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Abstract

Recursive blocked algorithms have proven to be highly efficient at the numeri-
cal solution of the Sylvester matrix equation and its generalizations. In this work,
we show that these algorithms extend in a seamless fashion to higher-dimensional
variants of generalized Sylvester matrix equations, as they arise from the discretiza-
tion of PDEs with separable coefficients or the approximation of certain models in
macroeconomics. By combining recursions with a mechanism for merging dimen-
sions, an efficient algorithm is derived that outperforms existing approaches based
on Sylvester solvers.

1 Introduction

In computations with matrices, recursive blocked algorithms offer an elegant way to
arrive at implementations that benefit from increased data locality and efficiently utilize
highly tuned kernels. See [7] for a survey and [22] for a more recent testimony of
this principle. These algorithms have proven particularly effective for solving Sylvester
equations, that is, matrix equations of the form

A1X +XAT
2 = B, (1.1)

where A1 ∈ R
n1×n1 , A2 ∈ R

n2×n2 , B ∈ R
n1×n2 are given and X ∈ R

n1×n2 is unknown.
In the Bartels-Stewart algorithm [2], the matrices A1 and A2 are first reduced to block
upper form by real Schur decompositions. The reduced problem is then solved by a
variant of backward substitution. Both stages of the algorithms requireO(n3) operations,
with n = max{n1, n2}. Entirely consisting of level 2 BLAS operations, the backward
substitution step performs quite poorly. To avoid this, Jonsson and K̊agström [12, 13]
have proposed recursive algorithms for triangular Sylvester and related matrix equations.
The recursive algorithm for solving (1.1) with upper quasi-triangular A1, A2 starts with

∗Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, 310029, Zhejiang, P.R.China,
mhchen@zstu.edu.cn. The work of this author was supported by the National Natural Science Founda-
tion of China (Grant No. 11801513).

†Institute of Mathematics, EPF Lausanne, 1015 Lausanne, Switzerland, daniel.kressner@epfl.ch.

1

http://arxiv.org/abs/1905.09539v1


partitioning the matrix of larger size. Assuming n1 ≥ n2, let A1 =

(

A1,11 A1,12

0 A1,22

)

with

A1,11 ∈ R
k×k such that k ≈ n/2 and partition X =

(

X1

X2

)

, B =

(

B1

B2

)

correspondingly.

Then (1.1) becomes equivalent to

A1,11X1 +X1A
T
2 = B1 −A1,12X2, (1.2a)

A1,22X2 +X2A
T
2 = B2. (1.2b)

First the Sylvester equation (1.2b) is solved recursively, then the right-hand side (1.2a)
is updated, and finally (1.2a) is solved recursively. Apart from the solution of small-sized
Sylvester equations at the lowest recursion level, the entire algorithm consists of matrix-
matrix multiplications A1,12X2 and thus attains high performance by leveraging level
3 BLAS. As emphasized in [7, 22], recursive algorithm are less sensitive to parameter
tuning compared to blocked algorithms.

The described algorithm extends to generalized and coupled Sylvester equations, such
as A1XM1 +M2XAT

2 = B; see [13, 23]. Interestingly, the numerically stable recursive
formulation of Hammarling’s method [11] for solving stable Lyapunov equations remains
an open problem [16].

In this paper, we propose several new extensions that address high-dimensional vari-
ants of Sylvester equations. More specifically, we aim at computing a tensor X ∈
R
n1×n2×···×nd satisfying the linear equation

AX = B, (1.3)

where A : Rn1×···×nd → R
n1×···×nd is a linear operator and B ∈ R

n1×n2···×nd . For d = 2,
this formulation includes the Sylvester equation (1.1) and its generalizations mentioned
above as special cases. For example, for (1.1) the matrix representation of A is given by
A = A2 ⊗ In1

+ In2
⊗A1.

The operator A needs to be of a very particular form such that (1.3) is amenable to
the techniques discussed in this work. Motivated by their relevance in applications, we
focus on two classes of operators.

Linear systems with Laplace-like structure. In Section 2, we consider discrete
Laplace-like operators A having the matrix representation

A = Ad⊗Ind−1
⊗· · ·⊗In1

+Ind
⊗Ad−1⊗Ind−2

⊗· · ·⊗In1
+ · · ·+Ind

⊗· · ·⊗In2
⊗A1, (1.4)

with Aµ ∈ R
nµ×nµ , µ = 1, . . . , d. Using the vectorization of tensors, (1.3) can equiv-

alently be written as A vec(X) = vec(B). Discrete Laplace-like operators arise from
the structured discretization of d-dimensional PDEs with separable coefficients on ten-
sorized domains. For more general PDEs, matrices of the form (1.4) can sometimes be
used to construct effective preconditioners; see [24, 25] for examples. Other applications
of (1.4) arise from Markov chain models [5, 26] used, e.g., for simulating interconnected
systems.
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Generalized Sylvester equations with Kronecker structure. Section 3 is con-
cerned with the second class of operators A considered in this work, which have a matrix
representation of the form

