Mercer series expansion
given by

K(x, y) =

∞∑

ℓ=1

λℓ ϕℓ(x)ϕℓ(y), (2.2)

where λ1 ≥ λ2 ≥ · · · > 0, and {ϕℓ} is an orthonormal system in L2(Ω, ρ), the Lebesgue space
with a density function ρ. This expansion is known to be possible on appropriate conditions
[9, Theorem 2.2].

Example 1 (Brownian motion kernel on Ω = [0, 1] ⊂ R [9, Section A.1.2]). The kernel

K(x, y) = min{x, y} (x, y ∈ [0, 1])

is the Brownian motion kernel on the domain Ω = [0, 1]. Its Mercer series is given by letting

λℓ =
4

(2ℓ− 1)2π2
, ϕℓ(x) =

√
2 sin

(

(2ℓ− 1)
πx

2

)

in (2.2).

Example 2 (Spherical inverse multiquadric kernel on Ω = S2 [9, Section A.9.1]). Let γ be a
real number with 0 < γ < 1. The kernel

K(x, y) =
1

√

1 + γ2 − 2γ xT y
(x, y ∈ S2)

is the spherical inverse multiquadric kernel on the sphere S2 = {‖x‖ = 1 | x ∈ R3}. Its Mercer
series is given by

K(x, y) =
∞∑

n=0

4πγn

2n + 1

2n+1∑

ℓ=1

Yn,ℓ(x)Yn,ℓ(y), (2.3)

where Yn,ℓ are the spherical harmonics [3, 7].

Example 3 (Gaussian kernel on Ω ⊂ Rd [9, Section 12.2.1]). Let ε be a positive real number.
The kernel

K(x, y) = exp(−ε2‖x− y‖2)

3



is the multivariate Gaussian kernel. By letting β = (1 + (2ε/α)2)1/4 and δ = α2(β2 − 1)/2 for
a positive real number α, its Mercer series is given by

K(x, y) =
∑

n∈Nd

λnϕ
n
(x)ϕn(y), λn =

d∏

ℓ=1

λnℓ
, ϕ

n
(x) =

d∏

ℓ=1

ϕnℓ
(xℓ), (2.4)

where

λn =

√

α2

α2 + δ2 + ε2

(
ε2

α2 + δ2 + ε2

)n−1

, ϕn(x) =

√

β

2n−1Γ(n)
e−δ2x2

Hn−1(αβx). (2.5)

The functions Hn are Hermite polynomials of degree n.

2.2 Interpolation of functions in reproducing kernel Hilbert spaces

LetHK(Ω) be the native space ofK on Ω. We denote the inner product ofHK(Ω) by 〈 , 〉HK(Ω).
Then, the kernel K satisfies the reproducing property:

f ∈ HK(Ω), f(x) = 〈f,K(·, x)〉HK (Ω). (2.6)

For a function f ∈ HK(Ω), we consider its interpolant of the form

sf (x) =
n∑

j=1

cjK(x, xj), x ∈ Ω ⊂ Rd, (2.7)

where Xn = {x1, . . . , xn} ⊂ Ω is a set of points for interpolation. The coefficients cj are
determined by the interpolation equations

sf (xi) = f(xi), i = 1, . . . , n. (2.8)

The interpolant in (2.7) can be rewritten in the form

sf (x) =

n∑

j=1

f(xj)uj(x), (2.9)

where uj are cardinal bases satisfying the Lagrange property

uj(xi) = δij , i, j = 1, . . . , n. (2.10)

The vector u(x) = (u1(x), . . . , un(x))
T is determined by the linear equation

K u(x) = k(x), (2.11)

where k(x) = (K(x, x1), . . . ,K(x, xn))
T .

Using the reproducing property in (2.6), we can derive a well-known error bound of the
interpolation as follows:

|f(x)− sf (x)| =

∣
∣
∣
∣
∣
∣

f(x)−
n∑

j=1

f(xj)uj(x)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

〈

f,K(·, x)−
n∑

j=1

K(·, xj)uj(x)
〉

HK(Ω)

∣
∣
∣
∣
∣
∣
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=
∣
∣
∣

〈
f,K(·, x)− k(·)TK−1 k(x)

〉

HK(Ω)

∣
∣
∣

≤ ‖f‖HK(Ω)

∥
∥K(·, x)− k(·)TK−1 k(x)

∥
∥
HK(Ω)

= ‖f‖HK(Ω) PK,Xn(x), (2.12)

where

PK,Xn(x) =
√

K(x, x)− k(x)TK−1 k(x) (2.13)

is called the power function. The set of its zeros is Xn = {x1, . . . , xn}.
By using the power function, the P -greedy algorithm generating points for interpolation is

described as follows1. Start with X1 = {x1} for a point x1 ∈ Ω maximizing
√

K(x, x), and

Xj = Xj−1 ∪ {xj} with PK,Xj−1(xj) = max
x∈Ω

PK,Xj−1(x) (j = 2, . . . , n).

3 Optimization problems to generate good point configurations

3.1 Upper bound of the power function

If we can find a minimizer X †
n = {x†1, . . . , x†n} of the worst case error

max
x∈Ω

PK,Xn(x), (3.1)

we can take X †
n as one of the best point sets for the interpolation. However, this optimization

problem is difficult. Then, we provide an upper bound of the power function and consider
its minimization to obtain an approximate minimizer of the value in (3.1). To this end, We
start with providing an expression of the power function PK,Xn(x) by using determinants of
matrices.

Proposition 3.1 ([9, §14.1.1], [11]). The power function PK,Xn(x) in (2.13) satisfies that

PK,Xn(x) =

(
1

detK det

[
K(x, x) k(x)T

k(x) K

])1/2

. (3.2)

Proof. The assertion is shown as follows:

PK,Xn(x)
2 = K(x, x)− k(x)TK−1 k(x)

=
1

detK det

[
K(x, x)− k(x)TK−1 k(x) k(x)T

0 K

]

=
1

detK det

([
K(x, x) k(x)T

k(x) K

] [
1 0

−K−1k(x) I

])

=
1

detK det

[
K(x, x) k(x)T

k(x) K

]

.

1If K is translation-invariant, we can choose a starting point x1 arbitrarily.
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Next, for a positive integer r we define κr by

κr := max
Xr={x1,...,xr}⊂Ω

det(K(xi, xj))ij . (3.3)

We call a maximizer providing the value of κr a set of Fekete type points, because it resembles
the set of the Fekete points that maximizes the determinant of a Vandermonde matrix. Then,
for any x ∈ Ω we have

PK,Xn(x)
2 ≤ κn+1

detK , (3.4)

in which the square root of the RHS gives an upper bound of the worst case error in (3.1).
Therefore, we consider the maximization of detK with respect to Xn = {x1, . . . , xn}. However,
because this maximization problem is still difficult, we consider

1. approximation of the determinant detK by using the Mercer expansion in (2.2), and

2. approximate reduction of the maximization problem to a convex optimization problem.

We show these procedures in Sections 3.2 and 3.3, respectively.

3.2 Approximation of the determinant detK
Based on Proposition 3.1 and the expansion of the kernel K in (2.2), we provide an approxi-
mation of PK,Xn(x). By truncating the expansion, we have

K ≈
(

n∑

ℓ=1

λℓ ϕℓ(xj)ϕℓ(xi)

)

ij

=








λ1ϕ1(x1) λ2ϕ2(x1) · · · λnϕn(x1)
λ1ϕ1(x2) λ2ϕ2(x2) · · · λnϕn(x2)

...
...

