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REGULARIZATION PROPERTIES OF THE KRYLOV ITERATIVE
SOLVERS CGME AND LSMR FOR LINEAR DISCRETE ILL-POSED

PROBLEMS WITH AN APPLICATION TO TRUNCATED
RANDOMIZED SVDS∗

ZHONGXIAO JIA†

Abstract. For the large-scale linear discrete ill-posed problem min ‖Ax − b‖ or Ax = b with b

contaminated by Gaussian white noise, there are four commonly used Krylov solvers: LSQR and its
mathematically equivalent CGLS, the Conjugate Gradient (CG) method applied to ATAx = AT b,
CGME, the CG method applied to min ‖AAT y − b‖ or AAT y = b with x = AT y, and LSMR,
the minimal residual (MINRES) method applied to ATAx = AT b. These methods have intrinsic
regularizing effects, where the number k of iterations plays the role of the regularization parameter.
In this paper, we establish a number of regularization properties of CGME and LSMR, including
the filtered SVD expansion of CGME iterates, and prove that the 2-norm filtering best regularized
solutions by CGME and LSMR are less accurate than and at least as accurate as those by LSQR,
respectively. We also prove that the semi-convergence of CGME and LSMR always occurs no later
and sooner than that of LSQR, respectively. As a byproduct, using the analysis approach for CGME,
we improve a fundamental result on the accuracy of the truncated rank k approximate SVD of A

generated by randomized algorithms, and reveal how the truncation step damages the accuracy.
Numerical experiments justify our results on CGME and LSMR.

Key words. Discrete ill-posed, rank k approximations, semi-convergence, regularized solution,
Lanczos bidiagonalization, TSVD regularized solution, CGME, LSMR, LSQR, CGLS
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1. Introduction and Preliminaries. Consider the linear discrete ill-posed
problem

(1.1) min
x∈Rn

‖Ax− b‖ or Ax = b, A ∈ R
m×n, b ∈ R

m,

where the norm ‖ · ‖ is the 2-norm of a vector or matrix, and A is extremely ill
conditioned with its singular values decaying to zero without a noticeable gap. We
simply assume that m ≥ n. Since the results in this paper hold for both the m ≥ n
and m ≤ n cases. (1.1) arises from many applications, e.g., from the discretization of
the first kind Fredholm integral equation

(1.2) Kx = (Kx)(t) =

∫

Ω

k(s, t)x(t)dt = g(s) = g, s ∈ Ω ⊂ R
q,

where the kernel k(s, t) ∈ L2(Ω× Ω) and g(s) are known functions, while x(t) is
the unknown function to be sought. Applications include image deblurring, signal
processing, geophysics, computerized tomography, heat propagation, biomedical and
optical imaging, groundwater modeling, and many others [1, 9, 10, 24, 35, 36, 37, 39,
47]. The right-hand side b = btrue + e is assumed to be contaminated by a Gaussian
white noise e, caused by measurement, modeling or discretization errors, where btrue
is noise-free and ‖e‖ < ‖btrue‖. Because of the presence of noise e and the extreme ill-
conditioning of A, the naive solution xnaive = A†b of (1.1) generally bears no relation
to the true solution xtrue = A†btrue, where † denotes the Moore-Penrose inverse of
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a matrix. Therefore, we must use regularization to extract a good approximation to
xtrue as much as possible.

For a Gaussian white noise e, throughout the paper, we always assume that btrue
satisfies the discrete Picard condition ‖A†btrue‖ ≤ C with some constant C for ‖A†‖
arbitrarily large [1, 13, 20, 21, 22, 24, 36]. Without loss of generality, assume that
Axtrue = btrue. Then a dominating regularization approach is to solve the problem

(1.3) min
x∈Rn

‖Lx‖ subject to ‖Ax− b‖ ≤ τ‖e‖

with τ > 1 slightly [22, 24], where L is a regularization matrix and its suitable choice
is based on a-prior information on xtrue.

In this paper, we are concerned with the case L = I in (1.3), which corresponds
to a 2-norm filtering regularization problem. Let

(1.4) A = U

(
Σ
0

)
V T

be the singular value decomposition (SVD) of A, where U = (u1, u2, . . . , um) ∈ R
m×m

and V = (v1, v2, . . . , vn) ∈ R
n×n are orthogonal, Σ = diag(σ1, σ2, . . . , σn) ∈ R

n×n

with the singular values σ1 > σ2 > · · · > σn > 0 assumed to be simple, the superscript
T denotes the transpose of a matrix or vector, and 0 denotes a zero matrix. With
(1.4), we have

(1.5) xnaive =
n∑

i=1

uT
i b

σi
vi =

n∑

i=1

uT
i btrue
σi

vi +
n∑

i=1

uT
i e

σi
vi = xtrue +

n∑

i=1

uT
i e

σi
vi

and ‖xtrue‖ = ‖A†btrue‖ =
(∑n

i=1
|uT

i btrue|
2

σ2

i

)1/2

.

The discrete Picard condition means that, on average, the Fourier coefficient
|uT

i btrue| decays faster than σi, which results in the following popular model that is
used throughout Hansen’s books [22, 24] and the references therein as well as [32, 33]:

(1.6) |uT
i btrue| = σ1+β

i , β > 0, i = 1, 2, . . . , n,

where β is a model parameter that controls the decay rates of |uT
i btrue|.

