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Abstract.

The present contribution concerns the computation of energy eigenvalues of a perturbed
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collocation method and the double exponential transformation. This method provides a
highly efficient and accurate algorithm to compute the energy eigenvalues of one-dimensional
time-independent Schrödinger equation. The numerical results obtained illustrate clearly the
highly efficiency and accuracy of the proposed method. All our codes are written in Julia
and are available on github at https://github.com/pjgaudre/DESincEig.jl.
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1 Introduction

This paper continues the series of previous studies [1–3] concerning the accurate and efficient
computation of energy eigenvalues of one-dimensional time-independent Schrödinger equa-
tion with the anharmonic potential, using the combination of the Sinc collocation method
(SCM) [4–8] and the double exponential (DE) transformation [9–12]. We refer to this method
as DESCM.

The Sinc collocation methods (SCM) consists of expanding the solution of Schrödinger equa-
tion using a basis of Sinc functions. By evaluating the resulting approximation at the Sinc
collocation points, we obtain a generalized matrix eigenvalue problem for which the resulting
eigenvalues are approximations to the energy eigenvalues of the Schrödinger equation.

The SCM have been used extensively during the last 30 years to solve many problems in
numerical analysis [4, 5] and it has been shown that it yields exponential convergence.

The DE transformation is a conformal mapping which allows for the function being approx-
imated by a Sinc basis to decay double exponentially at both infinities. The effectiveness of
the DE transformnation has been the subject of numerous studies [10–12] and it has been
shown that DE yields the best available convergence properties for problems with end point
singularities or infinite domains.

In [1], we applied DESCM to approximate the energy eigenvalues for anharmonic oscillators
given by:

V (x) =
m∑
i=1

cix
2i with cm > 0.

The above expression generalizes potentials that have been previously treated [13–19], namely:

V (x) = x2 + β x2m for β > 0 and m = 2, 3, 4. . . .

V (x) = λx2m for m = 2, 3, ...

V (x) = µx2 + λx4 + η x6 with η > 0

V (x) = 1
2
x2 + λx4 as λ→ 0+ and λ→∞

V (x) = a x2 + b x4 + c x6 as c→∞.

In [2], we introduced an algorithm based on DESCM for the numerical treatment of the
harmonic oscillators perturbed by rational functions in their general form given by:

V (x) = ω x2m +
p(x)

q(x)
.

Recently [3], we presented an algorithm based on DESCM for the coulombic potentials given
by:

V (x) =
a−2
x2

+
a−1
x

+
n∑
i=1

aix
i.
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In [1–3], we have presented numerous advantages of DESCM over the existing alternatives.
DESCM is not case specific and is insensitive to changes in the potential parameters. DESCM
can be applied to a large set of anharmonic, rational and coulombic potentials. We have also
demonstrated the high efficiency and accuracy of the method when dealing with multiple-well
potentials. In addition, the method has a near-exponential convergence rate and the matrices
generated by the DESCM have useful symmetric properties which simplify considerably the
computation of their eigenvalues.

In the present contribution, we demonstrate that DESCM can also be applied to compute
eigenvalues of the perturbed coulombic potential with irregular singulatrities given in their
general form by:

V (x) =

q∑
i=−p

aix
i with p ≥ 3 and a−p > 0.

For the past three decades, the numerical resolution of the Schrödinger equation in the
context of anharmonic oscillators has been approached mainly by case-specific methods, see
for example [13–22].

In the case of potentials of the form:

V (r) = ar2 + br−2 + cr−4 + dr−6,

an exact closed-form solution of the two-dimensional Schrödinger equation was obtained
by applying an ansatz to the eigenfunction. Restrictions on the parameters of the given
potential and the angular momentum were obtained [26]. Another study was carried out in
the case of a central potential:

V (r) =
4∑
i=1

air
−i,

where V (r) is proportional to r−β in an arbitrary number of dimensions. The presence of a
single term in the potential makes it impossible to use existing algorithms, which only work
for quasi-exactly-solvable problems. Nevertheless, the analysis of the stationary Schrödinger
equation in the neighborhood of the origin and at infinity provides relevant information
about the desired solutions for all values of the radial coordinates. The original eigenvalue
equation is mapped into a differential equation with milder singularities, and the role played
by the particular case β = 4 is elucidated. In general, whenever the parameter β is even
and greater than 4, a recursive algorithm for the evaluation of eigenfunctions is obtained.
In the two-dimensional case, the exact form of the ground-state wave function is obtained
for a potential containing a finite number of inverse powers of r, with the associated energy
eigenvalue [27].