. . .
...

λ1ϕ1(xn) λ2ϕ2(xn) · · · λnϕn(xn)















ϕ1(x1) ϕ1(x2) · · · ϕ1(xn)
ϕ2(x1) ϕ2(x2) · · · ϕ2(xn)

...
...

. . .
...

ϕn(x1) ϕn(x2) · · · ϕn(xn)








=








ϕ1(x1) ϕ2(x1) · · · ϕn(x1)
ϕ1(x2) ϕ2(x2) · · · ϕn(x2)

...
...

. . .
...

ϕ1(xn) ϕ2(xn) · · · ϕn(xn)















λ1

λ2

. . .

λn















ϕ1(x1) ϕ1(x2) · · · ϕ1(xn)
ϕ2(x1) ϕ2(x2) · · · ϕ2(xn)

...
...

. . .
...

ϕn(x1) ϕn(x2) · · · ϕn(xn)







.

(3.5)

Then, letting

Φn(x1, x2, . . . , xn) =








ϕ1(x1) ϕ1(x2) · · · ϕ1(xn)
ϕ2(x1) ϕ2(x2) · · · ϕ2(xn)

...
...

. . .
...

ϕn(x1) ϕn(x2) · · · ϕn(xn)







, (3.6)

we have

detK ≈ (λ1λ2 · · ·λn) (det Φn(x1, x2, . . . , xn))
2 . (3.7)
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3.3 Approximate reduction to a convex optimization problem

Based on the approximation in (3.7), we consider the optimization problem

maximize (detΦn(x1, . . . , xn))
2 subject to (x1, . . . , xn) ∈ Ωn. (3.8)

First, we consider the equivalent form of this problem as shown below.

Theorem 3.2. Problem (3.8) is equivalent to the problem given by

maximize det






n∑

k=1






ϕ1(xk)
...

ϕn(xk)






[
ϕ1(xk) · · · ϕn(xk)

]






subject to (x1, . . . , xn) ∈ Ωn.

(3.9)

Proof. The conclusion is derived from the following relations:

(detΦn(x1, . . . , xn))
2

= det
(
Φn(x1, . . . , xn)Φn(x1, . . . , xn)

T
)

= det















ϕ1(x1) ϕ1(x2) · · · ϕ1(xn)
ϕ2(x1) ϕ2(x2) · · · ϕ2(xn)

...
...

. . .
...

ϕn(x1) ϕn(x2) · · · ϕn(xn)















ϕ1(x1) ϕ2(x1) · · · ϕn(x1)
ϕ1(x2) ϕ2(x2) · · · ϕn(x2)

...
...

. . .
...

ϕ1(xn) ϕ2(xn) · · · ϕn(xn)















= det





(
n∑

k=1

ϕi(xk)ϕj(xk)

)

ij



 . (3.10)

Next, we consider approximation of Problem (3.9) because it is not easily tractable. We
approximate it by preparing a sufficient number of candidate points y1, . . . , ym ∈ Ω (n ≪ m)
and choosing n points yi1 , . . . yin which maximize

det






n∑

ℓ=1






ϕ1(yiℓ)
...

ϕn(yiℓ)






[
ϕ1(yiℓ) · · · ϕn(yiℓ)

]




 .

Then, we can rewrite this problem as follows:

maximize det






m∑

j=1

wj






ϕ1(yj)
...

ϕn(yj)






[
ϕ1(yj) · · · ϕn(yj)

]






subject to wj ∈ {0, 1}, w1 + · · ·+ wm = n.

(3.11)

In fact, Problem (3.11) is well-known as a D-optimal experimental design problem.
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Finally, we relax the constraint wj ∈ {0, 1} of Problem (3.11) because it is still difficult.
More precisely, we consider the relaxed problem given by

maximize det






m∑

j=1

wj






ϕ1(yj)
...

ϕn(yj)






[
ϕ1(yj) · · · ϕn(yj)

]






subject to 0 ≤ wj ≤ 1, w1 + · · ·+ wm = n.

(3.12)

In fact, the objective function of this problem is log-concave with respect to a vector w =
(w1, . . . , wm)T (see e.g. [4]). Therefore, in principle, we can obtain an optimal solution w∗ ∈
[0, 1]m of Problem (3.12) by using a standard solver for convex optimization. Furthermore,
as shown in Section 5, we can reduce the solution w∗ to a 0-1 vector, which becomes an
approximate solution of Problem (3.11). Taking these facts into account, in Section 4, we
begin with reformulating Problem (3.12) to solve it efficiently.

Remark 3.1. In general, the matrix of Equation (3.6) can be singular for certain choices of
the set Xn = {x1, . . . , xn}. Hence there can exist a set {y1, . . . , ym} such that the optimal
value of Problem (3.11) is zero. We need to avoid such sets because it is not desirable in view
of our purpose. However, we leave this issue as a theme for future work. In the results of the
numerical experiments in Section 5 below, such sets do not seem to appear.

4 Reformulation by a second order cone programming (SOCP)

problem

To solve Problem (3.12) efficiently, we use a reformulation of Problem (3.12) as a second order
cone programming (SOCP) problem [16, 17]. In this section, we decribe this reformulation,
which is proposed by Sagnol and Harman [17]. To this end, we consider the general form of
the relaxed D-optimal design given by

maximize det





m∑

j=1

wjaja
T
j





subject to 0 ≤ wj ≤ 1 (j = 1, . . . ,m)
w1 + · · ·+ wm = n

(4.1)

where aj ∈ Rℓ (j = 1, . . . ,m) for ℓ ≤ m. If we set ℓ = n and aj = (ϕ1(yj), . . . , ϕn(yj))
T ,

Problem (4.1) is reduced to Problem (3.12).
We describe a reformulation of Problem (4.1) as a SOCP problem in the same manner as

that in [17]. It consists of the following two steps.

(1) Rewriting the determinant in Problem (4.1) as the optimal value of an optimization
problem for a fixed w = (w1, . . . , wm)T .

(2) Adding the constraint of w to the optimization problem and expressing it as a SOCP
problem.

In the following, we show the details of (1) and (2) in Sections 4.1 and 4.2, respectively. In fact,
Problem (4.1) is a simplified case of the problem treated in [17]. Therefore, we just describe
the results for the reformulation in these sections and show their proofs in Appendix A for
readers’ convenience.

8



4.1 Optimization problems yielding a determinant

Let the matrix H ∈ Rℓ×m be given by

H = (
√
w1a1, . . . ,

√
wmam) (4.2)

for w = (w1, . . . , wm)T ≥ 0. Then, the determinant in Problem (4.1) is written as det(HHT ).
This determinant is given by the optimal value of an optimization problem as shown by the
following theorem.

Theorem 4.1 (Special case of Theorem 4.2 in [17]). Let ℓ and m be integers with ℓ ≤ m
and let H ∈ Rℓ×m be given by (4.2). Furthermore, let OPT1(H) be the optimal value of the
following optimization problem:

maximize
Q∈Rm×ℓ, S∈Rℓ×ℓ

(detS)2

subject to S is lower triangular,
HQ = S,
‖Q ei‖ ≤ 1 (i = 1, . . . , ℓ).