The covariance matrix of the Gaussian white noise e is η2I, the expected value
E(‖e‖2) = mη2 and E(|uT

i e|) = η, i = 1, 2, . . . , n, so that ‖e‖ ≈ √
mη and |uT

i e| ≈
η, i = 1, 2, . . . , n. (1.5) and (1.6) show that, for large singular values, |uT

i btrue|/σi is
dominant relative to |uT

i e|/σi. Once |uT
i btrue| ≤ |uT

i e| from some i onwards, the noise

e dominates |uT
i b|, and the terms

|uT
i b|
σi

≈ |uT
i e|
σi

overwhelm xtrue for small singular
values and must be dampened. Therefore, the transition point k0 is such that

(1.7) |uT
k0
b| ≈ |uT

k0
btrue| > |uT

k0
e| ≈ η, |uT

k0+1b| ≈ |uT
k0+1e| ≈ η;

see [24, p.42, 98] and [22, p.70-1].
The truncated SVD (TSVD) method [20, 22, 24] is a reliable and commonly used

method for solving small to modest sized (1.3), and it solves a sequence of problems

(1.8) min ‖x‖ subject to ‖Akx− b‖ = min

starting with k = 1 onwards, where Ak = UkΣkV
T
k is a best rank k approximation

to A with respect to the 2-norm with Uk = (u1, . . . , uk), Vk = (v1, . . . , vk) and Σk =
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diag(σ1, . . . , σk); it holds that ‖A−Ak‖ = σk+1 [3, p.12], and xtsvd
k = A†

kb solves (1.8),
called the TSVD regularized solution. For the Gaussian white noise e it is known
from [22, p.70-1] and [24, p.71,86-8,95] that xtsvd

k0
is the 2-norm filtering best TSVD

regularized solution of (1.1), i.e., xtsvd
k0

has the minimal 2-norm error ‖xtrue−xtsvd
k0

‖ =

mink=1,2,...,n ‖xtrue−xtsvd
k ‖. The index k plays the role of the regularization parameter

in the TSVD method. It has been observed and justified that xtsvd
k0

is essentially a
2-norm filtering best possible solution of (1.1); see [21], [22, p.109-11], [24, Sections
4.2 and 4.4] and [46]. We refer to [32] for general elaborations. As a result, we can
take xtsvd

k0
as the standard reference when assessing the regularization ability of a

2-norm filtering regularization method.

For A large, the TSVD method is generally prohibitively expensive, and only
iterative regularization methods are appealing. Krylov iterative solvers have formed
a major class of methods [1, 10, 14, 17, 22, 24, 37]. Specifically, the CGLS method [15,
26] and its mathematically equivalent LSQR method [41], the CGME method [3, 4,
6, 17, 18] and the LSMR method [4, 5, 12] have been commonly used. These methods
are deterministic 2-norm filtering regularization methods, have general regularizing
effects, and exhibit semi-convergence [39, p.89]; see also [3, p.314], [4, p.733], [22,
p.135] and [24, p.110]: The iterates first converge to xtrue, then the noise e starts to
deteriorate the iterates so that they start to diverge from xtrue and instead converge
to xnaive. The iteration number plays the role of the regularization parameter in
iterative regularization methods.

The behavior of ill-posed problems and solvers depends on the decay rate of σj .
Hoffmann [29] has characterized the degree of ill-posedness of (1.1) as follows: If σj =
O(ρ−j) with ρ > 1, j = 1, 2, . . . , n, then (1.1) is severely ill-posed; if σj = O(j−α),
then (1.1) is mildly or moderately ill-posed for 1

2 < α ≤ 1 or α > 1. This definition
has been widely used [1, 10, 22, 24]. The requirement α > 1

2 does not appear in [29]
and is explicitly added in [30, 32], which is always met for a linear compact operator
equation [19, 22].

Hanke and Hansen [19] address that a strict proof of the regularizing properties
of conjugate gradients is extremely difficult; see also [23]. The regularizing effects
of CGLS, LSQR and CGME have been intensively studied; see, e.g., and have been
intensively studied [1, 8, 11, 14, 17, 18, 22, 24, 27, 28, 30, 32, 33, 42, 45]. It has long
been known (cf. [19, 22, 23, 24]) that if the singular values of the projection matrices
involved in LSQR, called the Ritz values, approximate the large singular values in
natural order then LSQR has the same regularization ability as the TSVD method,
that is, the two methods can compute 2-norm filtering best regularized solutions with
the same accuracy. As we will see clearly, the same results hold for CGME and LSMR
when the singular values of projection matrices approximate the large singular values
of A and ATA in this order, respectively.

If a 2-norm filtering regularized solution of (1.1) is as accurate as xtsvd
k0

, it is called
a 2-norm filtering best possible regularized solution. If the 2-norm filtering regularized
solution by a regularization method at semi-convergence is such a best possible one,
then the solver is said to have the full regularization. Otherwise, the solver has only
the partial regularization. This definition is introduced in [30, 32]. In terms of it, a
fundamental question posed in [30, 32] is: Do CGLS, LSQR, CGME and LSMR have
the full or partial regularization for severely, moderately and mildly ill-posed problems?
Actually, this question has been receiving high attention for CGLS and LSQR.

