manuscript No.
(will be inserted by the editor)

A general framework for ADMM acceleration

Alessandro Buccini - Pietro Dell’Acqua -
Marco Donatelli

Received: date / Accepted: date

Abstract The Alternating Direction Multipliers Method (ADMM) is a very popu-
lar algorithm for computing the solution of convex constrained minimization prob-
lems. Such problems are important from the application point of view, since they
occur in many fields of science and engineering. ADMM is a powerful numerical
tool, but unfortunately its main drawback is that it can exhibit slow convergence.
Several approaches for its acceleration have been proposed in the literature and in
this paper we present a new general framework devoted to this aim. In particular,
we describe an algorithmic framework that makes possible the application of any
acceleration step while still having the guarantee of convergence. This result is
achieved thanks to a guard condition that ensures the monotonic decrease of the
combined residual. The proposed strategy is applied to image deblurring problems.
Several acceleration techniques are compared; to the best of our knowledge, some
of them are investigated for the first time in connection with ADMM. Numeri-
cal results show that the proposed framework leads to a faster convergence with
respect to other acceleration strategies recently introduced for ADMM.

Keywords Alternating Direction Multipliers Method (ADMM) - acceleration
techniques

Alessandro Buccini

Department of Mathematics and Computer Science
University of Cagliari

Via Ospedale 72, 09124, Cagliari (Italy)

E-mail: alessandro.buccini@unica.it

Pietro Dell’Acqua

Dipartimento di Ingegneria, Scienze Informatiche e Matematica
Universita degli Studi dell’Aquila

Via Vetoio, Loc. Coppito, 67010 L’Aquila (Italy)

E-mail: pietro.dellacqua@gmail.com

Marco Donatelli

Dipartimento di Scienza e Alta Tecnologia
Universita degli Studi dell’Insubria

Via Valleggio 11, 22100 Como (Italy)
E-mail: marco.donatelliQuninsubria.it

2 Alessandro Buccini et al.

1 Introduction

The task of minimizing a convex function f(z) subject to some constraints is a well-
known problem which arises in many fields of science and engineering. Consider
the following minimization problem

min f(z) + g(y)
“Y (1)

s.t. Az + By = ¢,

where f and g are convex functions. A very popular method for computing an
approximated solution of () is the Alternating Direction Multipliers Method
(ADMM) [II.

The ADMM can be easily implemented, however, its main drawback is that
it can exhibit slow convergence. Thus, several approaches have been proposed to
accelerate it; see, e.g., [2[3]. In [2] the acceleration is obtained by an extrapolation
strategy that involves a constant acceleration factor that, for ensuring conver-
gence, has to be smaller than 1/3. In [3] the well-known FISTA approach [4[5] is
employed to speed up the ADMM iterations and a restart condition is introduced
to guarantee the convergence of the accelerated algorithm.

In this work, we would like to present a general framework for the acceleration
of ADMM. In particular, we construct an algorithm that let us insert any acceler-
ation step while ensuring convergence, thanks to the implementation of an appro-
priate guard condition. We would like to stress that our main goal is to develop
a very general framework in which any acceleration strategy can be inserted and
tested. Providing a theoretical analysis of the achieved order of convergence when
implementing the after-mentioned acceleration strategies is out of the scope of this
paper. On the other hand, the proposed framework ensures that the accelerated
ADMM obtained still converges and that it is not slower than the non-accelerated
version. As acceleration strategies, we adopt both the approaches proposed in [2]
[3] as well as others developed in the context of image restoration. We consider,
in particular, the automatic acceleration [6] and the v acceleration [7], which is
inspired by v-method [8], that is an accelerated variant of Landweber method [9].
Moreover, we investigate the Simplified Topological e-Algorithm proposed in [10].
Finally, we develop a new acceleration technique, that we call Geometric Series
Acceleration, which proves to be very effective in our numerical results.

For our numerical experiments, we consider image deblurring with shift invari-
ant blur as an example of (). ADMM has been applied with success in several
image deblurring algorithms, see, e.g., [ITJ[12/[13]. Image restoration represents an
important application in which, especially when the noise affecting the data is
small, ADMM can exhibit slow convergence. The observed image u can be mod-
eled by

u= Kz +§,

where K is the blurring operator, i.e., a structured matrix (whose structure de-
pends on the boundary conditions imposed in the discretization), z is the true
object and ¢ is the noise, which is usually present in any detection process. The
goal of image deblurring is to recover an approximation of z from u, knowing K.

We employ the Total Variation (TV) approach [14] and we consider the so
called L2-TV model, that is a well-established model to restore blurred images

A general framework for ADMM acceleration 3

corrupted by white Gaussian noise. However, other models like for instance ¢P — ¢4
[15] or framelets [16] can be considered as well. The L2-TV model is defined by
the following minimization problem

argmin & | Kz — ull§ + Ve, ; - (2)

Here V denotes the discrete forward gradient operator (in both horizontal and
vertical direction) defined by

(Va)ij = (aij,af ;) = (ait1,j — aij, aijp1 — i),

whereas the norm |||, ; is defined by
||a||2,1 = Z (af,j 2+ (CLZJ‘)Q
0]

and p > 0 is the regularization parameter. For the sake of simplicity, we impose
periodic boundary conditions (see, e.g., [I7] for more information on boundary
conditions), thus K is a Block Circulant with Circulant Blocks (BCCB) matrix
and so all the computations involving K, even the inversion, can be performed
efficiently by means of the Fast Fourier Transform (FFT).