(4.3)

Then OPT1(H) = det(HHT ).

Theorem 4.2 (Special case of Theorem 4.3 in [17]). Let ℓ and m be integers with ℓ ≤ m,
let a1, . . . , am ∈ Rℓ, and let w = (w1, . . . , wm)T ≥ 0. Furthermore, let OPT2({ai}, w) be the
optimal value of the following optimization problem:

maximize
Z=(zij), T=(tij )∈Rm×ℓ,

G=(gij)∈R
ℓ×ℓ

ℓ∏

j=1

gjj

subject to G is lower triangular,
(a1, . . . , am)Z = G,
z2ij ≤ tijwi (i = 1, . . . ,m, j = 1, . . . , ℓ),
m∑

i=1

tij ≤ gjj (j = 1, . . . , ℓ).

(4.4)

Then OPT2({ai}, w) = det
(
HHT

)
, where H is given by (4.2).

4.2 SOCP form of Problem (4.1)

We show that Problem (4.1) can be expressed as a SOCP problem. To this end, we start
with showing that the product of the variables in the objective function of Problem (4.4)
is represented as the optimal value of an optimization problem with first or second order
constraints.

Theorem 4.3 ([2, 10]). Let ℓ ≥ 2 be an integer and let h1, . . . , hℓ ∈ R be non-negative
numbers. Furthermore, let p be the integer with 2p−1 < ℓ ≤ 2p. We consider the optimization
problem given by

maximize u1
subject to u2i ≤ u2iu2i+1 (i = 1, . . . , 2p−1 − 1),

u2i ≤ g2i−2p+1g2i−2p+2 (i = 2p−1, . . . , 2p−1 + ℓ/2− 1),
u2i ≤ u21 (i = 2p−1 + ℓ/2, . . . , 2p − 1),
ui ≥ 0 (i = 1, . . . , 2p − 1)

(4.5)

9



in the case that ℓ is even, and

maximize u1
subject to u2i ≤ u2iu2i+1 (i = 1, . . . , 2p−1 − 1),

u2i ≤ g2i−2p+1g2i−2p+2 (i = 2p−1, . . . , 2p−1 + (ℓ− 3)/2),
u2i ≤ g2i−2p+1u1 (i = 2p−1 + (ℓ− 1)/2),
u2i ≤ u21 (i = 2p−1 + (ℓ+ 1)/2, . . . , 2p − 1),
ui ≥ 0 (i = 1, . . . , 2p − 1)

(4.6)

in the case that ℓ is odd. Then, its optimal value is equal to the geometric mean
(
∏ℓ

j=1 gj

)1/ℓ
.

By Theorems 4.2 and 4.3, we can show that the value (det(HHT ))1/ℓ is equal to the opti-
mal value of Problem (4.4) whose objective function is rewritten in the form of Problem (4.5)
or (4.6). Consequently, regarding w1, . . . , wm as variables, we obtain the SOCP form of Prob-
lem (4.1). For simplicity, we show only the case that ℓ is even as follows:

maximize
Z=(zij)∈R

m×ℓ,

T=(tij)∈Rm×ℓ,
{g̃1,...,g̃ℓ}⊂R,
{u1,...,u2p−1}⊂R,
{w1,...,wm}⊂R

u1

subject to (a1, . . . , am)Z =









g̃1 0 · · · 0

∗ g̃2
. . .

...

∗ ∗ . . . 0
∗ ∗ ∗ g̃ℓ









,

z2ij ≤ tijwi (i = 1, . . . ,m, j = 1, . . . , ℓ),
m∑

i=1

tij ≤ g̃j (j = 1, . . . , ℓ).

u2i ≤ u2iu2i+1 (i = 1, . . . , 2p−1 − 1),
u2i ≤ g̃2i−2p+1g̃2i−2p+2 (i = 2p−1, . . . , 2p−1 + ℓ/2− 1),
u2i ≤ u21 (i = 2p−1 + ℓ/2, . . . , 2p − 1),
ui ≥ 0 (i = 1, . . . , 2p − 1)
0 ≤ wj ≤ 1 (j = 1, . . . ,m),
w1 + · · ·+ wm = n,

(4.7)

whose optimal value is the ℓ-th root of that of Problem (4.1). We can similarly deal with
the case that ℓ is odd. Therefore, we can obtain the optimal solution w∗ = (w∗

1 , . . . , w
∗
m)T of

Problem (4.1) by solving Problem (4.7) with a SOCP solver.

5 Algorithms and numerical experiments

In this section, we propose algorithms for generating point sets and apply them to Examples 1,
2, and 3 in Section 2.
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Algorithm 1 Generation of sampling points

Input: Region Ω ⊂ Rd, Orthonormal system {ϕ1, . . . , ϕn}, Points y1, . . . , ym ∈ Ω, Neigh-
borhood sets {Nj}mj=1, Integer n.

Output: Points x1, . . . , xn ∈ Ω.
for j = 1 to m do

aj ← (ϕ1(yj), . . . , ϕn(yj))
T

end for
Solve SOCP problem (4.7) with ℓ = n to obtain the optimal solution w∗ = (w∗

1 , . . . , w
∗
m)T

J = ∅
for j = 1 to m do

if w∗
j ≥ w∗

k for any k ∈ Nj then
J ← J ∪ {j}

end if
end for
Sort {w∗

j }j∈J in descending order: w∗
j1
≥ w∗

j2
≥ · · · ≥ w∗

j|J |

if |J | ≥ n then
xk ← yjk (k = 1, . . . , n)

else
print “Error”

end if

5.1 Algorithms for generating point sets

We propose two algorithms: Algorithms 1 and 2. In Algorithm 1, we solve SOCP problem (4.7)
with aj = (ϕ1(yj), . . . , ϕn(yj))

T and ℓ = n to obtain the optimal solution w∗ = (w∗
1, . . . , w

∗
m)T .

Then, we choose the “local maxima” of w∗, which mean the components w∗
j satisfying w∗

j ≥ w∗
k

for any “neighbors” k ∈ Nj := {k | yk is a neighbor of yj in Ω}. We determine the neighbors
of yj according to the geometric property of Ω and the arrangement of y1, . . . , ym ∈ Ω as shown
in Section 5.2.

We propose Algorithm 2 to show that we can invent a sequential algorithm based on the
SOCP formulation. To generate n′ points, the algorithm requires a sequence of positive integers
{ni}Ii=1 with n1 + · · · + nI = n′. Then, the algorithm consists of I steps and new sampling
points are added in each step. The integer ni indicates the number of the new sampling points
added in the i-th step. To achieve this procedure, in the i-th step we solve SOCP problem (4.7)
with n = n1+ · · ·+ni and the weights wj fixed to 1 for j ∈ W, whereW is the set of the indices
corresponding to the points yj chosen in the previous steps. We can set the SOCP problems
easily because we have only to add the linear constraints wj = 1 (j ∈ W). Algorithm 2 can be
regarded as a generalization of greedy algorithms that choose points one by one.