For the cases that σi are simple, the author in [32] has given accurate estimates for
the 2-norm distances between the underlying k dimensional Krylov subspace and the k
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dimensional dominant right singular subspace span{Vk} of A for severely, moderately
and mildly ill-posed problems. On the basis of [32], the author in [33] has proved that,
for LSQR, the k Ritz values converge to the k large singular values ofA in natural order
and Lanczos bidiagonalization always generates a near best rank k approximation
until k = k0 for severely and moderately ill-posed problems with suitable ρ > 1 and
α > 1, meaning that LSQR and CGLS have the full regularization. However, if such
desired properties fail to hold, it has been theoretically unknown if LSQR has the
full or partial regularization. Nevertheless, numerical experiments on many ill-posed
problems have demonstrated that LSQR always has the full regularization [32, 33].

In this paper, we analyze the regularization of CGME and LSMR under the
assumption that all the singular values σi are simple. We establish a number of
results, and prove that the regularization ability of CGME is generally inferior to
that of LSQR, that is, the 2-norm filtering best regularized solutions obtained by
CGME at semi-convergence are generally less accurate than those obtained by LSQR.
Specifically, we derive the filtered SVD expansion of CGME iterates, by which we
prove that the semi-convergence of CGME always occurs no later than that of LSQR
and can be much earlier than the latter. In the meantime, we show how to extract a
rank k approximation from the rank k + 1 approximation to A generated in CGME
at iteration k, which is as accurate as the rank k approximation in LSQR. Exploiting
such rank k approximation, we propose a modified CGME (MCGME) method whose
regularization ability is shown to be very comparable to that of LSQR. For LSMR,
we present a number of results and prove that its regularization ability is as good
as that of LSQR and the two methods compute the 2-norm filtering best regularized
solutions with essentially the same accuracy. We also show that the semi-convergence
of LSMR always occurs no sooner than that of LSQR.

As a windfall, making of our analysis approach used for CGME, we improve a
fundamental bound, Theorem 9.3 presented in Halko et al. [16], for the accuracy of
the truncated rank k approximation to A generated by randomized algorithms, which
have formed a highly intensive topic and have been used in numerous disciplines
over the years. As remarked by Halko et al. in [16] (cf. Remark 9.1 there), their
bound appears “conservative, but a complete theoretical understanding lacks.” Our
new bounds for the approximation accuracy are not only unconditionally sharper than
theirs but also can reveal how the truncation step damages the accuracy of the rank
k approximation.

The paper is organized as follows. In Section 2, we review LSQR, CGME and
LSMR. In Section 3, we briefly state some results on LSQR in [32, 33] and take LSQR
as reference to assess the regularization ability of CGME and LSMR. In Section 4,
we derive a number of regularization properties of CGME and propose the MCGME
method. In Section 5, we consider the accuracy of the truncated rank k randomized
approximation [16] and present sharper bounds. In Section 6, we study the regular-
ization ability of LSMR. In Section 7, we report numerical experiments to confirm
our theory. We conclude the paper in Section 8.

Throughout the paper, we denote by Kk(C,w) = span{w,Cw, . . . , Ck−1w} the
k dimensional Krylov subspace generated by the matrix C and the vector w , and by
the bold letter 0 the zero matrix with orders clear from the context.

2. The LSQR, CGME and LSMR algorithms. These three algorithms are
all based on the Lanczos bidiagonalization process, which computes two orthonormal
bases {q1, q2, . . . , qk} and {p1, p2, . . . , pk+1} of Kk(A

TA,AT b) and Kk+1(AA
T , b) for

k = 1, 2, . . . , n, respectively. We describe the process as Algorithm 1.
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Algorithm 1: k-step Lanczos bidiagonalization process
1. Take p1 = b/‖b‖ ∈ R

m, and define β1q0 = 0.
2. For j = 1, 2, . . . , k
(i) r = AT pj − βjqj−1

(ii) αj = ‖r‖; qj = r/αj

(iii) z = Aqj − αjpj
(iv) βj+1 = ‖z‖; pj+1 = z/βj+1.
Algorithm 1 can be written in the matrix form

AQk = Pk+1Bk,(2.1)

ATPk+1 = QkB
T
k + αk+1qk+1(e

(k+1)
k+1 )T ,(2.2)

where e
(k+1)
k+1 denotes the (k+1)-th canonical basis vector of Rk+1, Pk+1 = (p1, p2, . . . , pk+1),

Qk = (q1, q2, . . . , qk) and

(2.3) Bk =




α1

β2 α2

β3
. . .

. . . αk

βk+1




∈ R
(k+1)×k.

It is known from (2.1) that

(2.4) Bk = PT
k+1AQk.