A = Ind
⊗ Ind−1

⊗ · · · ⊗ In2
⊗A1 +Ad ⊗Ad−1 ⊗ · · · ⊗A2 ⊗ C, (1.5)

with Aµ ∈ R
nµ×nµ for µ = 1, . . . , d and C ∈ R

n1×n1 . For d = 2, the linear system (1.3)
now becomes equivalent to the generalized Sylvester equation A1X+CXAT

2 . For d > 2,
we can view (1.3) equivalently as a generalized Sylvester equations with coefficients that
feature Kronecker structure. If A1 = −λI for some λ ∈ R then

A = Ad ⊗ · · · ⊗A2 ⊗ C − λIn1···nd
. (1.6)

Linear systems featuring such shifted Kronecker products have been discussed in [19].
The more general case (1.5) arises from approximations of discrete time DSGE models [3],
which play a central role in macroeconomics.

Recent work on the solution of linear tensor equations (1.3) has focused on the
development of highly efficient approximate and iterative solvers that assume and exploit
low-rank tensor structure in the right-hand side and the solution; see [9, 10] for overviews.
In some cases, these developments can be combined with the methods developed in this
work, which do not assume any such structure. For example, if the tensor Krylov
subspace method [17] is applied to (1.4) for large-scale coefficients Aµ then our method
can be used to solve the smaller-sized linear systems occurring in the method. As far as
we know, all existing direct non-iterative solvers for linear tensor equations combine the
Bartels-Stewart method for (generalized) Sylvester equations with a recursive traversal
of the dimension. Instances of this approach can be found in [18, 27] for (1.4), in [14]
for (1.5), and in [19] for (1.6). For d ≥ 3, we are not aware of any work on (recursive)
blocked methods that would allow for the effective use of level 3 BLAS.

2 A recursive blocked algorithm for Laplace-like equations

Let us first recall two basic operations for tensors from [15]. The µth matricization of a
tensor X ∈ R

n1×···×nd is the matrix X(µ) ∈ R
nµ×(n1···nµ−1nµ+1···nd) obtained by mapping

the µth index to the rows and all other indices to the columns:

X(µ)(iµ, j) = X (i1, . . . , id),

with the column index j defined via the index map

j = i(i1, . . . , iµ−1, iµ+1, . . . , id) := 1 +
d

∑

ν=1

ν 6=µ

(iν − 1)
ν−1
∏

η=1

η 6=µ

nη. (2.1)

The µ-mode matrix multiplication of X with a matrix A ∈ R
n1×m is the tensor Y =

X×µ A satisfying Y(µ) = AX(µ). This allows us to rewrite (1.3)–(1.4) as

X×1 A1 +X×2 A2 + · · ·+X×d Ad = B. (2.2)
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It is well known that this equation has a unique solution if and only if λ1 + · · ·+ λd 6= 0
for any eigenvalues λ1 of A1, λ2 of A2, etc. In the following, we will assume that this
condition is satisfied.

Algorithm 1 describes our general framework for solving (2.2). Using real Schur
decompositions [8, Sec. 7.4], the coefficient matrices are first transformed to reduced
form. More specifically, for each µ = 1, . . . , d an orthogonal matrix Uµ is computed
such that Ãµ := UT

µ AµUµ is in upper quasi-triangular form, that is, Ãµ is an upper
block triangular matrix with 1×1 blocks containing its real eigenvalues and 2×2 blocks
containing its complex eigenvalues in conjugate pairs. The right-hand side and the
solution tensor need to be transformed accordingly by µ-mode matrix multiplications.
For the rest of this section, we focus on line 3 of Algorithm 1, that is, the solution of the
tensor equation with the reduced coefficients.

Algorithm 1 Solution of general Laplace-like equation (1.3)

1: Compute real Schur decompositions A1 = U1Ã1U
T
1 , . . . , Ad = UdÃdU

T
d .

2: Update B̃ = B×1 U
T
1 ×2 U

T
2 · · · ×d U

T
d .

3: Compute solution X̃ of tensor equation (2.2) with quasi-triangular coefficients Ã1, . . . , Ãd

and right-hand side B̃.
4: Update X = X̃×1 U1 ×2 U2 · · · ×d Ud

2.1 Recursion

By Algorithm 1, we may assume that A1 ∈ R
n1×n1 , . . . , Ad ∈ R

nd×nd are already in upper
quasi-triangular form. Choose µ such that nµ = maxν nν and k such that k ≈ nµ/2 and

Aµ(k + 1, k) = 0. Partitioning Aµ =

(

Aµ,11 Aµ,12

0 Aµ,22

)

with Aµ,11 ∈ R
k×k, equation (2.2)

becomes equivalent to

X1 ×µ Aµ,11 +
d

∑

ν=1

ν 6=µ

X1 ×ν Aν = B1 −X2 ×µ Aµ,12, (2.3a)