5.2 Methods of numerical experiments for Algorithms 1 and 2

For numerical experiments, we take Examples 1, 2, and 3 in Section 2. For Example 2, we set
γ = 0.1. For Example 3, we set α = ε = 1 and consider the four versions:

3-1. d = 1, Ω = [−1, 1],
3-2. d = 2, Ω = [−1, 1]2,
3-3. d = 2, Ω = △ := {(x1, x2) ∈ [−1, 1]2 | x1 + x2 ≥ 0},

11



Algorithm 2 Sequential generation of sampling points

Input: Region Ω ⊂ Rd, Orthonormal system {ϕ1, . . . , ϕn′}, Points y1, . . . , ym ∈ Ω, Neigh-
borhood sets {Nj}mj=1, Sequence of positive integers {ni}Ii=1 with n1 + · · ·+ nI = n′.

Output: Points x1, . . . , xn′ ∈ Ω.
W = ∅
for i = 1 to I do

n = n1 + · · ·+ ni

for j = 1 to m do
aj ← (ϕ1(yj), . . . , ϕn(yj))

T

end for
Solve SOCP problem (4.7) with ℓ = n and the additional constraints wj = 1 (j ∈ W) to
obtain the optimal solution w∗ = (w∗

1, . . . , w
∗
m)T

J = ∅
for j = 1 to m do

if w∗
j ≥ w∗

k for any k ∈ Nj then
J ← J ∪ {j}

end if
end for
Sort {w∗

j }j∈J in descending order: w∗
j1
≥ w∗

j2
≥ · · · ≥ w∗

j|J |

if |J | ≥ n then
xk ← yjk (k = 1, . . . , n)
W ←W ∪ {j1, . . . , jn}

else
print “Error”

end if
end for

3-4. d = 2, Ω = D := {(x1, x2) ∈ [−1, 1]2 | x21 + x22 ≤ 1}.
We chose the candidate points y1, . . . , ym ∈ Ω and the neighborhood sets Nj for these

examples. For Example 1, we took m = 250, yj = (j − 1)/(m− 1) (j = 1, . . . ,m) on [0, 1], and
Nj = {j−1, j+1}∩{1, . . . ,m}. For Example 2, we took k = 25, m = (k−1)(k−2)+2 = 554, and
and the angles θp = π(p−1)/(k−1) (p = 1, . . . , k) and φq = 2π(q−1)/(k−1) (q = 1, . . . , k−1)
to generate the points

yj = (sin θpj cosφqj , sin θpj sinφqj , cos θpj) ∈ S2, (5.1)

where

(pj, qj) =







(1, 1) (j = 1),

(k, 1) (j = m),

(⌊(j − 2)/(k − 1)⌋+ 2, mod(j − 2, k − 1) + 1) (j 6= 1,m).

Here mod(a, b) denotes the remainder after division of a by b. Furthermore, we defined Nj by

Nj =







{2, . . . , k} (j = 1),

{m− (k − 1), . . . ,m− 1} (j = m),

{j + lj , j + rj , j − (k − 1), j + (k + 1)} (j 6= 1,m),

(5.2)
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where

lj =

{

−1 (mod(j − 2, k − 1) 6= 0),

+(k − 2) (mod(j − 2, k − 1) = 0),

rj =

{

+1 (mod(j − 2, k − 1) 6= k − 2),

−(k − 2) (mod(j − 2, k − 1) = k − 2).

For Example 3-1, we took m = 250, yj = −1 + 2(j − 1)/(m − 1) (j = 1, . . . ,m) on [−1, 1],
and Nj = {j − 1, j + 1} ∩ {1, . . . ,m}. For Examples 3-2, 3-3, 3-4, first we took the set
Ỹk := {(−1 + 2(p − 1)/(k − 1),−1 + 2(q − 1)/(k − 1) | p = 1, . . . , k, q = 1, . . . , k} ⊂ [−1, 1]2
for some k and then let the intersection Ỹk ∩ Ω be the set {yj}mj=1. We chose k = 23, 32, 27 to
obtain m = 529, 520, 529 for Examples 3-2, 3-3, 3-4, respectively.

For the cases with d ≥ 2 in Examples 2 and 3, we need to decide the order of the eigenfunc-
tions of the kernels because there are several eigenfunctions corresponding to an eigenvalue.
We chose the orders as follows:

Example 2 (d = 3) :

Y0,1, Y1,1, Y1,2, Y1,3, . . . , Yn,1, . . . , Yn,2n+1, . . . (5.3)

Example 3-2, 3-3, 3-4 (d = 2) :

ϕ1ϕ1, ϕ2ϕ1, ϕ1ϕ2, . . . , ϕn−1ϕ1, . . . , ϕ1ϕn−1, . . . , (5.4)

where Yn,ℓ are the spherical harmonics that appear in (2.3), ϕi are given in (2.5), and ϕiϕj =
ϕi(x1)ϕj(x2) for (x1, x2) ∈ R2. Under these settings, we applied Algorithms 1 and 2 to these
examples to generate sampling points. In applying Algorithm 2, we chose {4, 8, 12, 16, 20, 24}
and {8, 12, 16, 20, 24, 28, 32, 35} as the sequence {n1, . . . , nI} for the one-dimensional examples
(Examples 1 and 3-1) and the others, respectively. Then, we computed the maximum values
of the power functions and the condition numbers of the kernel matrix K = (K(xi, xj))ij .

To implement Algorithms 1 and 2, we used MATLAB R2018b and the MOSEK optimization
toolbox for MATLAB 8.1.0.56 provided by MOSEKApS in Denmark (https://www.mosek.com/,
last accessed on 19 October 2018). The toolbox contains a solver for SOCP problems. All
computation in this section was done with the double precision floating point numbers on
a computer with Intel Xeon 2.1 GHz CPU and 31.9 GB RAM. The programs used for the
computation are available on the web page [23].

5.3 Results

We show the results by Figures 1–19. Figures 1–3 display the numerical solutions for the weights
w∗ and power functions for some representative cases. Figures 4–5 show the generated points
for the higher-dimensional kernels in the case n = 35. One common feature of the computed
weights is that most components of them are nearly zero except for those corresponding to the
“local maxima” satisfying w∗

j ≥ w∗
k for any j ∈ Nj. Therefore it is expected that Problem (3.12)

given by the convex relaxation can find good approximate solution of Problem (3.11), although
this phenomenon has not been proved theoretically and is not observed in some cases. Actually,
we observed that it did not occur and Algorithm 1 failed in the case n ≥ 18 for Example 3-1.

Figures 6–11 show the maximum values of the power functions given by Algorithms 1, 2,
and the P -greedy algorithm. In addition, Figures 12–17 show the condition numbers of the
kernel matrix K = (K(xi, xj))ij . For the one-dimensional examples, Examples 1 (Figures 6
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and 12) and 3-1 (Figures 8 and 14), we can observe that Algorithm 1 outperforms the P -
greedy algorithm for most of n, although the decay rates given by them seem to be similar.
The performance of Algorithm 2 is a bit worse. For the higher-dimensional examples, in most
cases the P -greedy algorithm outperforms the others, although Algorithm 2 compete with it.
Algorithm 1 does not show stable performance, but it compete with the others for some n.
We guess that Problem (3.12) can be precisely solved in the one-dimensional case, whereas it
becomes more difficult in the higher-dimensional cases. In such cases Algorithm 2 performs
better than Algorithm 1.

Remark 5.1. As n gets large, it tends to be difficult to obtain appropriate points because the
weights in w∗ often fails to have an apparent pattern for which n “local maxima” can be found
easily. For example, it has less than n “local maxima” in some cases2. Even in the cases that
we can find n “local maxima”, the chosen points tend to be ill-balanced. The saturation of the
values of the power functions and condition numbers shown respectively by Figures 8 and 14
is owing to this phenomenon. Resolution of this difficulty is one of the themes for future work.