Algorithm 1 cannot break down before step n when σi, i = 1, 2, . . . , n, are simple since
b is supposed to have nonzero components in the directions of ui, i = 1, 2, . . . , n. The

singular values θ
(k)
i , i = 1, 2, . . . , k of Bk, called the Ritz values of A with respect to

the left and right subspaces span{Pk+1} and span{Qk}, are all simple.
Write VR

k = Kk(A
TA,AT b) and β1 = ‖b‖. At iteration k, LSQR [41] solves

‖Axlsqr
k − b‖ = min

x∈VR
k

‖Ax− b‖

for the iterate

(2.5) xlsqr
k = Qky

lsqr
k with ylsqrk = arg min

y∈Rk
‖Bky − β1e

(k+1)
1 ‖ = β1B

†
ke

(k+1)
1 ,

where e
(k+1)
1 is the first canonical basis vector of Rk+1, and ‖Axlsqr

k −b‖ = ‖Bky
lsqr
k −

β1e
(k+1)
1 ‖ decreases monotonically with respect to k.
CGME [4, 17, 18, 27, 28] is the CG method implicitly applied to min ‖AAT y− b‖

or AAT y = b with x = AT y, and it solves the problem

‖xnaive − xcgme
k ‖ = min

x∈VR
k

‖xnaive − x‖

for the iterate xcgme
k . The error norm ‖xnaive − xcgme

k ‖ decreases monotonically with
respect to k. Let B̄k ∈ R

k×k be the matrix consisting of the first k rows of Bk, i.e.,

(2.6) B̄k = PT
k AQk.
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Then the CGME iterate

(2.7) xcgme
k = Qky

cgme
k with ycgme

k = β1B̄
−1
k e

(k)
1

and ‖Axcgme
k − b‖ = βk+1|(e(k)k )T ycgme

k | with e
(k)
k the k-th canonical vector of Rk+1.

LSMR [4, 12] is mathematically equivalent to MINRES [40] applied to the normal
equation ATAx = AT b of (1.1), and it solves

‖AT (b− Axlsmr
k )‖ = min

x∈VR
k

‖AT (b−Ax)‖

for the iterate xlsmr
k . The residual norm ‖AT (b − Axlsmr

k )‖ of the normal equation
decreases monotonically with respect to k, and the iterate
(2.8)

xlsmr
k = Qky

lsmr
k with ylsmr

k = arg min
y∈Rk

‖(BT
k Bk, αk+1βk+1e

(k)
k )T y − α1β1e

(k+1)
1 ‖.

3. Some results on LSQR in [32, 33]. From β1e
(k+1)
1 = PT

k+1b and (2.5) we
have

(3.1) xlsqr
k = QkB

†
kP

T
k+1b,

which is the minimum 2-norm solution to the problem that perturbs A in (1.1) to its
rank k approximation Pk+1BkQ

T
k . Recall that ‖A−Ak‖ = σk+1. Analogous to (1.8),

LSQR now solves a sequence of problems

(3.2) min ‖x‖ subject to ‖Pk+1BkQ
T
k x− b‖ = min

for xlsqr
k starting with k = 1 onwards, where A in (1.1) is replaced by a rank k approx-

imation Pk+1BkQ
T
k of it. Therefore, if Pk+1BkQ

T
k is a near best rank k approximation

to A with an approximate accuracy σk+1 and the singular values θ
(k)
i , i = 1, 2, . . . , k of

Bk approximate the k large σi in natural order for k = 1, 2, . . . , k0, then LSQR has the
same regularization ability as the TSVD method and thus has the full regularization.
See [32] for more elaborations.

The analysis on the TSVD method and the Tikhonov regularization method [22,
24] shows that the core requirement on a regularization method is to acquire the k0
dominant SVD components of A and meanwhile suppress the remaining n− k0 SVD
components. Therefore, the more accurate the rank k approximation is to A and
the better approximations are the k non-zero singular values of a projection matrix
to some of the k0 large singular values of A, the better regularization ability of the
method has, so that the best regularized solution obtained by it is more accurate.

Define

(3.3) γlsqr
k = ‖A− Pk+1BkQ

T
k ‖,

which measures the accuracy of the rank k approximation Pk+1BkQ
T
k to A involved

in LSQR. Since the best rank k approximation Ak satisfies ‖A−Ak‖ = σk+1, we have

γlsqr
k ≥ σk+1.

The author in [33] introduces the definition of a near best rank k approximation

to A: For LSQR, Pk+1BkQ
T
k is called a near best rank k approximation to A if γlsqr

k

is closer to σk+1 than to σk:

(3.4) σk+1 ≤ γlsqr
k <

σk + σk+1

2
.



REGULARIZATION OF CGME AND LSMR 7

Based on the accurate estimates established in [32] for the 2-norm distances be-
tween the underlying Krylov subspace VR

k and the k dimensional dominant right
singular subspace span{Vk} for severely, moderately and mildly ill-posed problems,

the author [33] has derived accurate estimates for γlsqr
k and a number of approxi-

mation properties of θ
(k)
i , i = 1, 2, . . . , k for the three kinds of ill-posed problems.

The results have shown that, for severely and moderately ill-posed problems with for
suitable ρ > 1 and α > 1 and for k = 1, 2, . . . , k0, Pk+1BkQ

T
k must be a near best

rank k approximation to A, and the k Ritz values θ
(k)
i approximate the large singular

values σi of A in natural order. This means that LSQR has the full regularization for
these two kinds of problems with suitable ρ > 1 and α > 1. However, for moderately
ill-posed problems with α > 1 not enough and mildly ill-posed problems, Pk+1BkQ

T
k

is generally not a near best rank k approximation, and the k Ritz values θ
(k)
i do not

approximate the large singular values of A in natural order for some k ≤ k∗.
In particular, the author [33, Theorem 5.1] has proved the following three results:

γlsqr
k = ‖Gk‖(3.5)

with

Gk =




αk+1

βk+2 αk+2

βk+3
. . .