We now reformulate @) in form (). Let f(z) = & Kz —ul)3, g(y) = lyll2.15
A=V, B=—I, and ¢ = 0, then we obtain the formulation

LW 2
arg nmllyn 5 Kz —ull3 +[lylla 1
s.t. Ve —y = 0.

The total variation approach has the ability to preserve edges in the image due
to the regularization properties of the gradient operator, while not amplifying the
noise. The regularization parameter p plays an important role, since it is used to
control the relative weights of the data fitting term and regularization term. If it
is too large, the regularized solution is under-smoothed and some noise may be
reconstructed. On the other hand, if it is too small, the regularized solution does
not fit the given data properly. Usually, u is larger for problems with low levels
of noise and smaller when the presence of noise is more significant. However, in
this work we do not analyze criteria for choosing . and we do not investigate the
issues that the choice of such parameter entails, but we set it by trial and error,
seeking a value close to the optimal one.

The present paper is structured as follows. In Section2lwe describe the general
algorithmic framework, while different acceleration strategies that can be success-
fully employed for accelerating ADMM are presented in SectionBl In Section [we
report results relative to some numerical experiments in image restoration, which
show the efficacy of the proposed framework. Finally, in Section [B] we draw some
conclusions.

2 General framework

To fix our notation, we first describe the standard ADMM. Then we propose
the general algorithmic framework we would like to construct and show that this
accelerated ADMM converges.

4 Alessandro Buccini et al.

2.1 Standard ADMM

Consider the minimization problem (), since it is a constrained minimization
problem, we can write the related augmented Lagrangian

L(z,y,\) = f(x) + gy) = (A Az + By —) + 5 e — Az - By|*,

where w > 0 is a fixed constant and A is the so-called Lagrangian multiplier.

The ADMM algorithm is obtained by combining an alternating minimization
of L(x,y,\) with respect to and y with an update of the Lagrangian multiplier.
The updating of the Lagrangian multiplier is obtained by solving

1
Ak1 = arg m)f\ix (A\e— Az 1 — Bykya) — % A=)\k||2)

i.e. by looking for the A\ which penalizes the most the distance between ¢ and
Azj1 + Byp4q while being near to Ap. We summarize the ADMM algorithm in
Algorithm []

Algorithm 1 (ADMM) Consider the minimization problem (). Let yo and Ao be
initial guesses for y and A, respectively. Fix w > 0.
for k=0,1,2,... do
Ty = argming f(z) — (A, Az) + ¥ |lc — Az — Byk||2;

Y1 = argming g(y) — (g, By) + % [lc — Azpyy — Byl
Met1 = A — w(Azgyq + By — ¢);
end

It is possible to prove that, denoting by (z*,y*) a solution of (), it holds that
(zr,yp) — (2%,y") as k— oc.
Let us now define the combined residual as
e =0 e =Ml Fw Bl — w0, k>0 3)
Following [3] we define two residuals

(i) Primal Residual. 7 ||c — (Azy + Byg)| — 0;
(ii) Dual Residual. dy, = HAtB(y;€ — yk_l)H.

In [3, Section 1.4] is shown that the limit point of the iterates generated by
Algorithm [satisfy the KKT conditions for problem () if and only if r, — 0 and
dp — 0 as k — 0. From this it is trivial to see that

Lemma 1 Let vy denotes the combined residual defined in [B)). Let z,yy, denotes the
iterates generated by Algorithm[dl. Assume that B is of full rank, then it holds that

(g, yp) = (5 4) & 9% =0 ask — oco.

Proof The proof follows from the observation that
0 < || A"Bu = vie-n)| < 141 1Bk = -1l

The following result is proved in [I8, Theorem 4.1].

Lemma 2 Let x,, yi, and A\ be the iterations generated by Algorithm [Il Moreover,
let vy, be the combined residual defined in ([Bl). Then it holds

Vi1 < Vi

A general framework for ADMM acceleration 5

2.2 Accelerated ADMM

Starting from the result in Lemma[2] we want to construct an accelerated version
of ADMM such that the monotonic decrease of the combined residual is ensured.
We obtain this monotonic convergence thanks to the introduction of a guard con-
dition. Given the vectors associated to an accelerated iteration, if such condition
is satisfied, the method proceeds to the next iteration, otherwise it replaces the
vectors with those associated to an iteration of standard ADMM. Thus, for any
accelerated version of ADMM, this ensures that the combined residual decreases in
the way imposed by the guard condition or, in the worst case, as standard ADMM.