X2 ×µ Aµ,22 +

d
∑

ν=1

ν 6=µ

X2 ×ν Aν = B2, (2.3b)

where

X1 = X(1 : n1, . . . , 1 : nµ−1, 1 : k, 1 : nµ+1, . . . , 1 : nd), (2.4a)

X2 = X(1 : n1, . . . , 1 : nµ−1, k + 1 : nµ, 1 : nµ+1, . . . , 1 : nd), (2.4b)

and B1,B2 are defined analogously. Noting that (2.3b) and (2.3a) are again equations
with Laplace-like operators, they can be solved recursively. The recursion is stopped once
the maximal size is below a user-specified block size nmin ≥ 2. These considerations lead
to Algorithm 2.
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Algorithm 2 Recursive sol. of quasi-triang. tensor eqn: X = reclap(A1, . . . , Ad,B)

1: Determine nµ = maxν nν .
2: if nµ ≤ nmin then solve full system and return end if

3: Set k = ⌊nµ/2⌋. if Aµ(k + 1, k) 6= 0 then k = k + 1 end if

4: Set B1 = B(:, . . . , :, 1 : k, :, . . . , :), B2 = B(:, . . . , :, k + 1 : nµ, :, . . . , :).
5: Call X2 = reclap(A1, . . . , Aµ−1, Aµ(k + 1 : nµ, k + 1 : nµ), Aµ+1, . . . , Ad,B2).
6: Update B1 ← B1 −X2 ×µ Aµ(1 : k, k + 1 : nµ).
7: Call X1 = reclap(A1, . . . , Aµ−1, Aµ(1 : k, 1 : k), Aµ+1, . . . , Ad,B2).
8: Concatenate X1,X2 along µth mode into X.

Let comp(n) denote the complexity of Algorithm 2 for even n = n1 = · · · = nd. On
the top level of recursion Algorithm 2 is applied to one n× · · ·×n tensor, on the second
level to two n/2×n×· · ·×n tensors, on the third level to four n/2×n/2×n×· · ·×n tensors,
and so on. Under the slightly simplified assumption that the multiplication of an n/2×
n/2 quasi-triangular matrix with a vector requires n2/4 floating point operations (flops),
each level of the first d recursions requires a total of nd+1/4 flops to execute the matrix-
matrix multiplications in line 6 of Algorithm 2. After d recursions of Algorithm 2, n has
been reduced to n/2 in each mode and, therefore, comp(n) = dnd+1/4 + 2dcomp(n/2).
Assuming that n/nmin is a power of two, we obtain

comp(n) = O
(

nd+1
)

+ (2d)log2 n/nmincomp(nmin) = O
(

nd+1
)

+
nd

nd
min

comp(nmin). (2.5)

Once the maximal size of the tensor is nmin or below, line 2 of Algorithm 2 assembles the
matrix A defined in (1.4) and solves the block triangular linear system A vec(X) = vec(B)
by backward substitution. This requires O

(

(nmin)
2d
)

flops and therefore

comp(n) = O
(

nd+1 + nd
minn

d
)

. (2.6)

This compares favorably with the O(n2d) operations needed by backward substitution
applied to the assembled full triangular linear system. The complexity estimate (2.6)
also reflects the critical role played by the solution of the small systems in line 2. On
the one hand, the operation count suggests to choose nmin as small as possible, say,
nmin = 2. On the other hand, it has been observed for d = 2 in [12] that a small value of
nmin creates significant overhead and requires very well tuned kernels. In the following
section, we describe a technique that alleviates this difficulty.

2.2 Merging dimensions: triangular case

To avoid the critical dependence on nmin observed in (2.6) we replace line 2 of Algorithm 2
by the following procedure. Once n1n2 ≤ n2

min, the matrix

A′
1 = In2

⊗A1 +A2 ⊗ In1
(2.7)

is formed explicitly. For the moment, let us suppose that A1 and A2 are upper triangular.
This can be achieved by computing complex instead of real Schur decompositions in
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Algorithm 1, leading to a triangular tensor equation with complex coefficients. Because
of roundoff error, the computed solution to the original equation will now have a (small)
imaginary part. This can be safely set to zero [20].

The matrix A′
1 inherits the triangular structure from A1, A2 and the d-dimensional

tensor equation (2.2) is equivalent to the (d− 1)-dimensional equation

X′ ×1 A
′
1 +X′ ×3 A3 + · · ·+X′ ×d Ad = B′, (2.8)

with reshaped X′,B′ ∈ C
n1n2×n3···×nd . This equation is solved recursively. A major

advantage, this approach allows us to reduce d. For d = 3, the system (2.8) becomes the
triangular Sylvester equation

A′
1X

′ +X′AT
3 = B′,

to which the efficient solvers described in Section 1 can be applied. Note that AT
3 now

refers to the complex transpose of A3 ∈ C
n3×n3 . Algorithm 3 summarizes the proposed

procedure.