Figures 18 and 19 show the computation times of Algorithm 1 and the P -greedy algorithm
applied to Examples 1 and 2. We present only these computation times because those of
Example 3-1 are similar to those of Example 1, and those of Examples 3-2, 3-3, and 3-4 are
similar to those of Example 2. Recall that we used the same number m = 250 (the number
of the candidate points) for Examples 1 and 3-1, and used the similar numbers as m for
Examples 2, 3-2, 3-3, and 3-4. In each figure, the left and right graphs show the times for
making the SOCP instances of Algorithm 1 and those for executing the SOCP optimizer and
the P -greedy algorithm, respectively. Making an instance means constructing the structure
of the MOSEK toolbox expressing the constraints of Problem (4.7) by a matrix and vectors.
Its details are described in Appendix C. For the P -greedy algorithm, we plot the total time
t1+ · · ·+tn for each n, where ti is the time for generating i-th point by the P -greedy algorithm.
In addition, we omit the times for Algorithm 2 because there were little differences between
Algorithms 1 and 2 for common numbers n. From these figures, we can observe that it
took longer to make the SOCP instances than to solve them and the times for solving the
instances are a bit longer than those for executing the P -greedy algorithm. Therefore we think
that the efficiency of solving the SOCP problems is sufficient and expect that more efficient
implementation of generating the instances would make our algorithms competitive with the
P -greedy algorithm.

Finally, we show the results of investigation whether the points generated by the proposed
algorithms are influenced by

1. the parameter(s) and

2. the order

of the eigenfunctions in the Mercer expansion. For example, the eigenfunctions for the Gaussian
kernel in Example 3 contain the parameter α that can take an arbitrary positive value. It
depends on the density function ρ of the space L2(Ω, ρ) to which the eigenfunctions belong.
In addition, we used the order of the eigenfunctions given by (5.3) and (5.4) for Example 2
and Examples 3-2, 3-3, 3-4, respectively. We investigate whether these factors influence the
generated points by numerical experiments. To this end, we take Example 3-2 with

2 For example, we observed that Algorithm 1 failed for n = 100 in the case of Example 2 because of this
phenomenon.
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Figure 1: Weights and power functions for the Brownian kernel on [0, 1] (Example 1). Left: the
weights computed by Algorithm 1 for n = 15, Right: the power functions given by Algorithm 1
and the P -greedy algorithm for n = 15. Their zeros are the points given by these algorithms.

1. α replaced by 2 or

2. the order of the eigenfunctions changed as

ϕ1ϕ1, ϕ1ϕ2, ϕ2ϕ1, . . . , ϕ1ϕn−1, . . . , ϕn−1ϕ1, . . . . (5.5)

Then, we show the results of generating points by Algorithm 1 for n = 35 by Figure 20. We
can observe that both factors influence the generated points.

6 Concluding remarks

We proposed Algorithms 1 and 2 generating point sets {x1, . . . xn} by using the second order
cone programming (SOCP) problem in (4.7) for interpolation in reproducing kernel Hilbert
spaces (RKHSs). Algorithm 1 is not a sequential algorithm in that it generates a point set
by solving the SOCP problem at one sitting for a given number n. On the other hand,
Algorithm 2 is a sequential one that generates ni points in the i-th step for any sequence
of positive integers n1, . . . , nL. The SOCP problem is equivalent to the relaxed D-optimal
experimental design problem in (3.12) derived from the maximization problem of the kernel
matrix K = (K(xi, xj))ij , where K is the kernel of the RKHS. Therefore, we can regard
Algorithm 1 as an algorithm yielding approximate Fekete points. In the results of the numerical
experiments, we observed that the proposed algorithms compete with the P -greedy algorithm
in several cases, although they are a bit time-consuming and Algorithm 1 often yields worse
results. From the observation, we expect that the approximate Fekete points will also provide
nearly optimal interpolation in RKHSs. To show this, further improvement of the algorithms
and their theoretical analysis will be necessary.
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Figure 2: Weights and power functions for the Gaussian kernel on [−1, 1] (Example 3-1).
Left: the weights computed by Algorithm 1 for n = 10, Right: the power functions given by
Algorithm 1 and the P -greedy algorithm for n = 10. Their zeros are the points given by these
algorithms.
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A Proofs of the theorems for the SOC-representablity of the

D-optimal design

A.1 Proof of Theorem 4.1

Proof. Let Q̃ ∈ Rm×m and R̃ ∈ Rm×ℓ be the matrices that give the QR-decomposition HT =
Q̃R̃. They have the following partitions:

Q̃ =
[

Q∗ Q̂
]
, R̃ =

[
ST
∗

OT

]

, (A.1)

where Q∗ ∈ Rm×ℓ, Q̂ ∈ Rm×(m−ℓ), and S∗ ∈ Rℓ×ℓ is lower triangular. Then, (Q,S) = (Q∗, S∗)
is a feasible solution of Problem (4.3). In fact,

HQ∗ = R̃T Q̃TQ∗ =
[
S∗ O

]
[
QT

∗

Q̂T

]

Q∗ =
[
S∗ O

]
[
Iℓ
OT

]

= S∗, (A.2)

and ‖Q∗ei‖ = 1 because Q̃ is an orthogonal matrix. Furthermore, because

HHT = R̃T Q̃T Q̃R̃ = R̃T R̃ = ST
∗ S∗, (A.3)

we have det(HHT ) = det(ST
∗ S∗) = (detS∗)

2.
Therefore, what remains is to show that (detS)2 ≤ det(HHT ) for any feasible solution

(Q,S) of Problem (4.3). This inequality holds true because we have

(detS)2 = (det(HQ))2 ≤ det(HHT ) det(QTQ) ≤ det(HHT ). (A.4)
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Figure 12: Condition numbers of the kernel
matrices for Brownian kernel on [0, 1] (Exam-
ple 1).

Figure 13: Condition numbers of the ker-
nel matrices for the spherical inverse multi-
quadric kernel on S2 ⊂ R3 (Example 2).

Figure 14: Condition numbers of the kernel
matrices for the Gaussian kernel on [−1, 1]
(Example 3-1).

Figure 15: Condition numbers of the kernel
matrices for the Gaussian kernel on [−1, 1]2 ⊂
R2 (Example 3-2).

The first inequality in (A.4) is the Cauchy-Schwarz inequality for determinants [1, Exercise
12.15] (see Proposition B.2 in Appendix B). Moreover, the second inequality in (A.4) is derived
by the Hadamard inequality [1, Exercise 12.26] and the last constraint of Problem (4.3) as
follows:

det(QTQ) ≤
ℓ∏

i=1

(
The (i, i) component of QTQ

)
=

ℓ∏

i=1

‖Qei‖2 ≤ 1. (A.5)

A.2 Proof of Theorem 4.2

Proof. We show that every feasible solution (Z, T,G) = ((zij), (tij), (gij)) of Problem (4.4)
yields a feasible solution (Q,S) = ((qij), (sij)) of Problem (4.3) in which gjj = s2jj for all
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Figure 16: Condition numbers of the kernel
matrices for the Gaussian kernel on △ ⊂ R2

(Example 3-3).