. . . αn

βn+1




∈ R
(n−k+1)×(n−k),(3.6)

αk+1 < γlsqr
k , βk+2 < γlsqr

k , k = 1, 2, . . . , n− 1,(3.7)

γlsqr
k+1 < γlsqr

k , k = 1, 2, . . . , n− 2.(3.8)

These notation and results will be used later.

4. The regularization of CGME. Note that PT
k b = β1e

(k)
1 . We obtain

(4.1) xcgme
k = QkB̄

−1
k PT

k b.

Therefore, analogous to (1.8) and (3.2), CGME solves a sequence of problems

(4.2) min ‖x‖ subject to ‖PkB̄kQ
T
k x− b‖ = min

for the regularized solution xcgme
k starting with k = 1 onwards, where A in (1.1) is

replaced by a rank k approximation PkB̄kQ
T
k of it.

Just as LSQR, if PkB̄kQ
T
k is a near best rank k approximation to A and the

k singular values of B̄k approximate the large ones of A in natural order for k =
1, 2, . . . , k0, then CGME has the full regularization.

By (2.1), (2.2) and (2.4), the rank k approximation involved in LSQR is

(4.3) Pk+1BkQ
T
k = AQkQ

T
k .

By (3.3), we have γlsqr
k = ‖A(I −QkQ

T
k )‖. For CGME, by (2.2) and (2.6), we obtain

Pk+1P
T
k+1A = Pk+1(BkQ

T
k + αk+1e

(k+1)
k+1 qTk+1)

= Pk+1(Bk, αk+1e
(k+1)
k+1 )QT

k+1

= Pk+1B̄k+1Q
T
k+1.(4.4)
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Therefore, xcgme
k is the solution to (4.2) in which the rank k approximation to A is

PkB̄kQ
T
k = PkP

T
k A, whose approximation accuracy is

(4.5) γcgme
k = ‖A− PkB̄kQ

T
k ‖ = ‖(I − PkP

T
k )A‖.

Theorem 4.1. For the rank k approximations PkP
T
k A = PkB̄kQ

T
k to A, k =

1, 2, . . . , n− 1, with the definition γlsqr
0 = ‖A‖ we have

γlsqr
k < γcgme

k < γlsqr
k−1,(4.6)

γcgme
k+1 < γcgme

k .(4.7)

Proof. We give two proofs of the upper bound in (4.6). The first is as follows.
Since Pk+1P

T
k+1(I − Pk+1P

T
k+1) = 0, from (2.2) we obtain

(γlsqr
k )2 = ‖A− Pk+1BkQ

T
k ‖2

= ‖Pk+1P
T
k+1A− Pk+1BkQ

T
k + (I − Pk+1P

T
k+1)A‖2

= max
‖y‖=1

‖
(
(Pk+1P

T
k+1A− Pk+1BkQ

T
k ) + (I − Pk+1P

T
k+1)A

)
y‖2

= max
‖y‖=1

‖Pk+1P
T
k+1(Pk+1P

T
k+1A− Pk+1BkQ

T
k )y + (I − Pk+1P

T
k+1)Ay‖2

= max
‖y‖=1

(
‖Pk+1P

T
k+1(Pk+1P

T
k+1A− Pk+1BkQ

T
k )y‖2 + ‖(I − Pk+1P

T
k+1)Ay‖2

)

= max
‖y‖=1

(
‖Pk+1(P

T
k+1A−BkQ

T
k )y‖2 + ‖(I − Pk+1P

T
k+1)Ay‖2

)

= max
‖y‖=1

(
‖(PT

k+1A−BkQ
T
k )y‖2 + ‖(I − Pk+1P

T
k+1)Ay‖2

)

= max
‖y‖=1

(
α2
k+1|(e

(k+1)
k+1 )T y|2 + ‖(I − Pk+1P

T
k+1)Ay‖2

)

> max
‖y‖=1

‖(I − Pk+1P
T
k+1)Ay‖2

= ‖(I − Pk+1P
T
k+1)A‖2 = (γcgme

k+1 )2,

which is the upper bound in (4.6) by replacing the index k + 1 with k.

Taking k = n in (2.4) and augmenting Pn+1 such that P = (Pn+1, P̂ ) ∈ R
m×m is

orthogonal, we have

(4.8) PTAQn =

(
Bn

0

)
,

where all the entries αi and βi+1, i = 1, 2, . . . , n, of Bn are positive, and Qn ∈ R
n×n

is orthogonal. Then by the orthogonal invariance of the 2-norm we obtain

(4.9) γcgme
k = ‖A− PkB̄kQ

T
k ‖ = ‖PT (A− PkB̄kQ

T
k )Qn‖ = ‖(βk+1e1, Gk)‖

with Gk defined by (3.6). It is straightforward to justify that the singular values of
Gk ∈ R

(n−k+1)×(n−k) strictly interlace those of (βke1, Gk) ∈ R
(n−k+1)×(n−k+1) by

noting that (βk+1e1, Gk)
T (βk+1e1, Gk) is an unreduced symmetric tridiagonal matrix,

from which and ‖Gk‖ = γlsqr
k the lower bound of (4.6) follows.