Algorithm 3 Recursive sol. of triangular tensor equation: X = mrglap(A1, . . . , Ad,B)

1: if n1n2 ≤ n2
min then

2: Compute A′

1 = In2
⊗A1 +A2 ⊗ In1

.
3: Reshape B′(1 : n1n2, :, . . . , :) = B(1 : n1, 1 : n2, :, . . . , :).
4: if d = 3 then

5: Solve Sylvester equation A′

1X
′ +X′AT

3 = B′.
6: else

7: Call X′ = mrglap(A′

1, A3, . . . , Ad,B
′)

8: end if

9: Reshape X(1 : n1, 1 : n2, :, . . . , :) = X′(1 : n1n2, :, . . . , :).
10: else

11: Determine nµ = maxν nν and set k = ⌊nµ/2⌋.
12: Set B1 = B(:, . . . , :, 1 : k, :, . . . , :), B2 = B(:, . . . , :, k + 1 : nµ, :, . . . , :).
13: Call X2 = mrglap(A1, . . . , Aµ−1, Aµ(k + 1 : nµ, k + 1 : nµ), Aµ+1, . . . , Ad,B2).
14: Update B1 ← B1 −X2 ×µ Aµ(1 : k, k + 1 : nµ).
15: Call X1 = mrglap(A1, . . . , Aµ−1, Aµ(1 : k, 1 : k), Aµ+1, . . . , Ad,B2).
16: Concatenate X1,X2 along µth mode into X.
17: end if

To analyze the complexity of Algorithm 3 for n1 = · · · = nd = n > 2nmin, we observe
that all sizes are first reduced to 2nmin or below before the condition in line 1 is met.
Hence, up to constant factors the recursive estimate (2.5) holds and it remains to discuss
the complexity for n1 = · · · = nd = nmin, which will be denoted by compd(nmin). The
merge in line 2 reduces the order to d − 1 but increases the first mode size to n2

min.
Approximately log2(n

2
min/nmin) = log2 nmin recursions are needed to reduce it back to

nmin. Similarly as in Section 2.1 we calculate

compd(nmin) = O
(

nd+2
min

)

+ nmincompd−1(nmin) = O
(

nd+2
min

)

+ nd−3
min comp3(nmin).
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For d = 3, the solution of the triangular Sylvester equation in line 5 requires O
(

n5
min

)

flops. In turn, compd(nmin) = O
(

nd+2
min

)

. Inserted into (2.5), we arrive at

O
(

nd+1 + n2
minn

d
)

flops for Algorithm 3. For d ≥ 3, this compares favorably with the complexity es-
timate (2.6) for Algorithm 2; the dependence on nmin has been reduced significantly.
Equally importantly, Algorithm 3 allows us to leverage efficient solvers for triangular
Sylvester equations, such as the ones described in [12].

2.3 Merging dimensions: quasi-triangular case

The use of complex arithmetic, which increases the cost (by a constant factor) in terms
of operations and memory, can be avoided when using the real Schur form and working
with quasi-triangular coefficients. However, a few modifications are needed because the
matrix A′

1 formed in (2.7) does not inherit the quasi-triangular structure from A1 and
A2. To illustrate what happens, let us consider the following example for n1 = 3, n2 = 4:

A1 =





× × × ×

0 × × ×

0 × × ×

0 0 0 ×



, A2 =

[

× × ×

0 × ×

0 × ×

]

, A′
1 =































× × × × × 0 0 0 × 0 0 0

0 × × × 0 × 0 0 0 × 0 0

0 × × × 0 0 × 0 0 0 × 0

0 0 0 × 0 0 0 × 0 0 0 ×

0 0 0 0 × × × × × 0 0 0

0 0 0 0 0 × × × 0 × 0 0

0 0 0 0 0 × × × 0 0 × 0

0 0 0 0 0 0 0 × 0 0 0 ×

0 0 0 0 × 0 0 0 × × × ×

0 0 0 0 0 × 0 0 0 × × ×

0 0 0 0 0 0 × 0 0 × × ×

0 0 0 0 0 0 0 × 0 0 0 ×































. (2.9)

The diagonal matrix at the (3,2) block disturbs the quasi-triangular structure of A′
1.

More generally, assuming n1 = n2 = nmin the matrix A′
1 is an n2

min × n2
min block upper

triangular matrix with diagonal blocks of size at most nmin. This matrix can be returned
to quasi-triangular form by computing a real Schur decomposition of A′

1. The impact of
this operation on the overall cost of Algorithm 3 can be made negligible by exploiting
the structure of A′

1:

• When the structure of A′
1 is completely ignored, its real Schur decomposition takes

O(n6
min) flops and, in turn, the complexity of Algorithm 3 increases to O

(

nd+1 +
n3
minn

d
)

.