We highlight that this is not just a theoretical bound, useful for guaranteeing
the convergence of the method. On the contrary, it can be exploited in practice
and, once parameters of the guard condition have been suitably set, it allows to get
fast convergent iterations, even when an acceleration directly applied to ADMM
would give rise to semi-convergence or divergence phenomena. This will be evident
in the numerical results reported in Section Fl

We now introduce the notation we are going to use in the following in order to
provide a unified and simplified description of the accelerated ADMM. Let v be a
vector that we would like to compute, we will denote by v, the approximation of
v computed at the k-th iteration of the algorithm at hand. Moreover, we will use
the symbol v, if the vector is computed by standard ADMM, while we will use
the symbol 0, if the vector is computed by an acceleration technique.

Therefore, a step of a generic acceleration strategy (based on past ADMM
iterations) will be denoted by

f)kJrl = acc(6k+1, Eky .) (4)

Some acceleration strategies might also use vy, 01, ... for computing vy, but
for simplicity we prefer to employ also in such cases the notation introduced in ().

We would like to stress that usually an acceleration step is based on {vg}
instead of {v;, }. However, similarly to [3], we consider the acceleration as defined in
(@) since we have experimentally observed that this approach gives rise to a larger
speed up in the convergence behaviour with respect to the classical one based on
iterates {v}. However, it also entails a higher risk of instability and divergence
phenomena, so it is necessary to introduce a control condition to avoid that these
problems appear, compromising the performance of accelerated algorithms.

Note that computing 011 by equation (4) has usually a low computational
effort since it involves only simple operations on vectors.

We first recall the Fast ADMM with restart presented in [3].

6 Alessandro Buccini et al.

Algorithm 2 (Fast ADMM with restart, [3]) Consider the minimization problem
). Let yo = 91 and Ao = A1 be initial guesses for y and X\, respectively. Fiz aq =1,
w>0,n€(0,1) and 7o > 0.

for k=0,1,2,... do
T = argming f(z) — <:\k+1,A:v> + % flc— Az — Bz}k+1”2;
Gipr = argming g(y) — (Mg, By) + % lle = Avgyr — Byl

Mer1 = M1 — w(Azg g1 + BYgy1 — ©);

. 2
Vg1 =w Hj\k+1 - /\k+1) + @ [B(Fr1 — Gt I
% Begin of restart condition
if Y41 <71y then
% Begin of acceleration steps

1+,/1+ 404%_'_1

Q42 = - 9) ;

~ _ A1 — _ _

Ykt2 = Ykt+1 + — - (Ukt1 — Ur);
O42 1

~ _ Qpi1 — _ _

Nepz = Moyt + ———(Nog1 — i)
O42

% End of acceleration steps

else
Ay o = 1,’
Ukt2 = Yk;
5\k+2 = /_\k!
Vi1 <0 Yk
end

% End of restart condition

Yk+1 = Yk+15
)\k-i-l =)\k+17'
_ 2 2
YVer1 =0 Aeg1 = Aell? + @ 1Byrgr —vi)l7;
end

In [3] it is proven that, thanks to the restart condition, the convergence to zero
of the modified combined residual %41 is guaranteed. Because it is desirable to
restart the method as infrequently as possible, the authors recommend to set n
close to 1, in particular n = 0.999.

Observe that, since ;1 is computed directly from y;, and A, no acceleration
step is employed on xj . Indeed, when x; is computed, no information on the
previous iterate x;, is retained, so any acceleration step would be ineffective.

Following a similar approach, we can formulate our accelerated ADMM algo-
rithm with guard condition and then proving its convergence.

Algorithm 3 (Accelerated ADMM with guard condition) Consider the mini-
mization problem (). Let yo and Mo be initial guesses for y and X, respectively. Fiz

A general framework for ADMM acceleration 7

w>0,n€(0,1) and v > 0.
for k=0,1,2,... do
z41 = argming f(z) — (A, Az) + ¢ [le — Az — Byg||*;
Ykt1 = argming g(y) — (A, By) + 3 [le — Azpyq — By|*;
A1 = Mg — w(Azpp1 + BYgy1 — ©);
% Begin of acceleration steps
sz+1 = acc(Yr41: ks - --);
A1 = acc(A1, Ay - -)
% End of acceleratioanteps
Yer1 =w [Appr —)\kH +w Bt — vl
% Begin of guard condition
if v < 'yonkJrl then

Ykt1 = Jhy1s

>\k+1 =)\k+1;
else

Yk+1 = Yk+15

Akl = At

_ 2 2

V41 = W ! ||>\k+1 = All” tw ||B(yk+1 -yl
end
% End of guard condition

end

Both the algorithms are constructed with the aim of guaranteeing convergence
of the method. However there are few important differences between them. Indeed,
while in Algorithm [acceleration steps and guard condition are separated (first
it is performed acceleration and then the condition is checked), in Algorithm
they are mixed together. Moreover, while in Algorithm [B] the guard condition is
based on the combined residual, in Algorithm [2] the restart condition is based
on a modified version of it. The consequence of these facts is that Algorithm
represents an improvement and a generalization of Algorithm [2] since it is able
to employ any acceleration in its framework and to have a better control on the
decrease of the combined residual.