Figure 17: Condition numbers of the kernel
matrices for the Gaussian kernel on D ⊂ R2

(Example 3-4).

j = 1, . . . , ℓ, and vice versa. If we do these, we have OPT2({ai}, w) = det J = (detS)2 =
OPT1(H), from which the conclusion follows.

First, suppose that (Z, T,G) = ((zij), (tij), (gij)) is a feasible solution of Problem (4.4).
Then, we define (Q,S) = ((qij), (sij)) by

qij =







zij√
wi
√
gjj

(wi > 0, gjj > 0),

0 (otherwise),
sij =







gij√
gjj

(gjj > 0),

0 (otherwise).

Then, clearly S is lower triangular. For j with gjj > 0, we have

(HQ) ej =

m∑

i=1

√
wi qij ai =

∑

i:wi>0

√
wi qij ai =

1
√
gjj

∑

i:wi>0

zij ai

=
1
√
gjj

m∑

i=1

zij ai =
1
√
gjj

G ej = S ej .

For the fourth equality, we used the fact that wi = 0 ⇒ zij = 0, which follows from the
constraint z2ij ≤ tijwi in Problem (4.4). For j with gjj = 0, we have (HQ) ej = 0 = S ej.
Hence HQ = S holds true. Furthermore, for j with gjj > 0, we have

‖Q ej‖2 =
m∑

i=1

q2ij =
∑

i:wi>0

1

gjj

z2ij
wi
≤ 1

gjj

∑

i:wi>0

tij ≤ 1,

and for j with gjj > 0, we have ‖Q ej‖2 = 0 ≤ 1. Consequently, (Q,S) is a feasible solution of
Problem (4.3) with gjj = s2jj.

Next, suppose that (Q,S) = ((qij), (sij)) is a feasible solution of Problem (4.3). Then, we
define (Z, T,G) = ((zij), (tij), (gij)) by

zij =
√
wi sjj qij, tij = s2jj q

2
ij, gij = sjj sij .
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Figure 18: Computation times for Brownian kernel on [0, 1] (Example 1). Left: the times
for making the SOCP instances of Algorithm 1, Right: the times for executing the SOCP
optimizer and the P -greedy algorithm.

Figure 19: Computation times for the spherical inverse multiquadric kernel on S2 (Example 2).
Left: the times for making the SOCP instances of Algorithm 1, Right: the times for executing
the SOCP optimizer and the P -greedy algorithm.

Then, clearly G is lower triangular. Furthermore, we have

(a1, . . . , am)Z ej =

m∑

i=1

ai zij = sjj

m∑

i=1

√
wi ai qij = sjjHQ ej = sjjS ej = G ej ,

z2ij = wi s
2
jj q

2
ij = wi tij, and

m∑

i=1

tij = s2jj

m∑

i=1

q2ij ≤ s2jj = gjj.

Therefore, (Z, T,G) is a feasible solution of Problem (4.4) with s2jj = gjj.
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Figure 20: Generated points on [−1, 1]2 for the Gaussian kernels (Example 3-2) in the case
n = 35. Left: the same picture as the left one of Figure 5 (a) (for comparison), Middle: the
points for ε = 1, α = 2, and the order of the eigenfunctions given by (5.4), Right: the points
for ε = 1, α = 1, and the order of the eigenfunctions given by (5.5).

A.3 Proof of Theorem 4.3

Proof. We show the assertion only in the case that ℓ is even, because the other case can be
shown similarly. If gj = 0 for some j, we can deduce that u1 = 0. Therefore, it suffices to
consider the case that gj > 0 for j = 1, . . . , ℓ.

First, we show that u1 ≤
(
∏ℓ

j=1 gj

)1/ℓ
for any feasible solution {ui}. If u1 = 0, the

conclusion is trivial. Then, we assume that u1 > 0. From the constraints with 1 ≤ i ≤ 2p−1−1
in (4.5), we have

u2
p

1 ≤ u2
p−1

2 u2
p−1

3 ,

u2
p−1

2 ≤ u2
p−2

4 u2
p−2

5 , u2
p−1

3 ≤ u2
p−2

6 u2
p−2

7 ,

. .
. ...

. . .

u2
2

2p−2 ≤ u22p−1u
2
2p−1+1, u2

2

2p−2+1 ≤ u22p−1+2u
2
2p−1+3, . . . u2

2

2p−1−1 ≤ u22p−2u
2
2p−1.

Then, taking the product of all these inequalities, we have

u2
p

1 ≤
2p−1∏

i=2p−1

u2i . (A.6)

Similarly, taking the product of all the constraints with 2p−1 ≤ i ≤ 2p − 1, we have

2p−1∏

i=2p−1

u2i ≤





ℓ∏

j=1

gj



u2
p−ℓ

1 . (A.7)

Therefore, it follows from (A.6) and (A.7) that

u2
p

1 ≤





ℓ∏

j=1

gj



u2
p−ℓ

1 ⇐⇒ u1 ≤





ℓ∏

j=1

gj





1/ℓ

.
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Next, we show that there exists a feasible solution {ui} with u1 =
(
∏ℓ

j=1 gj

)1/ℓ
. Set u1 by

this equality and set the other variables by

ui = u1 (i = 2p−1 + ℓ/2, . . . , 2p − 1),
ui =

√
g2i−2p+1g2i−2p+2 (i = 2p−1, . . . , 2p−1 + ℓ/2− 1),

ui =
√
u2iu2i+1 (i = 2, . . . , 2p−1 − 1).

Then, in a similar manner to that for deriving (A.6) and (A.7), we have

u2
p−1

2 u2
p−1

3 =





ℓ∏

j=1

gj



u2
p−ℓ

1 = uℓ1u
2p−ℓ
1 = u2

p

1 , (A.8)

which guarantees the solution {ui} is feasible.

B Cauchy-Schwarz inequality for determinants

Lemma B.1 ([1, Exercise 12.7]). Let ℓ be a non-negative integer and let C,D ∈ Rℓ×ℓ be ℓ× ℓ
positive semi-definite matrices. Then, the following inequality holds true:

det(C +D) ≥ detC + detD.

Proof. If C and D are singular, the inequality is trivial. Therefore, we assume that C is
non-singular without loss of generality. Let S := C−1/2DC−1/2. Then, because

det(C +D)− detC − detD = det(C1/2(I + S)C1/2)− detC − det(C1/2SC1/2)

= detC (det(I + S)− 1− detS),

it suffices to show that det(I + S) − 1 − detS ≥ 0 for any S ∈ Rℓ×ℓ with S � O. By letting
λ1, . . . , λℓ ≥ 0 be the eigenvalues of S, this inequality is reduced to

ℓ∏

i=1

(1 + λi)− 1−
ℓ∏

i=1

λi ≥ 0,

which can be proved by expanding the product
∏ℓ

i=1(1 + λi).

Proposition B.2 (Cauchy-Schwarz inequality for determinants [1, Exercise 12.15]). Let ℓ and
m be non-negative integers with ℓ ≤ m and let A,B ∈ Rm×ℓ be m × ℓ matrices. Then, the
following inequality holds true:

(det(ATB))2 ≤ det(ATA) det(BTB). (B.1)

Proof. If det(ATB) = 0, the inequality is trivial. Therefore, we assume that det(ATB) 6= 0.
Then, A and B have full column rank, which implies that ATA and BTB are non-singular.
Let C,D ∈ Rℓ×ℓ be given by

C := BTA (ATA)−1ATB,

D := BTB − C = BT (I −A (ATA)−1AT )B.