Based on (4.9), we can also give the second proof of the upper bound in (4.6).
Observe from (3.6) that (βk+1e1, Gk) is the matrix deleting the first row of Gk−1.
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Applying the strict interlacing property of singular values to (βk+1e1, Gk) and Gk−1,

we obtain γlsqr
k−1 = ‖Gk−1‖ > ‖(βk+1e1, Gk)‖ = γcgme

k , which yields the upper bound
of (4.6).

From (4.9), notice that (βk+2e1, Gk+1) is the matrix deleting the first row of
(βk+1e1, Gk) and the first column, which is zero, of the resulting matrix. Applying
the strict interlacing property of singular values to (βk+2e1, Gk+1) and (βk+1e1, Gk)
establishes (4.7).

(4.6) indicates that PkP
T
k A = PkB̄kQ

T
k is definitely a less accurate rank k approx-

imation to A than AQkQ
T
k = Pk+1BkQ

T
k in LSQR. (4.7) shows the strict monotonic

decreasing property of γcgme
k . Moreover, keep in mind that γlsqr

k ≥ σk+1. Then a
combination of it and the results in Section 3 indicates that, unlike Pk+1BkQ

T
k in

LSQR, there is no guarantee that PkB̄kQ
T
k is a near best rank k approximation to

A even for severely and moderately ill-posed problems, because γcgme
k simply lies be-

tween γlsqr
k and γlsqr

k−1 and there do not exist any sufficient conditions on ρ > 1 and

α > 1 that enforce γcgme
k to be closer to γlsqr

k , let alone closer to σk+1. Therefore,
based on the accuracy of the rank k approximations in CGME and LSQR, we come
to the conclusion that the regularization ability of CGME cannot be superior and
is generally inferior to that of LSQR. Furthermore, since there is no guarantee that
PkB̄kQ

T
k is a near best rank k approximation for severely and moderately ill-posed

problems with suitable ρ > 1 and α > 1, CGME may not have the full regularization
for these two kinds of problems.

In the following we investigate the approximation behavior of the k singular values

θ̄
(k)
i of B̄k, k = 1, 2, . . . , n. Before proceeding, it is necessary to have a closer look at
Algorithm 1 and distinguish some subtleties when A is rectangular, i.e., m > n, and
square, i.e., m = n, respectively.

Keep in mind that Algorithm 1 does not break down before step n. For the
rectangular case m > n, Algorithm 1 is exactly what is presented there, all the αk

and βk+1 are positive, k = 1, 2, . . . , n, and we generate Pn+1 and Qn at step n and
αn+1 = βn+2 = 0. As a consequence, by definition (4.4), we have

(4.10) B̄n+1 = (Bn, αn+1e
(n+1)
n+1 ) = (Bn,0).

It is known from (4.8) that the singular values of Bn are identical to the singular
values σi, i = 1, 2, . . . , n of A. Therefore, the n + 1 singular values of B̄n+1 are
σi, i = 1, 2, . . . , n and zero.

For the square case m = n, however, we must have βn+1 = 0, that is, the last row
of Bn is zero; otherwise, we would obtain an n × (n + 1) orthonormal matrix Pn+1,
which is impossible since Pn is already an orthogonal matrix. After Algorithm 1 is
run to completion, we have

B̄n = PT
n AQn,

whose singular values θ̄
(n)
i = σi, i = 1, 2, . . . , n.

By the definition (4.4) of B̄k, from (2.2) and the above description, for both the
rectangular and square cases we obtain

(4.11) PT
k AATPk = B̄kB̄

T
k , k = 1, 2, . . . , n∗,

with n∗ = n + 1 for m > n and n∗ = n for m = n, which are unreduced symmetric
tridiagonal matrices. For m = n, the eigenvalues of AAT are just σ2

i , i = 1, 2, . . . , n,
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all of which are simple and positive; for m > n, the eigenvalues of AAT are σ2
i , i =

1, 2, . . . , n plus m − n zeros, denoted by σ2
n+1 = · · · = σ2

m = 0 for our later use.
Therefore, by the definition of n∗, the eigenvalues of B̄n∗B̄T

n∗ are σ2
i , i = 1, 2, . . . , n∗.

Notice that B̄kB̄
T
k is nothing but the projection matrix of AAT onto the k di-

mensional Krylov subspace Kk(AA
T , b). More precisely, B̄kB̄

T
k is generated by the

k-step symmetric Lanczos tridiagonalization process applied to AAT starting with
p1 = b/‖b‖, and the eigenvalues of B̄kB̄

T
k generally approximate extreme eigenvalues

of AAT ; see, e.g., [3, 4, 43] for details. Particularly, the smallest eigenvalue (θ̄
(k)
k )2

of B̄kB̄
T
k generally converges to the smallest eigenvalue σ2

n∗ of AAT as k increases,
which is σ2

n+1 = 0 for m > n and σ2
n > 0 for m = n. In contrast, for Bk, its smallest

singular value θ
(k)
k > σn unconditionally until θ

(n)
n = σn.

We next give a number of close relationships between θ̄
(k)
i and θ

(k)
i as well as

between them and the singular values σi of A, which are crucial to compare the
regularizing effects of CGME with those of LSQR.