• When the block triangular structure of A′
1 is taken into account, the cost of com-

puting its real Schur decomposition reduces to O(n5
min) flops. When used within

Algorithm 3, the additional flops spent on performing these decompositions and
applying the resulting orthogonal transformations amounts to O

(

n2
minn

d
)

in total.
In turn, this operation does not increase the complexity of Algorithm 3 but its
dependence on n2

min is not negligible either.
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• The diagonal structure of the off-diagonal blocks of A′
1 can be exploited to reduce

the cost further, using a permutation trick similar to the one discussed in [19]. To
illustrate this, consider the 12 × 12 matrix A′

1 from (2.9). By applying a perfect
shuffle permutation [28] to the last 8 rows and columns, we obtain the permuted
matrix

P TA′
1P =































× × × × × × 0 0 0 0 0 0

0 × × × 0 0 × × 0 0 0 0

0 × × × 0 0 0 0 × × 0 0

0 0 0 × 0 0 0 0 0 0 × ×

0 0 0 0 × × × 0 × 0 × 0

0 0 0 0 × × 0 × 0 × 0 ×

0 0 0 0 0 0 × × × 0 × 0

0 0 0 0 0 0 × × 0 × 0 ×

0 0 0 0 0 0 × 0 × × × 0

0 0 0 0 0 0 0 × × × 0 ×

0 0 0 0 0 0 0 0 0 0 × ×

0 0 0 0 0 0 0 0 0 0 × ×































.

In the general case, applying such a permutation to each nmin × nmin diagonal
block transforms A′

1 into a block upper triangular matrix with diagonal blocks of
size at most 4. This reduces the cost of computing its real Schur decomposition to
O(n4

min) flops and the overall impact of this operation on the cost of Algorithm 3
becomes negligible.

2.4 Numerical experiments

All algorithms proposed in this work have been implemented in Matlab R2019a and
executed on a Lenovo ThinkPad T460, which comes with an Intel Core i5-6300U pro-
cessor and 8 Gbytes of DDR3L-RAM. The implementation of the algorithms together
with scripts for reproducing each of the experiments reported in this work are available
from https://anchp.epfl.ch/misc/.

Care has been taken to avoid unnecessary overhead in our Matlab implementation.
For example, the tensor object from the Tensor Toolbox [1] is very convenient for
realizing tensor operations but our preliminary experiments indicated that its use in
Algorithms 2 and 3 would lead to significant performance loss, possibly due to excessive
memory transfer. Instead, we directly use Matlab arrays, combined with the permute
and reshape functions for implementing µ-mode matrix multiplications. For solving
triangular Sylvester equations, as needed, e.g., in Algorithm 3, we utilize the internal
Matlab function sylvester tri. This function seems to be based on the algorithms
presented in [12, 13] and avoids performing any additional Schur decomposition.

The techniques from Section 2.3, which allow for the use of real arithmetic in Algo-
rithm 3, have been implemented and verified. However, we observed that none of the
three described variants leads to competitive performance, any benefit from structure
exploitation is offset by the overhead it incurs in Matlab, due to the relatively small
values of nmin needed for reaching good performance. In the following, we therefore
consistently use complex Schur decompositions for reducing all coefficients to triangular
form. All reported times include the time needed by Algorithm 1 for performing these

8
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Figure 1: Execution times (in seconds) vs. nmin for Algorithms 2 and 3 applied to
random n× · · · × n tensors with n = 80 for d = 3 and n = 25 for d = 4.

decompositions and applying the corresponding transformations. The coefficients used
in our experiments have been generated with randn.

Choice of nmin. Figure 1 shows the execution times obtained for fixed n and varying
nmin. All numbers have been averaged over five consecutive runs. As to be expected from
the complexity estimates, the performance of Algorithm 2 is very sensitive to the choice
of nmin, especially for d = 4. The smallest execution times are attained by nmin = 7 for
d = 3 and nmin = 3 for d = 4. The performance of Algorithm 3 is not very sensitive
to the choice of nmin, provided that its value is not chosen too small. The smallest
execution times are attained by nmin = 26 for d = 3, nmin = 18 for d = 4, and nmin = 14
for d = 5. These values of nmin are used in the following.

Comparison. We have compared our newly proposed algorithms with the following
procedure termed “Sylvester solver”: After reducing the coefficients A1, . . . , Ad of the
Laplace-like equation (2.2) to triangular form and reshaping B suitably into a matrix
B, one of the Sylvester equations

(I ⊗A1 +A2 ⊗ I)X +XAT
3 = B, (I ⊗A1 +A2 ⊗ I)X +X(I ⊗A3 +A4 ⊗ I)T = B

(I ⊗A1 +A2 ⊗ I)X +X(I ⊗ I ⊗A3 + I ⊗A4 ⊗ I +A5 ⊗ I ⊗ I)T = B

is solved for d = 3, 4, 5 by calling sylvester tri. The results reported in Figure 2
confirm that Algorithms 2 and 3 have the same asymptotic cost. However, Algorithm 3
is always faster, by an order of magnitude for sufficiently large n. For d = 3, the Sylvester
solver is nearly always slower than Algorithm 3. For d = 4, the picture is less clear; only
for n ≥ 50 becomes Algorithm 3, which has complexity O(n5), consistently faster than
the Sylvester solver, which has complexity O(n6). For d = 5, the difference in complexity
is more pronounced and, in turn, Algorithm 3 is nearly always faster.
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Figure 2: Execution times (in seconds) vs. n for Algorithms 2 and 3 compared to
Sylvester solver.
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For all experiments performed, the norm of the residual was checked and no sig-
nificant differences in terms of numerical stability were observed between the different
algorithms tested.