In [28] exact solutions for the quantum-mechanical harmonic oscillator were obtained when
dealing with a perturbation potential belonging to the class of polynomial functions of 1/r. It
has been shown that for some of the eigenfunctions, it is possible to calculate the expectation
values in closed form. These eigenfunctions, therefore are suitable trial functions for the
application of the variational method to related nonsolvable problems.
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The eigenvalues of the potentials [29]:

V1(r) =
4∑
i=1

air
−i and V2(r) =

3∑
i=−1

bir
−2i,

were obtained in N -dimensional space for special cases, such as the Kratzer and Goldman-
Krivchenkov potentials. It has been found that these potentials, which had not previously
been linked, are explicitly dependent in higher-dimensional spaces [29]. By using the power
series method via a suitable ansatz to the wave function with parameters that may possibly
exist in the potential function for the first time, an exact solution for the radial Schrödinger
equation in N-dimensional Hilbert space was obtained for the potential V1(r) [30].

Exact analytical expressions for the energy spectra and potential parameters were obtained
in terms of linear combinations of known parameters of radial quantum number n, angular
momentum quantum number l, and the spatial dimension N . The coefficients of the expan-
sion of the wave function ansatz were generated through the two-term recurence relation for
odd/even solutions.

In [31], a numerical method using a basis set consisting of B-splines was used to approximate
the radial Schrödinger equation with the following anharmonic potential:

V (r) = a r2 + b r−4 + c r−6,

and accurate approximations of the energy eigenvalues were obtained for the lowest few
states. However, in the case of the first excited state, the values obtained deviate significantly
from the reference values presented in [32].

In [33], it has been shown that the wavefunction proposed in [32] has four different possible
sets of solutions for the wavefunction parameters and the constraint between the potential
parameters. These four solutions were obtained analytically. The wavefunctions correspond-
ing to these sets of parameters represent one the following states: the ground state, the first
excited state, or the second excited state, depending on the values of the parameters of the
wavefunction. It has also been shown that the values:

a = 1, b = −11.25 and c = 3.515625,

satisfy the constraint between the parameters both for the ground state and the first excited
state.

In [34], two conditionally exactly solvable inverse power law potentials of the form:

V (r) =
n∑
i=1

air
−αi,

whose linearly independent solutions include a sum of two confluent hypergeometric functions
were given. Furthermore, it is noted that they are partner potentials and multiplicative shape
invariant. The method used to find the solutions works with the two Schrödinger equations
of the partner potentials.

4



In [35], exact eigenvalues were found form the radial Schrödinger equation for the anharmonic
potential given by:

V (r) =
4∑
i=1

air
−i.

In the study of the corresponding radial Schrödinger equation, all analytical calculations em-
ploy the mathematical formalism of supersymmetric quantum mechanics [35]. The novelty
of this study is underlined by the fact that for the first time, recurrence formulas for rovi-
brational bound energy levels have been derived by employing factorization methods and an
algebraic approach. Both the ground state and the excited states were determined by means
of the hierarchy of the isospectral Hamiltonians. The Riccati nonlinear differential equation
with superpotentials has been solved analytically. It has been shown that exact solutions
exist when the potential and superpotential parameters satisfy certain supersymmetric con-
straints. The results obtained can be used both in computations of quantum chemistry and
theoretical spectroscopy of diatomic molecules.

In a similar fashion to the use the ansatz for the eigenfunction, exact analytical solutions of
the radial Schrödinger equation have been obtained for two-dimensional pseudoharmonic and
Kratzer potentials [36]. The bound-state solutions are easily calculated from the eigenfunc-
tion ansatz. The corresponding normalized wavefunctions are also obtained. By adopting
the strategy of the ansatz for the eigenfunction [37], one can once more compute exact
solutions of the Schrödinger equation for two types of generalized potentials, namely the
general Laurent type and four-parameter exponential potentials which can be reduced to the
well-known types by choosing appropriate values for the parameters of:

V (r) =
2M∑
i=−2j

Air
i with j,M ≥ 0.

