Skip to main content
Log in

An adaptive local discontinuous Galerkin method for nonlinear two-point boundary-value problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we propose an adaptive mesh refinement (AMR) strategy based on a posteriori error estimates for the local discontinuous Galerkin (LDG) method for nonlinear two-point boundary-value problems (BVPs) of the form \(u^{\prime \prime }=f(x,u),\ x\in [a,b]\) subject to some suitable boundary conditions at the endpoint of the interval [a, b]. We first use the superconvergence results proved in the first part of this paper as reported by Baccouch (Numer. Algorithm. 79(3), 697–718 2018) to show that the significant parts of the local discretization errors are proportional to (p + 1)-degree Radau polynomials, when polynomials of total degree not exceeding p are used. These new results allow us to construct a residual-based a posteriori error estimators which are obtained by solving a local residual problem with no boundary conditions on each element. The proposed error estimates are efficient, reliable, and asymptotically exact. We prove that, for smooth solutions, the proposed a posteriori error estimates converge to the exact errors in the L2-norm with order of convergence p + 3/2. Finally, we present a local AMR procedure that makes use of our local and global a posteriori error estimates. Our proofs are valid for arbitrary regular meshes and for Pp polynomials with p ≥ 1. Several numerical results are presented to validate the theoretical results and to show the efficiency of the grid refinement strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    MATH  Google Scholar 

  2. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York (2000)

    MATH  Google Scholar 

  3. Baccouch, M.: A local discontinuous Galerkin method for the second-order wave equation. Comput. Methods Appl. Mech. Eng. 209–212, 129–143 (2012)

    MATH  Google Scholar 

  4. Baccouch, M.: Asymptotically exact a posteriori LDG error estimates for one-dimensional transient convection-diffusion problems. Appl. Math. Comput. 226, 455–483 (2014)

    MATH  Google Scholar 

  5. Baccouch, M.: The local discontinuous Galerkin method for the fourth-order Euler-Bernoulli partial differential equation in one space dimension. Part II: A posteriori error estimation. J. Sci. Comput. 60, 1–34 (2014)

    MATH  Google Scholar 

  6. Baccouch, M.: Superconvergence and a posteriori error estimates for the LDG method for convection-diffusion problems in one space dimension. Comput. Math. Appl. 67, 1130–1153 (2014)

    MATH  Google Scholar 

  7. Baccouch, M.: Asymptotically exact a posteriori local discontinuous Galerkin error estimates for the one-dimensional second-order wave equation. Numer. Methods Partial Differ. Equ. 31, 1461–1491 (2015)

    MATH  Google Scholar 

  8. Baccouch, M.: Asymptotically exact local discontinuous Galerkin error estimates for the linearized Korteweg-de Vries equation in one space dimension. Int. J. Numer. Anal. Model. 12, 162–195 (2015)

    MATH  Google Scholar 

  9. Baccouch, M.: Analysis of a posteriori error estimates of the discontinuous Galerkin method for nonlinear ordinary differential equations. Appl. Numer. Math. 106, 129–153 (2016)

    MATH  Google Scholar 

  10. Baccouch, M.: Optimal a posteriori error estimates of the local discontinuous Galerkin method for convection-diffusion problems in one space dimension. J. Comput. Math. 34, 511–531 (2016)

    MATH  Google Scholar 

  11. Baccouch, M.: Superconvergence of the discontinuous Galerkin method for nonlinear second-order initial-value problems for ordinary differential equations. Appl. Numer. Math. 115, 160–179 (2017)

    MATH  Google Scholar 

  12. Baccouch, M.: A posteriori local discontinuous Galerkin error estimates for the one-dimensional sine-Gordon equation. Int. J. Comput. Math. 95(4), 815–844 (2018)

    MATH  Google Scholar 

  13. Baccouch, M.: A superconvergent local discontinuous Galerkin method for nonlinear two-point boundary-value problems. Numer. Algorithm. 79(3), 697–718 (2018)

    MATH  Google Scholar 

  14. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Birkhäuser Verlag, Cambridge (2003)

    MATH  Google Scholar 

  15. Castillo, P.: A review of the Local Discontinuous Galerkin (LDG) method applied to elliptic problems. Appl. Numer. Math. 56, 1307–1313 (2006)