3 A recursive blocked algorithm for generalized Sylvester

equations with Kronecker structure

In this section, we extend the developments from Section 2 to the second class of op-
erators A considered in this work, which have the matrix representation (1.5). The
corresponding linear system reads in tensor notation as

X×1 A1 +X×1 C ×2 A2 ×3 A3 · · · ×d Ad = B. (3.1)

Because of its connection to generalized Sylvester equations [4] explained in the intro-
duction, this equation has a unique solution if and only if the matrix pencil A1 + λC is
regular and none of its eigenvalues is an eigenvalue of −Ad ⊗ Ad−1 ⊗ · · · ⊗ A2. In the
following, we assume that this condition is satisfied.

Algorithm 4 is the equivalent of Algorithm 1 for reducing (3.1) to quasi-triangular
form. The most notable difference is that now a generalized Schur decomposition [8,
Sec. 7.7.2] of A1 + λC needs to be computed, using the QZ algorithm.

Algorithm 4 Solution of generalized Sylvester equation (3.1)

1: Compute real generalized Schur decomposition A1 = U1Ã1Z
T , C = U1C̃ZT .

2: Compute real Schur decompositions A2 = U2Ã2U
T
2 , · · · , Ad = UdÃdU

T
d .

3: Update B̃ = B×1 U
T
1 ×2 U

T
2 · · · ×d U

T
d .

4: Compute solution X̃ of tensor equation (3.1) with (quasi-)triangular coefficients C̃, Ã1, . . . , Ãd

and right-hand side B̃.
5: Update X = X̃×1 Z ×2 U2 · · · ×d Ud

3.1 Recursion

The rest of this section is concerned with line 4 of Algorithm 4, solving (3.1) with
upper quasi-triangular coefficients A1 ∈ R

n1×n1 , . . . , Ad ∈ R
nd×nd and upper triangular

C ∈ R
n1×n1 . Again we proceed recursively and choose µ such that nµ = maxν nν and

k such that k ≈ nµ/2 and Aµ(k + 1, k) = 0. We partition Aµ =

(

Aµ,11 Aµ,12

0 Aµ,22

)

,

Aµ,11 ∈ R
k×k and split the tensors X and B along their µth mode into X1,X2 and

B1,B2, respectively, in accordance with (2.4).

Case 1: µ = 1. We additionally partition C =

(

C11 C12

0 C22

)

and decouple (3.1)

along the first mode:

X1 ×1 A1,11 +X1 ×1 C11 ×2 A2 ×3 · · · ×d Ad = B̂1,

X2 ×1 A1,22 +X2 ×1 C22 ×2 A2 ×3 · · · ×d Ad = B2,

11



with B̂1 := B1 − X2 ×1 A1,12 − X2 ×1 C12 ×2 A2 ×3 · · · ×d Ad. Both equations take
the form of the tensor equation (3.1) with (quasi-)triangular coefficients. We recursively
solve for X2 and then solve for X1, after computing B̂1.

Case 2: µ 6= 1. Decoupling (3.1) along the µth mode gives the two tensor equations

X1 ×1 A1 +X1 ×1 C ×2 · · · ×µ Aµ,11 ×µ+1 · · · ×d Ad = B̂1,

X2 ×1 A1 +X2 ×1 C ×2 · · · ×µ Aµ,22 ×µ+1 · · · ×d Ad = B2,

with B̂1 := B1 −X2 ×1 C ×2 · · · ×µ Aµ,12 ×µ+1 · · · ×d Ad. Again, we first solve for X2

and then for X1.

Algorithm 5 Recursive solution of triangular generalized Sylvester equation with tensor
structure: X = recgsylvten(A1, . . . , Ad, C,B)

1: Determine nµ = maxν nν .
2: if nµ ≤ nmin then solve full system and return end if

3: Set k = ⌊n/2⌋. if Aµ(k + 1, k) 6= 0 then k = k + 1 end if

4: Set B1 = B(:, . . . , :, 1 : k, :, . . . , :), B2 = B(:, . . . , :, k + 1 : nµ, :, . . . , :).
5: if µ = 1 then

6: Call X2 = recgsylvten(A1(k+1 : n1, k+1 : n1), A2, . . . , Ad, C(k+1 : n1, k+1 : n1),B2).

7: Update B1 ← B1−X2×1A1(1 : k, k+1 : n1)−X2×1C(1 : k, k+1 : n1)×2A2×3 . . .×dAd.