From this overview of the literature on the numerical evaluation of the energy eigenvalues of
Schrödinger equation involving perturbed coulombic potentials with irregular singulatrities,
it can be seen that generally, the proposed methods provide accurate results only for a specific
class of potentials. The ideal would be to find a general method that is able to efficiently
compute approximations of eigenvalues to a high pre-determined accuracy for more general
potentials.
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2 General definitions and properties

The sinc function, analytic for all z ∈ C is defined by the following expression:

sinc(z) =


sin(πz)

πz
for z 6= 0

1 for z = 0.
(1)

The Sinc function S(j, h)(x) for h ∈ R+ and j ∈ Z is defined by:

S(j, h)(x) = sinc
(x
h
− j
)
. (2)

The Sinc functions defined in (2) form an interpolatory set of functions with the discrete
orthogonality property:

S(j, h)(kh) = δj,k for j, k ∈ Z, (3)

where δj,k is the Kronecker delta function. In other words, at all the Sinc grid points xk = kh,
we have:

CN(v, h)(x) = v(x).

It is possible to expand well-defined functions as series of Sinc functions. Such expansions
are known as Sinc expansions or Whittaker Cardinal expansions.

Definition 2.1. [38] Given any function v(x) defined everywhere on the real line and any
h > 0, the Sinc expansion of v(x) is defined by the following series:

C(v, h)(x) =
∞∑

j=−∞

vjS(j, h)(x), (4)

where vj = v(jh). The symmetric truncated Sinc expansion of the function v(x) is defined
by the following series:

CN(v, h)(x) =
N∑

j=−N

vj S(j, h)(x) for N ∈ N. (5)

In [38], Stenger introduced a class of functions which are successfully approximated by a
Sinc expansion. We present the definition for this class of functions bellow.

Definition 2.2. [38] Let d > 0 and let Dd denote the strip of width 2d about the real axis:

Dd = {z ∈ C : | =(z)| < d}. (6)

For ε ∈ (0, 1), let Dd(ε) denote the rectangle in the complex plane:

Dd(ε) = {z ∈ C : | <(z)| < 1/ε, | =(z)| < d(1− ε)}. (7)

Let B2(Dd) denote the family of all functions g that are analytic in Dd, such that:∫ d

−d
| g(x+ iy)|dy → 0 as x→ ±∞ and lim

ε→0

(∫
∂Dd(ε)

|g(z)|2|dz|
)1/2

<∞. (8)
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A function ω(x) is said to decay double exponentially at infinities if there exist positive
constants A,B, γ such that:

|ω(x)| ≤ A exp(−B exp(γ|x|)) for x ∈ R. (9)

The double exponential transformation is a conformal mapping φ(x) which allows for the
solution of (14) to have double exponential decay at both infinities.

3 The double exponential Sinc collocation method

The Schrödinger equation with semi-infinite zero boundary conditions is given by:(
− d2

dx2
+ V (x)

)
ψ(x) = E ψ(x) for 0 < x <∞

ψ(0) = ψ(∞) = 0, (10)

and where V (x) stands for the perturbed anharmonic coulombic potential of the general
form given by:

V (x) =

q∑
i=−p

aix
i with p ≥ 3 and a−p > 0. (11)

The above potentials, are called singular potentials [39], and they have an irregular singular
point of rank p−2

2
at x = 0.

Eggert et al. [40] demonstrate that applying an appropriate substitution to the boundary
value problem (10), results in a symmetric discretized system when using Sinc expansion
approximations. This change of variable is given by [40]:

v(x) =
(√

(φ−1)′ ψ
)
◦ φ(x) =⇒ ψ(x) =

v ◦ φ−1(x)√
(φ−1(x))′

, (12)

where φ−1(x) a conformal map of a simply connected domain in the complex plane with
boundary points a 6= b such that:

φ−1(a) = −∞ and φ−1(b) =∞. (13)

Applying the substitution (12) to (10), we obtain:

Ĥ v(x) = −v′′(x) + Ṽ (x) v(x)

= E(φ′(x))2 v(x) with lim
|x|→∞

v(x) = 0, (14)

where:
Ṽ (x) = −

√
φ′(x)

d

dx

(
1

φ′(x)

d

dx

(√
φ′(x)