Theorem 4.2. Denote by θ̄
(k)
i and θ

(k)
i , i = 1, 2, . . . , k the singular values of B̄k

and Bk, respectively, labeled in decreasing order. Then

θ
(k)
1 > θ̄

(k)
1 > θ

(k)
2 > θ̄

(k)
2 > · · · > θ

(k)
k > θ̄

(k)
k , k = 1, 2, . . . , n− 1.(4.12)

Moreover,

σn < θ̄
(k)
k < θ

(k)
k < σk, k = 1, 2, . . . , n− 1(4.13)

for m = n and

σn < θ
(k)
k < σk, k = 1, 2, . . . , n− 1,(4.14)

0 < θ̄
(k)
k < θ

(k)
k < σk, k = 1, 2, . . . , n− 1(4.15)

for m > n.
Proof. Observe that B̄k consists of the first k rows of Bk and all the αk and βk+1

are positive for k = 1, 2, . . . , n−1. Applying the strict interlacing property of singular
values to B̄k and Bk, we obtain (4.12).

Note that, for A both rectangular and square, we have θ
(n)
i = σi, i = 1, 2, . . . , n.

Since Bk consists of the first k columns of Bn and deletes the last n− k zero rows of
the resulting matrix, applying the strict interlacing property of singular values to Bk

and Bn (cf. [44, p.198, Corollary 4.4]), for k = 1, 2, . . . , n− 1 we have

(4.16) σn−k+i < θ
(k)
i < σi, i = 1, 2, . . . , k.

Observe that B̄kB̄
T
k , k = 1, 2, . . . , n−1, are the k×k leading principal matrices of

B̄n∗B̄T
n∗ , whose eigenvalues are σ2

i , i = 1, 2, . . . , n∗, and they are unreduced symmetric
tridiagonal matrices. Applying the strict interlacing property of eigenvalues to B̄kB̄

T
k

and B̄n∗B̄T
n∗ , for k = 1, 2, . . . , n− 1 we obtain

σ2
n∗−k+i < (θ̄

(k)
i )2 < σ2

i , i = 1, 2, . . . , k,

from which and the definition of n∗ it follows that

σn < θ̄
(k)
k < σk
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for m = n and

0 = σn+1 < θ̄
(k)
k < σk

for m > n. The above, together with (4.16) and (4.12), yields (4.13)–(4.15).

From Section 3, (4.13) and (4.15) indicate that, unlike the k singular values θ
(k)
i of

Bk, which have been proved to interlace the first k+1 large ones of A and approximate
the first k ones in natural order for the severely or moderately ill-posed problems for

suitable ρ > 1 or α > 1 [33], the lower bound for θ̄
(k)
k is simply σn for m = n and

zero for m > n, respectively, and there does not exist a better lower bound for it.

This implies that θ̄
(k)
k may be much smaller than σk+1 and it can be as small as

σn for m = n and arbitrarily small for m > n, independent of ρ or α. In other

words, the size of ρ or α has no intrinsic effects on the size of θ̄
(k)
k , and cannot make

θ̄
(k)
k lie between σk+1 and σk by choosing ρ or α, that is, the regularizing effects of
CGME have intrinsic indeterminacy for severely and moderately ill-posed problems,
independent of the size of ρ and α. Therefore, CGME may or may not have the full

regularization for these two kinds of problems. On the other hand, even if the θ̄
(k)
i

approximate the first k large singular values σi in natural order, they are less accurate

than the k singular values θ
(k)
i of Bk because of (4.13) and (4.15). Consequently, since

the θ
(k)
i are always correspondingly larger than the θ̄

(k)
i , the regularization ability of

CGME cannot be superior and is generally inferior to that of the LSQR.
A final note is that, unlike for m = n, CGME may be at risk for m > n since the

θ̄
(k)
k converges to zero other than σn as k increases and can be arbitrarily small, which

causes that the projected problem B̄ky
cgme
k = β1e

(k)
1 may even be worse conditioned

than (1.1) and ‖xcgme
k ‖ = ‖ycgme

k ‖ may be unbounded as k increases and bigger than
‖xnaive‖ for a given (1.1).

In what follows we establish more results on the regularization of CGME and get
more insight into it. It is known, e.g., [22, p.146] that the LSQR iterate xlsqr

k takes
the following filtered SVD expansion:

(4.17) xlsqr
k =

n∑

i=1

f
(k,lsqr)
i

uT
i b

σi
vi, k = 1, 2, . . . , n,

where the filters

(4.18) f
(k,lsqr)
i = 1−

k∏

j=1

(θ
(k)
j )2 − σ2

i

(θ
(k)
j )2

, i = 1, 2, . . . , n.

These results have been extensively used to study the regularizing effects of LSQR;
see, e.g., [22, 23, 32]. We now prove that the CGME iterate xcgme

k also takes a filtered
SVD expansion similar to (4.17) and (4.18), but its proof is much more involved than
that of (4.17) and (4.18).