We can now present our main theoretical result concerning the convergence of
Algorithm [3

Theorem 1 Let xy, y,, and N\, be the iterations generated by Algorithm [3 then the
iterates converge in the sense that

Y. =0 as k— oo,
where 7y, denotes the combined residual defined in (3.

Proof This proof is inspired by the proof of [3, Theorem 3]. There are two possible
cases: either the acceleration technique has been applied a finite number of times,
or it has been applied an infinite number of times.

If we are in the first case, this means that, starting from a certain iteration, Al-
gorithm [3] behaved like the standard ADMM algorithm and thus, by the standard
ADMM theory, we know that v, — 0 as k — oco.

8 Alessandro Buccini et al.

On the other hand, if the acceleration technique has been applied for an infinite
number of iterations it holds, in force of Lemma[2, that for all k

k
Ve <10,

where by 77]; we denote the number of times that the acceleration technique has
been applied before iteration k. Since 0 < n < 1 we have that

OSVkSnkvo—m.

Therefore, the thesis holds true.

We would like to remark that Theorem [does not assure in general the algo-
rithm convergence to a solution of (). However, as we have seen in Lemma[ll in
the non-accelerated case this type of convergence is strictly related to the residual
and dual variable convergence. Moreover, numerical results reported in Section @
show that the introduction of the acceleration does not affect the limit point of
the algorithm, but only its convergence speed. Deeper convergence results may be
obtained by analyzing the different acceleration techniques. However, for the sake
of simplicity, here we report only this general result.

In order to use in effective way the guard condition, it is necessary to suitably
set the parameters v9 and 7. In this respect, for the former we propose the following
heuristic criterion: y9 = x¥1, where x > 1 is a constant (we take y = 2) and 41 is
the value of the combined residual after a step of standard ADMM. Regarding 7,
we set it equal to 0.85.

2.3 Restarted ADMM

With a slight modification, we can obtain a restarted version of Algorithm B In
particular, we present 6-Restarted algorithm, which consists in applying accelera-
tion every 6 steps of standard ADMM.

Algorithm 4 (6-Restarted ADMM with guard condition) Consider the mini-
mization problem (). Let yo and Mo be initial guesses for y and X, respectively. Fiz

A general framework for ADMM acceleration 9

w>0,n€(0,1) and v > 0.

for k=0,1,2,... do
Tpp1 = argming f(z) — (A, Az) + 4 [lc — Az — By, |*;
Ykt1 = argming g(y) — (A, By) + 3 [le — Azpyq — By|*;
Aog1 = A — w(Azg 1 + Bigyr — ©);
if k+1=0 mod 0 then

% Begin of acceleration steps
ngﬂ = acc(Yr 115 Uk»---);
)‘k+1 = acc(j\k+1, Xk: . .),’
% End of accelerat’iongsteps
terr =7 [Aesn = |+ @ 1B — 0l
% Begin of guard condition
if vy < 'yon]Hl then
Ykt1 = U1
Akl = Apt1s
else
Yk+1 = Ykt1/
Akl = Apt1s
o1 = w0 st = Ael® 4w 1B (s — w1
end
% End of guard condition
else
Yk+1 = Yk+15
Akl = Apt1s
Yiop1 =@ N gr = Mel® @ 1By —)l
end
end

Clearly, if we set § = 1, we recover Algorithm Bl Moreover, theoretical re-
sults proven for such algorithm can be easily extended to Algorithm @l We stress
that this restarted approach can be successfully employed in particular with some
acceleration techniques like Simplified Topological e-Algorithm (STEA) [10], as
illustrated in [19]. About the setting of guard condition, in case of Algorithm [we
choose the same value for 7 (n = 0.85), but a larger value for x (yx = 50).

Once set the guard condition in a suitable way, the proposed framework can
be applied in combination with any acceleration technique. In the next section,
in order to give some meaningful examples, we briefly recall some acceleration
strategies that occupy an important place in the literature.

3 Acceleration techniques

We now describe several strategies for speeding up sequences of vectors, which can
be employed in the acceleration steps of Algorithms Bl and [l Every acceleration
technique obtains v by extrapolation from the previous iterates. Hence, most of
them can be defined by this formula

O = U + o (U, — Up—1) (5)

10 Alessandro Buccini et al.

and by specifying ay.. We remind that, according to the notation introduced before,
v denotes either y or A\, while vector z is not directly involved in the acceleration
process.

Stationary acceleration In [2] the most simple approach is employed, that is to pick
in (B a constant value aj, = a. In particular, the authors give a convergence proof
for a < 1/3.

Nesterov acceleration In [3] the following approach is utilized, defined by

14 ,/1+482_,

By = ——5——,

o = Br—1—1
Be

with By = 1, leading to Algorithm[2 About this acceleration, we recall that FISTA
was developed in [4], while a similar algorithm was also developed by Nesterov
in [B], and is essentially a fast version of Iterative Soft-Thresholding Algorithm

(ISTA).