Then, clearly C ≻ O holds true. Furthermore, because P := I − A (ATA)−1AT satisfies
P 2 = P , we have P � O and hence D � O. Then, using Lemma B.1, we have

det(BTB) = det(C +D) ≥ detC + detD ≥ detC = (det(ATB))2 (detATA)−1,

which is equivalent to (B.1).
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C Remarks on implementation of SOCP (4.7) by MOSEK

C.1 MOSEK

As a software to solve SOCP problems, we use the MOSEKOptimization Toolbox for MATLAB
8.1.0.56, which is provided by MOSEK ApS in Denmark (https://www.mosek.com/, last
accessed on 19 October 2018).

C.1.1 Expression of rotated second order cones

Recall that p = ⌈log2 ℓ⌉. In SOCP (4.7) in which ℓ is even, we need to consider the rotated
second order cone constraints

z2ij ≤ tijwi (i = 1, . . . ,m, j = 1, . . . , ℓ), (C.1)

u2i ≤ u2iu2i+1 (i = 1, . . . , 2p−1 − 1), (C.2)

u2i ≤ g̃2i−2p+1g̃2i−2p+2 (i = 2p−1, . . . , 2p−1 + ℓ/2− 1). (C.3)

Furthermore, in the counterpart in which ℓ is odd, we need to consider the constraints

z2ij ≤ tijwi (i = 1, . . . ,m, j = 1, . . . , ℓ), (C.4)

u2i ≤ u2iu2i+1 (i = 1, . . . , 2p−1 − 1), (C.5)

u2i ≤ g̃2i−2p+1g̃2i−2p+2 (i = 2p−1, . . . , 2p−1 + (ℓ− 3)/2), (C.6)

u2i ≤ g̃2i−2p+1u1 (i = 2p−1 + (ℓ− 1)/2). (C.7)

However, MOSEK permits only the expression η21 + · · · + η2N ≤ 2ξζ for a rotated second
order cone, where we just need the case that N = 1. Therefore, we employ the following
variable transformations:

wi = 2ŵi (i = 1, . . . ,m), (C.8)

g̃i =
√
2ĝi (i = 1, . . . , ℓ− 1), (C.9)

g̃ℓ =

{√
2ĝℓ (ℓ is even),

2ĝℓ (ℓ is odd).
(C.10)

We do not change ui because of the following reason. If we change the constraints u2i ≤ u2iu2i+1

to u2i ≤ 2u2iu2i+1, they just change the optimal value by 2(p−1)2p−1
times3. Consequently, we

3Therefore the optimal value of SOCP (4.7) is 2(p−1)2p−1

(The optimal value of Problem (4.1))1/ℓ.
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deal with the SOCP problem

maximize
{u1,...,u2p−1}⊂R,
{ĝ1,...,ĝℓ}⊂R,
Z=(zij)∈Rm×ℓ,

T=(tij)∈Rm×ℓ,
{ŵ1,...,ŵm}⊂R

u1

subject to (a1, . . . , am)Z =









√
2ĝ1 0 · · · 0

∗
√
2ĝ2

. . .
...

∗ ∗ . . . 0

∗ ∗ ∗
√
2ĝℓ









,

ŵ1 + · · ·+ ŵm = n/2,
m∑

i=1

tij ≤
√
2ĝj (j = 1, . . . , ℓ),

u2i ≤ u21 (i = 2p−1 + ℓ/2, . . . , 2p − 1),

ui ≥ 0 (i = 1, . . . , 2p − 1),
0 ≤ ŵj ≤ 1/2 (j = 1, . . . ,m),

u2i ≤ 2u2iu2i+1 (i = 1, . . . , 2p−1 − 1),
u2i ≤ 2ĝ2i−2p+1ĝ2i−2p+2 (i = 2p−1, . . . , 2p−1 + ℓ/2− 1),
z2ij ≤ 2tijŵi (i = 1, . . . ,m, j = 1, . . . , ℓ),

(C.11)

in the case that ℓ is even, and

maximize
{u1,...,u2p−1}⊂R,
{ĝ1,...,ĝℓ}⊂R,

Z=(zij)∈Rm×ℓ,

T=(tij)∈R
m×ℓ,

{ŵ1,...,ŵm}⊂R

u1

subject to (a1, . . . , am)Z =









√
2ĝ1 0 · · · 0

∗
√
2ĝ2

. . .
...

∗ ∗ . . . 0
∗ ∗ ∗ 2ĝℓ









,

ŵ1 + · · ·+ ŵm = n/2,
m∑

i=1

tij ≤
√
2ĝj (j = 1, . . . , ℓ− 1),

m∑

i=1

tiℓ ≤ 2ĝℓ,

u2i ≤ u21 (i = 2p−1 + (ℓ+ 1)/2, . . . , 2p − 1),

ui ≥ 0 (i = 1, . . . , 2p − 1),
0 ≤ ŵj ≤ 1/2 (j = 1, . . . ,m),

u2i ≤ 2u2iu2i+1 (i = 1, . . . , 2p−1 − 1),
u2i ≤ 2ĝ2i−2p+1ĝ2i−2p+2 (i = 2p−1, . . . , 2p−1 + (ℓ− 3)/2),
u2i ≤ 2ĝ2i−2p+1u1 (i = 2p−1 + (ℓ− 1)/2),
z2ij ≤ 2tijŵi (i = 1, . . . ,m, j = 1, . . . , ℓ),

(C.12)
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in the case that ℓ is odd.

C.1.2 Restriction about cone constraints

MOSEK does not permit that a variable belongs to plural cones. However, we need to consider
the cone constraints in (C.11) and (C.12) in which each ui appears 2 times and each ŵi appears
ℓ times. Therefore we prepare the copies of these variables:

ui ↔ ui1, ui2, ŵi ↔ ŵi1, ŵi2, . . . , ŵiℓ,

and set the linear constraints between these variables:

ui1 = ui2, (C.13)

ŵi1 = ŵi2 = · · · = ŵiℓ. (C.14)

Then, we introduce a vector

v = (u11, u12, u21, u22, . . . , u(2p−1),1, u(2p−1),2;

ĝ1, ĝ2, . . . , ĝℓ;

z11, . . . , zm1, z12, . . . , zm2, . . . , z1ℓ, . . . , zmℓ;

t11, . . . , tm1, t12, . . . , tm2, . . . , t1ℓ, . . . , tmℓ;

ŵ11, . . . , ŵm1, ŵ12, . . . , ŵm2, . . . , ŵ1ℓ, . . . , ŵmℓ)
T . (C.15)

C.2 Linear constraints

To describe the linear constraints in (C.11) and (C.12) in terms of the vector v, we provide a
matrix A and vectors bl and bu that express the constraints as bl ≤ Av ≤ bu.

We begin with the case that ℓ is even. First, we express the constraints in (C.13) and (C.14)
by








1 −1 0 0 · · · 0 0 0Tℓ+3mℓ

0 0 1 −1 · · · 0 0 0Tℓ+3mℓ
...

. . .
...