8: Call X1 = recgsylvten(A1(1 : k, 1 : k), A2 . . . , Ad, C(1 : k, 1 : k),B2).
9: else

10: Call X2 = recgsylvten(A1, . . . , Aµ−1, Aµ(k + 1 : nµ, k + 1 : nµ), Aµ+1, . . . , Ad, C,B2).
11: Update B1 ← B1−X2×1C×2A2×3 · · ·×µAµ(1 : k, k+1 : nµ)×µ+1Aµ+1×µ+2 . . .×dAd.

12: Call X1 = recgsylvten(A1, . . . , Aµ−1, Aµ(1 : k, 1 : k), Aµ+1, . . . , Ad, C,B2).
13: end if

14: Concatenate X1,X2 along µth mode into X.

Algorithm 5 summarizes the described procedure. Compared to Algorithm 2, the
largest difference is that the right-hand side updates in lines 7 and 11 require up to
d matrix multiplications instead of only one. While potentially having an impact on
computational time, this has no impact on the asymptotic complexity, which remains
O
(

nd+1 + nd
minn

d
)

.

3.2 Merging dimensions: triangular case

In analogy to the discussion in Section 2.2, we now discuss the combination of Algo-
rithm 5 with a merging procedure that helps to alleviate the critical dependence of its
performance on nmin. Again, we first suppose that all coefficients triangular. This can
always be achieved by a variant of Algorithm 4 that uses complex (generalized) Schur
decompositions.
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Line 2 of Algorithm 5 is replaced with the following procedure. When nd−1nd ≤ n2
min,

the matrix
A′

d−1 = Ad ⊗Ad−1

is formed explicitly. In turn, the d-dimensional tensor equation (3.1) can equivalently
be viewed as the (d− 1)-dimensional equation

X′ ×1 A1 +X′ ×1 C ×A2 ×3 · · · ×d A
′
d−1 = B′,

with reshaped X′,B′ ∈ R
n1×···×nd−2×nd−1nd . For d = 2, this corresponds to the trian-

gular generalized Sylvester equation A1X + CXAT
2 = B, for which a recursive blocked

algorithm has been described in [13].

Algorithm 6 Recursive solution of triangular generalized Sylvester equation with tensor
structure: X = mrggsylv(A1, . . . , Ad, C,B)

1: if n1n2 ≤ n2
min then

2: Compute A′

d−1
= Ad ⊗Ad−1.

3: Reshape B′(:, . . . , :, 1 : nd−1nd) = B(:, . . . , :, 1 : nd−1, 1 : nd).
4: if d = 3 then

5: Solve generalized Sylvester equation A1X
′ + CX′(A′

2)
T = B′.

6: else

7: Call X′ = mrggsylv(A1, A2, . . . , Ad−2, A
′

d−1
,B′).

8: end if

9: Reshape X(:, . . . , :, 1 : nd−1, 1 : nd) = X′(:, . . . , :, 1 : nd−1nd).
10: else

11: Determine nµ = maxν nν and set k = ⌊nµ/2⌋.
12: Execute lines 4 to 14 of Algorithm 5 with calls to recgsylv replaced by calls to mrggsylv.
13: end if

A straightforward extension of the complexity analysis of Algorithm 3 shows that
Algorithm 6 requires O

(

nd+1 + n2
minn

d) flops.

3.3 Merging dimensions: quasi-triangular case

When using real (generalized) Schur decompositions and, in turn, dealing with upper
quasi-triangular coefficients A1, . . . , Ad, we are facing a situation similar to the one
discussed in Section 2.3: The merged coefficient matrix A′

d−1 = Ad⊗Ad−1 is, in general,
not quasi-triangular. The structure of A′

d−1 is very similar but not identical with the
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Laplace-like case. For example, comparing (2.9) with

Ad−1 =





× × × ×

0 × × ×

0 × × ×

0 0 0 ×



, Ad =

[

× × ×

0 × ×

0 × ×

]

, A′
d−1 =































× × × × × × × × × × × ×

0 × × × 0 × × × 0 × × ×

0 × × × 0 × × × 0 × × ×

0 0 0 × 0 0 0 × 0 0 0 ×

0 0 0 0 × × × × × × × ×

0 0 0 0 0 × × × 0 × × ×

0 0 0 0 0 × × × 0 × × ×

0 0 0 0 0 0 0 × 0 0 0 ×

0 0 0 0 × × × × × × × ×

0 0 0 0 0 × × × 0 × × ×

0 0 0 0 0 × × × 0 × × ×

0 0 0 0 0 0 0 × 0 0 0 ×































, (3.2)

we see that the off-diagonal blocks now have quasi-triangular instead of diagonal struc-
ture. Nevertheless, the properties and techniques discussed in Section 2.3 carry over
verbatim to A′

d−1. In particular, A′
d−1 is a block diagonal matrix with diagonal blocks

of size at most 2nd−1. Moreover, a perfect shuffle permutation of the diagonal blocks
can again be used to further reduce the size of diagonal blocks. For example, applying
this permutation to the second diagonal block of the matrix in (3.2) yields:

P TA′
d−1P =































× × × × × × × × × × × ×

0 × × × 0 0 × × × × × ×

0 × × × 0 0 × × × × × ×

0 0 0 × 0 0 0 0 0 0 × ×

0 0 0 0 × × × × × × × ×

0 0 0 0 × × × × × × × ×

0 0 0 0 0 0 × × × × × ×

0 0 0 0 0 0 × × × × × ×

0 0 0 0 0 0 × × × × × ×

0 0 0 0 0 0 × × × × × ×

0 0 0 0 0 0 0 0 0 0 × ×

0 0 0 0 0 0 0 0 0 0 × ×































.