Automatic acceleration We consider also two popular acceleration techniques used
to speed up iterative methods in the context of image restoration. The first is a
form of vector extrapolation that predicts subsequent points based on previous
points and is known as automatic acceleration [6], since it does not require the
setting of any parameter. It is defined by

k—1 = Vg — Vg1,

k—2 = Vp—1 — Vp—2,
T

_ Yk—19k—2

ap =)
9L k-2

where a1 =0, az =0 and 0 < ay, < 1, Vk. As reported in [6], this acceleration can
be applied when the restoration changes slowly between each iteration and also if
the algorithm is insensitive to the changes introduced. Therefore, it can be used
to accelerate several slow-converging methods, including ADMM analyzed in this
work.

v acceleration The second is v acceleration, which does not involve (), but is based
on the formula

O = puk + (1 — pg)0—1 + pr (0 — Vp—1),
where v is a user-defined constant, while u, and pj are two parameters that de-
pends on k and v:

(k—1)(2k —3)(2k +2v — 1)
(k+2v —1)(2k +4v — 1)(2k + 2v — 3)’
ARk +2v—1)(k+v—1)

Tkt 20 -1 (2k+4v - 1)

=1+

Pk

A general framework for ADMM acceleration 11

This strategy is inspired by the v-method [g], that is a semi-iterative method able
to speed up the classical Landweber method [9], and by v acceleration presented
in [7], which extends the same idea to statistical methods like Richardson-Lucy
algorithm. We highlight that, while v-method has a strong theoretical background,
v acceleration is simply an update formula without theoretical foundations. Nev-
ertheless, thanks to the guard condition, we have convergence guarantee also for
this heuristic acceleration. As remarked in [7], the choice of parameter v in general
is a non-trivial task. In our numerical experiments, we fix v = 0.3.

In order to exploit the restarted approach, we present two further acceleration
strategies. The first is the Simplified Topological e-Algorithm (STEA) [10], while
the second is a simple algorithm that we propose for the first time in this work
and we call it Geometric Series Acceleration (GSA).

STEA Consider a sequence of scalars {sp} and a sequence of vectors {tn}. In
order to accelerate a scalar sequence, a popular tool is represented by Shanks
transformation [20], whose implementation can be done recursively using the scalar
e-algorithm by Wynn [21]

z—:(fl):O7 n=0,1,...

e =5, n=0,1,... (6)
—1
=+ () ot

The quantities in (6] with even lower indices are the extrapolated quantities, while
those with odd lower indices are just intermediate quantities. If you have a se-
quence sg, 81, - . ., Sm (with m even), the scalar e-algorithm gives rise to a triangular
scheme, called e-array, whose vertex is 55,3), which is the final extrapolated value.
In STEA, which has been developed from Topological e-algorithm (TEA) [22], the
scalar e-algorithm is applied to the sequence s, = (w,tn), where w is an arbitrary
vector. We underline that there are no general guidelines for this choice, which
may hugely affect the performance of the algorithm; see [19]. Common choices,
like random vector and vector of all ones [19], lead to bad numerical results for
test problems reported in Section[l Thus, in this paper, with the aim of improving
the performance of STEA, we choose w (in a different way for each test) as one of
the vectors belonging to the sequence {¢,} taken into account. Several versions of
STEA have been proposed [I0], in particular here we consider STEA2-3 (as done
in [19]), which is based on the following

(n) (n+1) | Eake2 “E) ((ni2) _)
~(n _ ~(n4+1 2k+2 2 ~(n+42 ~(n+1 _
52k+27 2%k +m(€2k — &5)7 k,n7071,4..,

Sor T Cok
with 5(()n) = tn,n = 0,1,.... Given a sequence to,t1,...,tm (with m even), 5&,?) is
taken as the accelerated vector. In our case, considering the restarted algorithm,
we have v _(g_1),...,Ux as sequence of vectors. However, we focus only on the last

part of the sequence (i.e. v, _o, V) _1,0y), because we have experimentally observed
that the algorithm provides better performance with this choice, then we take

b, = &9,

12 Alessandro Buccini et al.

(a) (b) (c)

Fig. 1: Test 1: (a) true image (255 x 255 pixels), (b) point spread function, (c)
blurred and noisy image.

GSA Finally, we introduce a new acceleration technique. Suppose that the stan-
dard method can be written as

Vg1 = Uk + T (O — Ug—1),

and that at iteration & we are near convergence, so we can assume that, for j =
0,1,2,..., 0 < 7py; < 1 and 7, = 7p4j41- Thus, we can approximate the vy,
iterate by

_ o 2 N /— _

Vo = O+ (T + 7+ 7)) (U — V1),
Letting ¢ to infinity, we can approximate vy¢ by 9; obtaining the following formula
for computing the accelerated iteration

- 1
U = Vg + <177_k *1) (/ak*/ﬁk_l). (7)
We can rewrite (@) in form (B]) as
ap =k Tk , where 7, = 7ﬂvk — v]iflu ,
1—mg k-1 — V2]l

where we have added a correction factor « (in this work we set x = 1.5). Since the
computation of oy, is based on the formula related to geometric series, we call this
strategy Geometric Series Acceleration (GSA).