...
0 0 0 0 · · · 1 −1 0Tℓ+3mℓ








︸ ︷︷ ︸

A1

v = 02p−1, (C.16)

and








Om,2(2p−1)+ℓ+2mℓ Im −Im Om,m · · · Om,m

Om,2(2p−1)+ℓ+2mℓ Om,m Im −Im Om,m

...
. . .

Om,2(2p−1)+ℓ+2mℓ Om,m · · · Om,m Im −Im








︸ ︷︷ ︸

A2

v = 0m(ℓ−1), (C.17)
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respectively. Next, we consider the constraint

(a1, . . . , am)Z =









√
2ĝ1 0 · · · 0

∗
√
2ĝ2

. . .
...

∗ ∗ . . . 0

∗ ∗ ∗
√
2ĝℓ









.

By using v and the expression

(a1, . . . , am) =
[
α1 · · · αℓ

]T
(αj ∈ Rm),

we express the linear constraint as follows:






















0T2(2p−1) −
√
2 0 0 · · · 0 0 αT

1 0Tm · · · 0Tm 0T2mℓ

0T2(2p−1) 0 0 0 · · · 0 0 0Tm αT
1 0Tm 0T2mℓ

...
...

...
...

. . .
...

...
0T2(2p−1) 0 0 0 · · · 0 0 0Tm · · · 0Tm αT

1 0T2mℓ

0T2(2p−1) 0 −
√
2 0 · · · 0 0 0Tm αT

2 0Tm 0T2mℓ

...
...

...
...

. . .
...

...
0T2(2p−1) 0 0 0 · · · 0 0 0Tm · · · 0Tm αT

2 0T2mℓ

...
...

...
...

...
...

0T2(2p−1) 0 0 0 · · · 0 −
√
2 0Tm · · · 0Tm αT

ℓ 0T2mℓ






















︸ ︷︷ ︸

A3

v = 0ℓ(ℓ+1)/2.

(C.18)

Next, we express the constraint ŵ1ℓ + · · ·+ ŵmℓ = n/2 by
[

0T2(2p−1)+ℓ+3m(ℓ−1) 1Tm

]

︸ ︷︷ ︸

A4

v =
n

2
. (C.19)

Next, we express the inequality constraints

m∑

i=1

tij ≤
√
2ĝj (j = 1, . . . , ℓ)

by








0T2(2p−1) −
√
2 0 · · · 0 0Tmℓ 1Tm 0Tm · · · 0Tm 0Tmℓ

0T2(2p−1) 0 −
√
2 · · · 0 0Tmℓ 0Tm 1Tm · · · 0Tm 0Tmℓ

...
...

. . .
...

...
...

. . .
...

...

0T2(2p−1) 0 · · · 0 −
√
2 0Tmℓ 0Tm · · · 0Tm 1Tm 0Tmℓ









︸ ︷︷ ︸

A5

v ≤ 0ℓ. (C.20)

Finally, we consider the constraints

u2i ≤ u21 (i = 2p−1 + ℓ/2, . . . , 2p − 1), (C.21)
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which are equivalent to the linear constraints ui ≤ u1 owing to the non-negative constraints
ui ≥ 0. These constraints are expressed by








−1 0 0T2p+ℓ−4 1 0 0 0 · · · 0 0 0Tℓ+3mℓ

−1 0 0T2p+ℓ−4 0 0 1 0 · · · 0 0 0Tℓ+3mℓ
...

...
...

...
...

. . .
...

...
...

−1 0 0T2p+ℓ−4 0 0 0 0 · · · 1 0 0Tℓ+3mℓ








︸ ︷︷ ︸

A6

v ≤ 02p−1−ℓ/2. (C.22)

Consequently, by setting

A =
[
AT

1 AT
2 AT

3 AT
4 AT

5 AT
6

]T
, (C.23)

bl =
(

0T2p−1, 0Tm(ℓ−1), 0Tℓ(ℓ+1)/2, n/2, −∞ · 1Tℓ , −∞ · 12p−1−ℓ/2

)T
, (C.24)

bu =
(

0T2p−1, 0Tm(ℓ−1), 0Tℓ(ℓ+1)/2, n/2, 0Tℓ , 0T2p−1−ℓ/2

)T
, (C.25)

we can express the linear constraints as bl ≤ Av ≤ bu.
In the case that ℓ is odd, we need to modify A3, A5, A6, bl, and bu. We replace the

component “−
√
2” in the last rows of A3 and A5 by “−2”. Furthermore, We modify A6, bl,

and bu as

A6 =








−1 0 0T2p+ℓ−3 1 0 0 0 · · · 0 0 0Tℓ+3mℓ

−1 0 0T2p+ℓ−3 0 0 1 0 · · · 0 0 0Tℓ+3mℓ
...

...
...

...
...

. . .
...

...
...

−1 0 0T2p+ℓ−3 0 0 0 0 · · · 1 0 0Tℓ+3mℓ














2p−1
− (ℓ+ 1)/2, (C.26)

bl =
(

0T2p−1, 0Tm(ℓ−1), 0Tℓ(ℓ+1)/2, n/2, −∞ · 1Tℓ , −∞ · 12p−1−(ℓ+1)/2

)T
, (C.27)

bu =
(

0T2p−1, 0Tm(ℓ−1), 0Tℓ(ℓ+1)/2, n/2, 0Tℓ , 0T2p−1−(ℓ+1)/2

)T
, (C.28)

respectively.

C.3 Constraints for the ranges of the variables

Besides the constraints ui ≥ 0 and 0 ≤ ŵj ≤ 1/2 in (C.11) and (C.12), we can add ĝi ≥ 0 and
tij ≥ 0 because any solution that does not satisfy these constraints is useless. Therefore by
using the vectors given by

b̃l =
(

0T2(2p−1)+ℓ, −∞ · 1Tmℓ, 0T2mℓ

)T
, (C.29)

b̃u =
(

∞ · 1T2(2p−1)+ℓ+2mℓ, (1/2) · 1Tmℓ

)T
, (C.30)

we can express the constraints for the ranges of the variables as b̃l ≤ v ≤ b̃u.

C.4 Cone constraints

To express the cone constraints in (C.11) and (C.12) by MOSEK, we need to specify the
components of the vector v that correspond to the constraints. For the constraints

u2i ≤ 2u2iu2i+1 (i = 1, . . . , 2p−1 − 1),
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we take the components v2i, v2(2i)−1, and v2(2i+1)−1 for ui, u2i, and u2i+1, respectively. For
the constraints

u2i ≤ 2ĝ2i−2p+1ĝ2i−2p+2

{

(i = 2p−1, . . . , 2p−1 + ℓ/2 + 1) (ℓ is even),

(i = 2p−1, . . . , 2p−1 + (ℓ− 3)/2) (ℓ is odd),

we take the components v2i, v2p+2i−1, and v2p+2i for ui, ĝ2i−2p+1, and ĝ2i−2p+2, respectively.
In the case that ℓ is odd, we take the components v2p+ℓ−1, v2(2p−1)+ℓ, and v1 for the constraint
u22p−1+(ℓ−1)/2 ≤ 2ĝℓu1. Finally, for the constraints

z2ij ≤ 2tijŵi (i = 1, . . . ,m, j = 1, . . . , ℓ),

we take the components v2(2p−1)+ℓ+ij , v2(2p−1)+ℓ+ij+mℓ, and v2(2p−1)+ℓ+ij+2mℓ.
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