    MATH  Google Scholar 

  16. Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.: Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems. Math. Comput. 71, 455–478 (2002)

    MATH  Google Scholar 

  17. Celiker, F., Cockburn, B.: Superconvergence of the numerical traces for discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension. Math. Comput. 76, 67–96 (2007)

    MATH  Google Scholar 

  18. Cockburn, B.: A simple introduction to error estimation for nonlinear hyperbolic conservation laws. In: Proceedings of the 1998 EPSRC Summer School in Numerical Analysis, SSCM, volume 26 of the Graduate Student’s Guide for Numerical Analysis, pp. 1–46. Springer, Berlin (1999)

  19. Cockburn, B., Gremaud, P.A.: Error estimates for finite element methods for nonlinear conservation laws. SIAM J. Numer. Anal. 33, 522–554 (1996)

    MATH  Google Scholar 

  20. Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG Method for the incompressible Navier-Stokes equations. Math. Comput. 74, 1067–1095 (2004)

    MATH  Google Scholar 

  21. Cockburn, B., Kanschat, G., Schötzau, D.: The local discontinuous Galerkin method for linearized incompressible fluid flow: a review. Comput. Fluids 34(4-5), 491–506 (2005)

    MATH  Google Scholar 

  22. Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin Methods Theory, Computation and Applications Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000)

    Google Scholar 

  23. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    MATH  Google Scholar 

  24. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Computational Differential Equations. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  25. Hartmann, R., Houston, P.: Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservations laws. SIAM J. Sci. Comput. 24, 979–1004 (2002)

    MATH  Google Scholar 

  26. Houston, P., Schötzau, D., Wihler, T.: Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin methods for elliptic problems. Math. Models Methods Appl. Sci. 17, 33–62 (2007)

    MATH  Google Scholar 

  27. Keller, H.B.: Numerical Methods for Two-point Boundary-value Problems, A Blaisdell Book in Numerical Analysis and Computer Science, Blaisdell, Waltham (1968)

  28. Lin, R.: Discontinuous discretization for least-squares formulation of singularly perturbed reaction-diffusion problems in one and two dimensions. SIAM J. Numer. Anal. 47(1), 89–108 (2009)

    MATH  Google Scholar 

  29. Rivière, B., Wheeler, M.: A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems. Comput. Appl. Math. 46, 143–163 (2003)

    MATH  Google Scholar 

  30. Verfu̇rth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement Techniques. Advances in numerical mathematics, Wiley-Teubner (1996)

    Google Scholar 

  31. Verfu̇rth, R.: A posteriori error estimation techniques for finite element methods, Oxford science publications, 1st edn. Oxford University Press, Oxford (2013)

    Google Scholar 

  32. Xie, Z., Zhang, Z.: Superconvergence of DG method for one-dimensional singularly perturbed problems. J. Comput. Math. 25(2), 185–200 (2007)

    MATH  Google Scholar 

  33. Xie, Z., Zhang, Z.: Uniform superconvergence analysis of the discontinuous G,alerkin method for a singularly perturbed problem in 1-D. Math. Comput. 79(269), 35–45 (2010)

    MATH  Google Scholar 

  34. Xie, Z., Zhang, Z., Zhang, Z.: A numerical study of uniform superconvergence of LDG method for solving singularity perturbed problems. J. Comput. Math. 27, 280–298 (2009)

    MATH  Google Scholar 

  35. Zhang, Z., Xie, Z., Zhang, Z.: Superconvergence of discontinuous Galerkin methods for convection-diffusion problems. J. Sci. Comput. 41, 70–93 (2009)

    MATH  Google Scholar 

  36. Zhu, H., Zhang, H.T.Z.: Convergence analysis of the LDG method for singularly perturbed two-point boundary value problems. Commun. Math. Sci. 9(4), 1013–1032 (2011)

    MATH  Google Scholar 

Download references

Funding

This research was financially supported by the University Committee on Research and Creative Activity (UCRCA Proposal 2016-01-F) at the University of Nebraska at Omaha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboub Baccouch.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baccouch, M. An adaptive local discontinuous Galerkin method for nonlinear two-point boundary-value problems. Numer Algor 84, 1121–1153 (2020). https://doi.org/10.1007/s11075-019-00794-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00794-8

Keywords

Mathematics Subject Classification (2010)

Navigation