4 Numerical results

We report two image deblurring problems to illustrate the performance of acceler-
ation strategies proposed in Algorithms[Bland [l In Test 1 we consider the problem
in Figure[Il involving an atmospheric blur and 1% of white Gaussian noise, while
in Test 2 we consider the problem in Figure[Z involving a Gaussian blur and 0.5%
of white Gaussian noise. In Figure 3] for each test, the best restoration computed
by standard ADMM is reported.

For measuring the restoration quality, we use the Relative Restoration Error
(RRE) defined by

_ llz — i’”z

RRE®) = T,

A general framework for ADMM acceleration 13

(b)

Fig. 2: Test 2: (a) true image (255 x 255 pixels), (b) point spread function, (c)
blurred and noisy image.

(a)

Fig. 3: Restoration computed by standard ADMM with the optimal parameter p
for Test 1 (a) and Test 2 (b).

We stop the iterations for all methods when two consecutive iterates are close
enough, in particular, when

Hl/k - xk—lHQ S 5. 10—4‘ (8)

k-1l

For the four algorithms in Section 2] numerical results relative to the best restora-
tion (obtained by stopping the algorithm at iteration corresponding to the min-
imum RRE) and the restoration associated with the stopping criterion (&) are
reported in Tables [Tl and

Note that all algorithms provide a comparable RRE, since it depends mainly on
the restoration model, while they differ on how quickly they reach the minimum,
or small enough, RRE. The latter property is crucial to evaluate the quality of an
acceleration technique and the robustness of a method with respect to the stopping
iteration.

‘We notice that the acceleration given by a fixed value of « provides good results
for a = 0.3, however, these results are further improved when o = 0.9. We stress
that without the guard condition it would not be possible to set @ = 0.9, since the
convergence of the method has been proven only for a < 1/3.

Comparing Nesterov acceleration employed in [3], i.e. Algorithm 2] and the
same strategy utilized in our framework, i.e. Algorithm [3] with such acceleration,

14 Alessandro Buccini et al.

Method Minimum RRE IT Stopping RRE IT
Algorithm [0.1376 113 0.1380 81
Algorithm 0.1373 68 0.1374 53

Stationary (0.3) acc. 0.1376 88 0.1379 59
E Stationary (0.9) acc. 0.1370 38 0.1372 53
'§ Nesterov acc. 0.1371 35 0.1373 52
%ﬂ Automatic acc. 0.1373 39 0.1374 52

v acc. 0.1370 34 0.1373 52
il 5-Rest. STEA 0.1376 105 0.1379 75
§ 10-Rest. STEA 0.1375 79 0.1377 57
S 5-Rest. GSA 0.1375 73 0.1378 44
< 10-Rest. GSA 0.1374 60 0.1375 45

Table 1: Test 1: Relative restoration error (RRE) and iteration number (IT) rela-
tive to the best restoration and the one associated with stopping criterion (&) for
the four algorithms in Section[2] and the acceleration techniques in Section Bl

we can observe that the latter looks preferable in terms of iteration steps, since it
reaches quicker a small RRE.

Automatic acceleration and v acceleration have similar performance in Test 1,
while the latter is particularly performing in Test 2, even if its performance strongly
depends on the choice of v.

Looking at the restarted approach, focusing on iteration steps, we can notice
that, both considering best restorations and those associated with stopping crite-
rion ({)), GSA requires less iterations than STEA. Moreover, the setting of parame-
ters involved in the acceleration technique appears to be critical for STEA. Even by
setting the parameters by hand, looking for the optimal ones, the STEA approach
may not be able to produce any meaningful acceleration; see the 5-Restarted ver-
sion in Test 1. On the other hand, for different choices of the parameter 6, GSA
yields always good numerical results, competitive with the group of accelerated
versions of ADMM, and in particular exhibits stability in the last column of both
Table [and Table

Plots of RRE and of combined residual relative to the different techniques
taken into account are shown in Figuresdl[7] for Test 1 and in Figures BT for Test
2. In order to appreciate the important role of the guard condition, it is worth
to look at Figures B [[l 0 and [l related to the combined residual, in which
also the bound given by such condition is plotted. When a method tries to cross
this line, possibly encountering divergence phenomena, the guard condition is able
to prevent it, and in the worst case scenario the plot follows a trend similar to
standard ADMM, as predicted by the theory. As illustrated by the figures, this
does not hold for Fast ADMM with restart (Algorithm [), since such strategy
employs a restart condition that does not have a direct control on the combined
residual. Moreover, from the visual inspection of the RRE plots in Figures @l Bl 8]
and [@ while Nesterov acceleration utilized in our framework gives rise to a stable
convergence trend, Fast ADMM with restart has a more irregular behaviour.