))
+ (φ′(x))2 V (φ(x)). (15)
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To implement the DESCM, we start by approximating the solution of (14) by a truncated
Sinc expansion (5). Inserting (5) into (14), we obtain the following system of equations:

ĤCN(v, h)(xk) =
N∑

j=−N

(
− d2

dx2
S(j, h)(xk) + Ṽ (xk)S(j, h)(xk)

)
v(xj)

= E
N∑

j=−N

(
S(j, h)(xk) (φ

′(xk))
2
)
v(xj) for k = −N, . . . , N,(16)

where xj = jh for j = −N, . . . , N are the collocation points and by E the approximation of
the eigenvalue E in (14).

Equation (16) can be written as follows:

ĤCN(v, h)(xk) =
N∑

j=−N

(
− 1

h2
δ
(2)
j,k + Ṽ (kh) δ

(0)
j,k

)
v(jh)

= E
N∑

j=−N

(
δ
(0)
j,k (φ

′(kh))2
)
v(jh) for k = −N, ..., N, (17)

where:

δ
(l)
j,k = hl

(
d

dx

)l
S(j, h)(x)

∣∣∣
x=kh

,

and more precisely:

δ
(2)
j,k =


−π

2

3
if j = k

(−2) (−1)k−j

(k − j)2
if j 6= k

and δ
(0)
j,k =

 1 if j = k

0 if j 6= k
(18)

The matrix form associated with (17) is given by:

ĤCN(v, h) = Hv = ED2 v =⇒ (H− ED2)v = 0, (19)

where:

v = (v(−Nh), ..., v(Nh))T

CN(v, h) = (CN(v, h)(−Nh), ..., CN(v, h)(Nh))T .

The (2N + 1)× (2N + 1) matrices H and D2 are given by:
Hjk = − 1

h2
δ
(2)
j,k + Ṽ (kh) δ

(0)
j,k

D2
jk = (φ′(kh))2 δ

(0)
j,k

with −N ≤ j, k ≤ N. (20)
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Theorem 3.1. [41] Let E and v(x) be an eigenpair of the transformed Schrödinger equa-
tion (14). Assume there exist positive constants A, βL, βR, γL and γR such that:

| v(x)| ≤ A

{
exp(−βL exp(γL|x|) for x ∈ (−∞, 0]

exp(−βR exp(γR|x|)) for x ∈ [0,∞).
(21)

Moreover, let γ = max{γL, γR}. If:

• v ∈ B2(Dd) with d ≤
π

2γ

• there exists δ > 0 such that q̃(x) ≥ δ−1

• the mesh size h is chosen optimally by:

h =
W (πdγm/β)

γm
, (22)

where n and β are given by:
m =M, β = βL if γL > γR

m = N, β = βR if γR > γL

m =M, β = βL if γL = γR and βL ≥ βR

m = N, β = βR if γL = γR and βR ≥ βL,

(23)

then there is an eigenvalue E of the generalized eigenvalue problem (19) satisfying:

|E − E| ≤ Kv,d

√
δE

(
m5/2

log(m)2

)
exp

(
− πdγm

log(πdγm/β)

)
as m→∞, (24)

where W is the Lambert-W function and Kv,d is a constant that depends on v and d.

4 The perturbed anharmonic coulombic potential

To implement the DE transformation, we must choose a conformal map φ which would result
in a solution of the transformed Schrödinger equation (12) that decays double exponentially.

Since the perturbed anharmonic coulombic potential is analytic in C\{0} and grows to
infinity as x→∞ and as x→ 0, the wave function is also analytic in C\{0} and normalizable
over R+.

To find the decay rate of the solution of the Schrödinger equation with the perturbed anhar-
monic coulombic potential, we use the WKB method. Substituting the ansatz ψ(x) = eS(x)

into the Schrödinger equation and simplifying, we obtain:

S ′′(x) + (S ′(x))
2 −

q∑
i=−p

aix
i + E = 0. (25)
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Let us treat the case as x→∞ first. Since q > 1, we have:

S ′′(x) = o
(
S ′(x)2

)
as x→∞.

Hence:
(S ′(x))

2 ∼ aqx
q as x→∞. (26)

Using the initial condition lim
x→∞

ψ(x) = 0, we obtain:

S(x) ∼ −
(
2
√
aq

q + 2

)
x(q+2)/2 as x→∞. (27)

Let us now treat the case as x→ 0+. Since p > 2, we have:

S ′′(x) = o
(
S ′(x)2

)
as x→ 0+.

