Skip to main content
Log in

Efficient methods for nonlinear time fractional diffusion-wave equations and their fast implementations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Recently, numerous numerical schemes for solving linear time fractional diffusion-wave equations have been developed. However, most of these methods require relatively high smoothness in time and need extensive computational work and large storage due to the nonlocal property of fractional derivatives. In this paper, an efficient scheme and an alternating direction implicit (ADI) scheme are constructed for one-dimensional and two-dimensional nonlinear time fractional diffusion-wave equations based on their equivalent partial integro-differential equations. The proposed methods require weaker smoothness in time compared to the methods based on discretizing fractional derivative directly. They are proved to be unconditionally stable and convergent with first-order of accuracy in time and second order of accuracy in space. Fast implementations of the proposed methods are presented by the sum-of-exponentials (SOE) approximation for the kernel t− 2+α on the interval [τ,T], where 1 < α < 2. Finally, numerical experiments are carried out to illustrate the theoretical results of our direct schemes and demonstrate their powerful computational performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbaszadeh, M., Dehghan, M.: An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer. Algor. 75, 173–211 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Agrawal, O. P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 29, 145–155 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Arshad, S., Huang, J. F., Khaliq, A. Q. M., Tang, Y. F.: Trapezoidal scheme for time-space fractional diffusion equation with Riesz derivative. J. Comput. Phys. 350, 1–15 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Becker-Kern, P., Meerschaert, M. M., Scheffler, H. P.: Limit theorem for continuous-time random walks with two time scales. J. Appl. Probab. 41, 455–466 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Bhrawya, A. H., Doha, E. H., Baleanu, D., Ezz-Eldien, S. S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142–156 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Chen, A., Li, C. P.: Numerical solution of fractional diffusion-wave equation. Numer. Func. Anal. Opt. 37(1), 19–39 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Chen, H., Stynes, M.: Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J. Sci. Comput. 79, 624–647 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Chen, H. B., Xu, D., Peng, Y. L.: A second order BDF alternating direction implicit difference scheme for the two-dimensional fractional evolution equation. Appl. Math. Model. 41, 54–67 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Dehghan, M., Abbaszadeh, M.: Spectral element technique for nonlinear fractional evolution equation, stability and convergence analysis. Appl. Numer. Math. 119, 51–66 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Diethelm, K.: The analysis of fractional differential equations. Springer, Berlin (2010)

    MATH  Google Scholar 

  11. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Anal. 40(2), 241–266 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Fairweather, G., Yang, X. H., Xu, D., Zhang, H. X.: An ADI Crank-Nicolson orthogonal spline collocation method for the two-dimensional fractional diffusion-wave equation. J. Sci. Comput. 65, 1217–1239 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Huang, J. F., Tang, Y. F., Vázquez, L., Yang, J. Y.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algor. 64, 707–720 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Jiang, S. D., Zhang, J. W., Zhang, Q., Zhang, Z. M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)

    MathSciNet  Google Scholar 

  15. Jin, B. T., Li, B. Y., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56(1), 1–23 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Koeller, R. C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 229–307 (1984)

    MathSciNet  MATH  Google Scholar 

  17. Li, C. P., Zhao, Z. G., Chen, Y. Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Li, C. P., Zeng, F. H.: Numerical methods for fractional calculus. Chapman and Hall/CRC, Boca Raton (2015)

    MATH  Google Scholar 

  19. Li, L. M., Xu, D.: Alternating direction implicit-Euler method for the two-dimensional fractional evolution equation. J. Comput. Phys. 236, 157–168 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Liao, H. L., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Liao, H. L., Yan, Y. G., Zhang, J. W.: Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations. J. Sci. Comput. 80, 1–25 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Lodge, A. S., Renardy, M., Nohel, J. A.: Viscoelasticity and rheology. Academic Press, New York (1985)

    MATH  Google Scholar 

  23. Lopze-Marcos, J. C.: A difference scheme for a nonlinear partial integrodifferential equation. SIAM J. Numer. Anal. 27(1), 20–31 (1990)

    MathSciNet  Google Scholar 

  24. Lubich, C.H.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

    MathSciNet  MATH  Google Scholar 

  25. Lubich, C. h., Sloan, I. H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65(213), 1–17 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Luchko, Y., Mainardi, F.: Some properties of the fundamental solution to the signalling problem for the fractional diffusion-wave equation. Cent. Eur. J. Phys. 11, 666–675 (2013)

    Google Scholar 

  27. Lyu, P., Vong, S.: A high-order method with a temporal nonuniform mesh for a time-fractional Benjamin-Bona-Mahony equation. J. Sci. Comput. 80, 1607–1628 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9, 23–28 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Metzler, R., Nonnenmacher, T. F.: Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation. Chem. Phys. 284, 67–90 (2002)

    Google Scholar 

  30. Mustapha, K., Schötzau, D.: Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34 (4), 1426–1446 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Stynes, M., O’Riordan, E., Gracia, J. L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Sun, Z. Z., Wu, X. N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Sun, Z. Z.: The method of order reduction and its application to the numerical solutions of partial differential equations. Science Press, Beijing (2009)

    Google Scholar 

  34. Tang, T.: A finite difference scheme for partial integro-differential equations with a weakly singular kernel. Appl. Numer. Math. 11, 309–319 (1993)

    MathSciNet  MATH  Google Scholar 

  35. Wang, Y. M., Wang, T.: A compact locally one-dimensional method for fractional diffusion-wave equations. J. Appl. Math. Comput. 49, 41–67 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Wang, Z. B., Vong, S.: A high-order ADI scheme for the two-dimensional time fractional diffusion-wave equation. Int. J. Comput. Math. 92(5), 970–979 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Yan, Y. G., Sun, Z. Z., Zhang, J. W.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22(4), 1028–1048 (2017)

    MathSciNet  Google Scholar 

  38. Yang, J. Y., Huang, J. F., Liang, D. M., Tang, Y. F.: Numerical solution of fractional diffusion-wave equation based on fractional multistep method. Appl. Math. Model. 38(14), 3652–3661 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Yang, Z., Wang, J., Li, Y., Nie, Y.: Effective numerical treatment of sub-diffusion equation with non-smooth solution. Int. J. Comput. Math. 95(6), 1394–1407 (2018)

    MathSciNet  Google Scholar 

  40. Yuste, S.B., Quintana-Murillo, J.: A finite difference method with non-uniform timesteps for fractional diffusion equations. Comput. Phys. Commun. 183(12), 2594–2600 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Zeng, F. H.: Second-order stable finite difference schemes for the time-fractional diffusion-wave equation. J. Sci. Comput. 65, 411–430 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, Y. N., Sun, Z. Z., Zhao, X.: Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, 1535–1555 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This research is financially supported by the National Natural Science Foundation of China (Grant Nos. 11701502 and 11426141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dandan Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Yang, D. & Jay, L.O. Efficient methods for nonlinear time fractional diffusion-wave equations and their fast implementations. Numer Algor 85, 375–397 (2020). https://doi.org/10.1007/s11075-019-00817-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00817-4

Keywords

Mathematics Subject Classification (2010)

Navigation