A general framework for ADMM acceleration 15

Method Minimum RRE IT Stopping RRE IT
Algorithm [I] 0.2369 85 0.2369 87
Algorithm 0.2367 66 0.2367 58

Stationary (0.3) acc. 0.2369 67 0.2369 69
E Stationary (0.9) acc. 0.2364 28 0.2365 43
'§ Nesterov acc. 0.2367 32 0.2368 42
= | Automatic acc. 0.2368 41 0.2368 50

v acc. 0.2364 25 0.2366 39
B 5-Rest. STEA 0.2362 51 0.2363 71
§ 10-Rest. STEA 0.2368 60 0.2368 64
;50 5-Rest. GSA 0.2367 35 0.2368 47
= 10-Rest. GSA 0.2368 50 0.2368 53

Table 2: Test 2: Relative restoration error (RRE) and iteration number (IT) rela-
tive to the best restoration and the one associated with stopping criterion (&) for
the four algorithms in Section[2] and the acceleration techniques in Section Bl

—Standard ADMM
0.23r ——0.3 ADMM with guard cond.
——0.9 ADMM with guard cond.
0.221- —Fast ADMM with restart
~—FISTA ADMM with guard cond.
0.21r — Automatic ADMM with guard cond.
—v ADMM with guard cond.

0.2 -l
0.191 b
0.18 B
0.17 b
0.16 i
0.151 b
0.14- 3
0.13 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100

Fig. 4: Test 1: Plot of RRE relative to standard ADMM (Algorithm [II), Fast
ADMM with restart (Algorithm [2)) and accelerated versions of ADMM (Algo-
rithm []).

For both tests, if we look at the plots of different methods in the initial iter-
ations, we can notice that the fastest method is Algorithm [l with v acceleration.
Regarding restarted strategies employed in Algorithm] 5-Restarted STEA con-
verges quickly for Test 2, but behaves very similarly to standard ADMM for Test 1;
10-Restarted STEA has satisfactory performance in both tests, but by comparing
it with 10-Restarted GSA ADMM we can appreciate that GSA produces better
plots. Overall, by looking at the numerical test presented here, we can say that
GSA has better performance than STEA.

16

Alessandro Buccini et al.

— Standard ADMM
0.23F —5-Restarted STEA ADMM with guard cond.
—10-Restarted STEA ADMM with guard cond.
0.22F —5-Restarted GSA ADMM with guard cond.
—10-Restarted GSA ADMM with guard cond.
0.21r q
0.2 B
0.19r q
0.18 B
0.171 q
0.16 4
0.151 q
0.14- —
0.13 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

100

Fig. 5: Test 1: Plot of RRE relative to standard ADMM (Algorithm [) and

restarted versions of ADMM (Algorithm [4]).

10
—Standard ADMM
4 ——0.3 ADMM with guard cond.
10 ——0.9 ADMM with guard cond.
—Fast ADMM with restart
10°% ~——FISTA ADMM with guard cond.
— Automatic ADMM with guard cond.
—v ADMM with guard cond.
5|
10
10
10°%
10°F
10" 4
100 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90

100

Fig. 6: Test 1: Plot of the combined residual relative to standard ADMM (Al-
gorithm [I)), Fast ADMM with restart (Algorithm Pl and accelerated versions of
ADMM (Algorithm [3)). The black line is related to the guard condition employed

in Algorithm

5 Conclusions

In this work we have presented a general framework for acceleration of ADMM
algorithm. In particular, we have described an algorithm in which it is possible to
insert any acceleration step while having the guarantee of convergence, thanks to
a guard condition. Moreover, we have presented two new acceleration techniques,

A general framework for ADMM acceleration 17

— Standard ADMM

——5-Restarted STEA ADMM with guard cond.
—10-Restarted STEA ADMM with guard cond.
—5-Restarted GSA ADMM with guard cond.
—10-Restarted GSA ADMM with guard cond.

10°k

10’k

I I I ! ! I I I I
10 0 10 20 30 40 50 60 70 80 90 100

Fig. 7: Test 1: Plot of the combined residual relative to to standard ADMM (Algo-
rithm[I) and restarted versions of ADMM (Algorithm[]). The black line is related
to the guard condition employed in Algorithm @

0.265
—Standard ADMM

—0.3 ADMM with guard cond.
——0.9 ADMM with guard cond.

0.261 —Fast ADMM with restart

~—FISTA ADMM with guard cond.

— Automatic ADMM with guard cond.
0.2551- —Vv ADMM with guard cond.

0.251 4
0.2451- 4
0.24- i
0.235 L L L L | | L I I
0 10 20 30 40 50 60 70 80 90 100

Fig. 8: Test 2: Plot of RRE relative to standard ADMM (Algorithm [II), Fast
ADMM with restart (Algorithm) and accelerated versions of ADMM (Algo-
rithm []).

namely v acceleration, which shows fast convergence for Algorithm [, and GSA,
which shows a stable behaviour for Algorithm @l

Numerical results relative to image restoration have shown that several accel-
eration strategies can be employed and this framework leads to an improvement
with respect to the state of the art. Finally, we would like to stress that, while
the only application taken into account here is image deblurring with the L2-TV

18 Alessandro Buccini et al.

0.265

— Standard ADMM
——5-Restarted STEA ADMM with guard cond.
—10-Restarted STEA ADMM with guard cond.
0.261- ——5-Restarted GSA ADMM with guard cond.
—10-Restarted GSA ADMM with guard cond.
0.2551 B
0.251 B
0.2451 B
0.24r B
0.235 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Fig. 9: Test 2: Plot of RRE relative to standard ADMM (Algorithm [) and
restarted versions of ADMM (Algorithm [4]).