Hence:
(S ′(x))

2 ∼ a−px
−p as x→ 0+. (28)

Using the initial condition lim
x→0+

ψ(x) = 0, we obtain:

S(x) ∼ −
(
2
√
a−p

p− 2

)
x−(p−2)/2 as x→ 0+. (29)

From (27) and (29), it follows that ψ(x) has the following decay rates:

ψ(x) =


O
(
exp

[
−
(
2
√
aq

q + 2

)
x(q+2)/2

])
as x→∞

O
(
exp

[
−
(
2
√
a−p

p− 2

)
x−(p−2)/2

])
as x→ 0+.

(30)

Away from both boundary points, the wave function ψ(x) undergoes oscillatory behaviour.
As can be seen from (30), the wave function ψ(x) decays only single exponentially. However,
by using the conformal mapping φ(x) = ex, we have:

|v(x)| =

∣∣∣∣∣ψ ◦ φ(x)√
φ′(x)

∣∣∣∣∣
=
∣∣e−x/2ψ(ex)∣∣

=


O
(
exp

[
−
(
2
√
aq

q + 2

)
exp

{(
q + 2

2

)
x

}])
as x→∞

O
(
exp

[
−
(
2
√
a−p

p− 2

)
exp

{
−
(
p− 2

2

)
x

}])
as x→ −∞.

(31)
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According to Theorem 3.1, we have the following parameters:

βL =
2
√
a−p

p− 2
and βR =

2
√
aq

q + 2
, (32)

as well as

γL =
p− 2

2
and γR =

q + 2

2
. (33)

Hence, the optimal mesh size h is chosen by:

h =
W (πdγn/β)

γ n
, (34)

where n and β are given by:
n =M, β = βL if p− q > 4

n = N, β = βR if p− q < 4

n =M, β = βL if p− q = 4 and a−p ≥ aq

n = N, β = βR if p− q = 4 and a−p ≤ aq.

(35)

and γ is given by:

γ = max

{
p− 2

2
,
q + 2

2

}
. (36)

To obtain an approximation of the eigenfunctions, we invert the variable transformation:

v(x) = e−x/2 ψ(ex),

to obtain:

ψ(x) =
√
x v(ln(x))

≈
√
x

N∑
j=−M

vj S(j, h)(ln(x)). (37)

5 Numerical discussion

In this section, we present numerical results for the energy values of the anharmonic coulom-
bic potentials. All calculations are performed using the programming language Julia [42]
in double precision. A double-precision floating-point format is a computer number format
that occupies 8 bytes (64 bits) in computer memory. On average, this corresponds to about
15-17 significant decimal digits.

The eigenvalue solvers in Julia utilize the linear algebra package LAPACK [43]. The ma-
trices H and D2 are constructed using formulas (20). The approxiamte wavefunctions are
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obtained using equation (37). To produce our figures, we used the Julia package PyPlot. The
saturation effect observed in all figures is merely a consequence of rounding errors resulting
from this computer number format.

Exact solutions are presented in [28] for potentials of the form:

V (x) = x2 +

[
k(k + 1)

2

](
2k − 1

x4
+
k(k + 1)

2x6

)
=⇒ Ek = 2k + 3, k ≥ 0. (38)

Explicitly, we define the absolute error as:

Absolute error = |En(m)− En| for
{
m = 1, 2, 3, . . .
n = 0, 1, 2, . . . .

(39)

When the eigenvalues are not known exactly, we use an approximation to the absolute error
given by:

εn(m) = |En(m)− En(m− 1)| for
{
m = 1, 2, 3, . . .
n = 0, 1, 2, . . . .

(40)

In figure 1, we plotted the convergence of the DESCM for the ground and first excited states,
the potential function in (38) with k = 1/2, as well as the associated wavefunctions ψ0(x)
and ψ1(x). As can be seen from the figure, the DESCM converges quickly in both cases,
achieving over ten digits of accuracy for matrix sizes less than 35 by 35.