This modification allows to apply Algorithm 6 to quasi-triangular matrices without in-
creased complexity.

3.4 Numerical experiments

To give some insight into the performance of Algorithms 5 and 6, we have implemented
them in Matlab and conducted numerical experiments in the setting described in Sec-
tion 2.4. In particular, we again make use of complex (generalized) Schur decomposi-
tions, to avoid that the overhead incurred by the techniques described in Section 3.3
distorts the picture. To solve the triangular generalized Sylvester equation in Line 5 of
Algorithm 6, we apply sylvester tri to A1X

′ET + CX′(A′
2)

T = B′ with E = In2
.

Choice of nmin. Figure 3 shows the performance of Algorithms 5 and 6 with respect
to the choice of nmin. Compared with Algorithms 2 and 3, see Figure 1, the findings
do not differ much. In the following we set nmin = 8 for d = 3, nmin = 6 for d = 4
when using Algorithm 5, and nmin = 15 for d = 3, nmin = 13 for d ≥ 4 when using
Algorithm 6.
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Figure 3: Execution times (in seconds) vs. nmin for Algorithms 5 and 6 applied to
random n× · · · × n tensors with n = 80 for d = 3 and n = 25 for d = 4.

Comparison. Figure 4 compares the performance of Algorithm 5 and Algorithm 6
with the following “Sylvester solver”: After reducing the coefficients A1, . . . , Ad, C to
triangular form and suitably reshaping B, one of the Sylvester equations

A1X + CX(A3 ⊗A2)
T = B

(I ⊗A1)X + (A2 ⊗ C)X(A4 ⊗A3)
T = B

(I ⊗A1)X + (A2 ⊗ C)X(A5 ⊗A4 ⊗A3)
T = B

is solved for d = 3, 4, 5 by calling sylvester tri. The results from Figure 4 show
that Algorithm 6 is always faster than Algorithm 5. The Sylvester solver is slower for
sufficiently large n; the difference is most pronounced for d = 3. Moreover, the Sylvester
solver encounters out of memory errors for n > 110, n > 50, n > 20 for d = 3, 4, 5,
respectively.

4 Conclusions, extensions and future work

We have extended the concept of blocked recursive algorithms to higher-order tensor
equations. Both, the complexity estimates and the numerical results, clearly show the
importance of combining recursion with merging dimensions in order to arrive at efficient
algorithms. For third-order tensor equations, these algorithms seem to constitute the
methods of choice. For fourth-order tensor equations with coefficients of nearly equal
sizes, reshaping the tensor equation into a Sylvester equation and applying an existing
solver is a viable alternative, provided that sufficient memory is available.

The blocked recursive algorithms developed in this work certainly admit extensions
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Figure 4: Execution times (in seconds) vs. n for Algorithms 5 and 6 compared to
Sylvester solver.
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to general linear tensor equations taking the form

K
∑

k=1

X×1 A
(k)
1 ×2 A

(k)
2 ×3 · · · ×d A

(k)
d = B,

assuming that all coefficients A
(k)
µ ∈ Rnµ×nµ are (quasi-)triangular. To transform general

coefficients A
(k)
µ into this form requires the existence of invertible matrices Qµ, Zµ such

that QT
µA

(k)
µ Zµ is (quasi-)triangular for every k = 1, . . . ,K. ForK ≥ 3, this simultaneous

triangularization is only possible under strong additional assumptions on the coefficients.

A sufficient condition is that each matrix family {A
(1)
µ , . . . , A

(K)
µ } contains at most two

different matrices for µ = 1, . . . , d. The two classes (1.4) and (1.5) appear to constitute
the practically most important examples satisfying this condition.

This work also raises an interesting open question: Is it possible to combine block
recursion with low-rank compression, for example in the tensor train format [21], such
that the complexity does not grow exponentially with d, assuming that the involved
ranks stay constant? It would also be interesting to explore which other numerical
linear algebra problems allow for the combination of Kronecker product structure with
block recursion. The computation of certain matrix functions, such as the matrix square
root [6], appears to be a likely candidate.

Acknowledgements. Daniel Kressner sincerely thanks Michael Steinlechner and Chris-
tine Tobler for insightful discussions on the algorithms presented in this work and their
implementation.
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