10

—Standard ADMM

—0.3 ADMM with guard cond.
10 —0.9 ADMM with guard cond.

—Fast ADMM with restart

~—FISTA ADMM with guard cond.
10°F W\ —Automatic ADMM with guard cond.
—v ADMM with guard cond.

0 10 20 30 40 50 60 70 80 90 100

Fig. 10: Test 2: Plot of the combined residual relative to standard ADMM (Al-
gorithm [I)), Fast ADMM with restart (Algorithm 2]) and accelerated versions of
ADMM (Algorithm [3). The black line is related to the guard condition employed
in Algorithm 3]

model, the proposed approach can be considered to any model and application
and it is completely general.

A general framework for ADMM acceleration 19

10
— Standard ADMM
——5-Restarted STEA ADMM with guard cond.
10 —10-Restarted STEA ADMM with guard cond.
—5-Restarted GSA ADMM with guard cond.
—10-Restarted GSA ADMM with guard cond.
10°% E
10°% \ E
\
10% E
10% -
10% E
10t | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

Fig. 11: Test 2: Plot of the combined residual relative to standard ADMM (Algo-
rithm[I) and restarted versions of ADMM (Algorithm[]). The black line is related
to the guard condition employed in Algorithm @

Acknowledgments

The work of the authors is partially founded by the group GNCS of INdAM.

References

1.

10.

11.

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statisti-
cal learning via the alternating direction method of multipliers, Foundations and Trends®
in Machine Learning 3 (1) (2011) 1-122.

. C. Chen, R. H. Chan, S. Ma, J. Yang, Inertial proximal admm for linearly constrained

separable convex optimization, STAM Journal on Imaging Sciences 8 (4) (2015) 2239-2267.
T. Goldstein, B. O’Donoghue, S. Setzer, R. Baraniuk, Fast alternating direction optimiza-
tion methods, SIAM Journal on Imaging Sciences 7 (3) (2014) 1588-1623.

. A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse

problems, SIAM J. Img. Sci. 2 (2009) 183—-202.

Y. Nesterov, Introductory lectures on convex optimization: a basic course, Kluwer Aca-
demic Publishers, 2004.

D. S. C. Biggs, M. Andrews, Acceleration of iterative image restoration algorithms, Appl.
Opt. 36 (1997) 1766—-1775.

P. Dell’Acqua, v acceleration of statistical iterative methods for image restoration, Signal,
Image and Video Processing 10 (2016) 927-934.

M. Hanke, Accelerated landweber iterations for the solutions of ill-posed equations, Numer.
Math. 60 (1991) 341-373.

. L. Landweber, An iteration formula for fredholm integral equations of the first kind, Amer-

ican Journal of Mathematics 73 (1951) 615-624.

C. Brezinski, M. Redivo-Zaglia, The simplified topological e-algorithms for accelerating
sequences in a vector space, STAM J. Sci. Comput. 36 (2014) A2227-A2247.

R. H. Chan, M. Tao, X. Yuan, Constrained total variation deblurring models and fast
algorithms based on alternating direction method of multipliers, STAM Journal on imaging
Sciences 6 (1) (2013) 680-697.

20

Alessandro Buccini et al.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

. A. Lanza, S. Morigi, M. Pragliola, F. Sgallari, Space-variant tv regularization for image

restoration, in: European Congress on Computational Methods in Applied Sciences and
Engineering, Springer, 2017, pp. 160-169.

M. S. Almeida, M. Figueiredo, Deconvolving images with unknown boundaries using the
alternating direction method of multipliers, IEEE Transactions on Image processing 22 (8)
(2013) 3074-3086.

L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms,
Physica D 60 (1992) 259-268.

A. Lanza, S. Morigi, F. Sgallari, Convex image denoising via non-convex regularization
with parameter selection, Journal of Mathematical Imaging and Vision 56 (2) (2016) 195—
220.

M. S. Almeida, M. A. Figueiredo, Frame-based image deblurring with unknown boundary
conditions using the alternating direction method of multipliers, in: Image Processing
(ICIP), 2013 20th IEEE International Conference on, IEEE, 2013, pp. 582-585.

P. C. Hansen, J. G. Nagy, D. P. O’leary, Deblurring images: matrices, spectra, and filtering,
Vol. 3, Siam, Philadelphia, 2006.

B. He, X. Yuan, On non-ergodic convergence rate of douglas—rachford alternating direction
method of multipliers, Numerische Mathematik 130 (3) (2015) 567-577.

S. Gazzola, A. Karapiperi, Image reconstruction and restoration using the simplified e-
algorithm, Applied Mathematics and Computation 274 (2016) 539-555.

D. Shanks, Nonlinear transformations of divergent and slowly convergent sequences, J.
Math. Phys. 34 (1955) 1-42.

P. Wynn, On a device for computing the e, (Sn) transformation, MTAC 10 (1956) 91-96.
C. Brezinski, Généralisations de la transformation de Shanks, de la table de Padé et de
I’e-algorithme, Calcolo 12 (1975) 317-360.

	Introduction
	General framework
	Acceleration techniques
	Numerical results
	Conclusions