To demonstrate the robustness and power of the proposed method, we will now tackle more
complicated potentials of the form:

V (x) =

q∑
i=−p

aix
i. (41)

In figure 2, we present the convergence of the DESCM for the potential (41) with p = 3
and q = 8. The 12 coefficients ai involved in the expression of V (x) are generated randomly
using random number generator such that −5 ≤ ai ≤ 5 for i = −2, . . . , 7 . To assure positive
values for the last two remaining values, we set a−3 = 10.0 and a8 = 5.0.

In figure 3, we present the convergence of the DESCM for the potential (41) with p = q =
100. Here again, we used a random number generator for the 201 coefficients ai such that
−1 ≤ ai ≤ 1 for i = −99, . . . , 99. To assure positive values for the last two remaining values,
we set a−100 = a100 = 1.0.

6 Conclusion

In the present contribution, we applied the DESCM to the Schrödinger equation with an
anharmonic coulombic potential, which have the form of a Laurent series. The DESCM
approximates the wave function of a transformed Schrödinger equation (14) by as a Sinc
expansion. By summing over N + M + 1 collocation points, the implementation of the
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DESCM leads to a generalized eigenvalue problem with symmetric, positive definite matrices.
In addition, we also state that the convergence of the DESCM in this case can be improved to

the rate O
((

n5/2

log(n)2

)
exp

(
−κ′ n

log(n)

))
as n→∞, where n is related to the dimension

of the resulting generalized eigenvalue system and κ′ is a constant that depends on the
potential. As demonstrated in the numerical section, our application of this method on
extreme potentials with a large number of coefficients was highly successful.

7 Tables and Figures
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Figure 1: Figure (a) displays the absolute error of the DESCM for the potential function V (x)
(38) for k = 1/2 with exact eigenvalue E0 = 4, in addition to the associated wavefunction
ψ0(x). Figure (b) displays the convergence of the DESCM for the same potential function
V (x) (38) for the first excited state in addition to the associated wavefunction ψ1(x).

13



10 20 30 40 50 60 70 80
Matrix Size: M+N+1

10-15
10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

A
b
so
lu
te
 E
rr
o
r 
A
p
p
ro
x
im
a
ti
o
n
: 
ε 0

Convergence of DESCM for E0

0.0 0.5 1.0 1.5 2.0
x

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2
Wavefunction: ǫ0(x)

0.0 0.5 1.0 1.5 2.0
x

50

100

150

200
Potential Function: V(x)

V(x)

E0

(a)

10 20 30 40 50 60 70 80
Matrix Size: M+N+1

10-15
10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

A
b
so
lu
te
 E
rr
o
r 
A
p
p
ro
x
im
a
ti
o
n
: 
ε 1

Convergence of DESCM for E1

0.0 0.5 1.0 1.5 2.0
x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
Wavefunction: ǫ1(x)

0.0 0.5 1.0 1.5 2.0
x

50

100

150

200
Potential Function: V(x)

V(x)

E1

(b)

10 20 30 40 50 60 70 80 90
Matrix Size: M+N+1

10-15
10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

A
b
so
lu
te
 E
rr
o
r 
A
p
p
ro
x
im
a
ti
o
n
: 
ε 2

Convergence of DESCM for E2

0.0 0.5 1.0 1.5 2.0
x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
Wavefunction: ǫ2(x)

0.0 0.5 1.0 1.5 2.0
x

50

100

150

200
Potential Function: V(x)

V(x)

E2

(c)

Figure 2: Figure (a) displays the absolute error approximation of the DESCM for the poten-
tial function V (x) =

∑8
i=−3 aix

i, in addition to the associated wavefunction ψ0(x). Figure
(b) displays the convergence of the DESCM for the same potential function V (x) for the
first excited state in addition to the associated wavefunction ψ1(x). Figure (c) displays the
convergence of the DESCM for the same potential function V (x) for the third excited state
in addition to the associated wavefunction ψ3(x).
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Figure 3: Figure (a) displays the absolute error approximation of the DESCM for the poten-
tial function V (x) =

∑100
i=−100 aix

i, in addition to the associated wavefunction ψ0(x). Figure
(b) displays the convergence of the DESCM for the same potential function V (x) for the
first excited state in addition to the associated wavefunction ψ1(x). Figure (c) displays the
convergence of the DESCM for the same potential function V (x) for the 10th excited state
in addition to the associated wavefunction ψ10(x).
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