Theorem 4.3. The CGME iterate xcgme
k has the filtered SVD expansion

(4.19) xcgme
k =

n∑

i=1

f
(k,cgme)
i

uT
i b

σi
vi, k = 1, 2, . . . , n,

where the filters

(4.20) f
(k,cgme)
i = 1−

k∏

j=1

(θ̄
(k)
j )2 − σ2

i

(θ̄
(k)
j )2

, i = 1, 2, . . . , n.
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Proof. Let ynaive = (AAT )†b be the minimal 2-norm solution to miny ‖AAT y−b‖.
Recall Algorithm 1. For this minimization problem, starting with ycgme

0 = 0, at
iteration k the CG method extracts ycgme

k from the k dimensional Krylov subspace

Kk(AA
T , b) = span{Pk}.

It is well known from, e.g., [38], that the residual of ycgme
k is

(4.21) b−AAT ycgme
k = rk(AA

T )b,

where rk(λ) is the k-th residual, or Ritz, polynomial with the normalization rk(0) =

1, whose k roots are the Ritz values (θ̄
(k)
j )2 of AAT with respect to the subspace

span{Pk}; see (4.11). Therefore, we have

(4.22) rk(σ
2
i ) =

n∏

j=1

(θ̄
(k)
j )2 − σ2

i

(θ̄
(k)
j )2

, i = 1, 2, . . . , n.

From the full SVD (1.4) of A, write U = (Un, U⊥). Then we have A = UnΣV
T ,

the compact SVD of A. It is straightforward to see that

AAT (AAT )† = (AAT )†AAT = UnU
T
n .

Therefore, by ynaive = (AAT )†b, premultiplying the two hand sides of (4.21) by
(AAT )† yields

ynaive − UnU
T
n ycgme

k = (AAT )†rk(AA
T )b

= rk(AA
T )(AAT )†b = rk(AA

T )ynaive,

from which it follows that

(4.23) UnU
T
n ycgme

k = (I − rk(AA
T ))ynaive.

By the SVD (1.4) of A, we have

ynaive = (AAT )†b =
n∑

i=1

uT
i b

σ2
i

ui.

Hence for k = 1, 2, . . . , n from (4.22) and (4.23) we obtain

UnU
T
n ycgme

k =

n∑

i=1

(1− rk(σ
2
i ))

uT
i b

σ2
i

ui

=
n∑

i=1

f
(k,cgme)
i

uT
i b

σ2
i

ui(4.24)

with f
(k,cgme)
i defined by (4.20). In terms of xcgme

k = AT ycgme
k and A = UnΣV

T ,
premultiplying the two hand sides of the above relation by AT and exploiting UT

n Un =
I, we have

xcgme
k = AT ycgme

k = V ΣUT
n ycgme

k = V ΣUT
n UnU

T
n ycgme

k = ATUnU
T
n ycgme

k .



REGULARIZATION OF CGME AND LSMR 13

Then making use of this relation, ATui = σivi and (4.24), we obtain (4.19).
Based on Theorems 4.2–4.3, we can prove the following important result.
Theorem 4.4. Let k∗cgme and k∗lsqr be iterations at which the semi-convergence of

CGME and LSQR occurs, respectively, k0 the transition point of the TSVD method.
Then

(4.25) k∗cgme ≤ k∗lsqr ≤ k0,

that is, the semi-convergence of CGME always occurs no later than that of LSQR and
the TSVD method.

Proof. The result k∗lsqr ≤ k0 has been proved in [32, Theorem 3.1]. Next we first
prove that k∗cgme ≤ k0.

Recall that the best TSVD solution

xtsvd
k0

= A†
k0
b =

k0∑

i=1

uT
i b

σi
vi

and the fact that a 2-norm filtering best possible solution must capture the k0 domi-
nant SVD components of A and suppress the n− k0 small SVD components of A.

For CGME, from (4.13) and (4.15) we have θ̄
(k)
k < σk, Therefore, at iteration

k0 + 1 we must have θ̄
(k0+1)
k0+1 < σk0+1. If the θ̄

(k)
i approximate the large σi in natural

order for k = 1, 2, . . . , k0, then by (4.20) we have f
(k,cgme)
i → 1 for i = 1, 2, . . . , k

and f
(k,cgme)
i → 0 for i = k + 1, . . . , n. On the other hand, by (4.20) we have

f
(k0+1,cgme)
k0+1 = O(1). Compared with the best TSVD solution, by (4.19) the above
shows that the CGME iterate xcgme

k captures the k dominant SVD components of A
and filters out the n − k small ones. As a result, xcgme

k improves until iteration k0,
and the semi-convergence of CGME occurs at iteration k∗cgme = k0.

If the θ̄
(k)
j do not converge to the large singular values of A in natural order

and θ̄
(k)
k < σk0+1 for some iteration k ≤ k0 for the first time, then xcgme

k is already

deteriorated by the noise e before iteration k: Suppose that σj∗ < θ̄
(k)
k < σk0+1 with

j∗ the smallest integer j∗ > k0 + 1. Then we can easily justify from (4.20) that

f
(k,cgme)
i ∈ (0, 1) and tends to zero monotonically for i = j∗, j∗ + 1, . . . , n, but

k∏

j=1

(θ̄
(k)
j )2 − σ2

i

(θ̄
(k)
j )2

=
(θ̄

(k)
k )2 − σ2

i

(θ̄
(k)
k )2

k−1∏

j=1

(θ̄
(k)
j )2 − σ2

i

(θ̄
(k)
j )2

≤ 0, i = k0 + 1, . . . , j∗ − 1

since the first factor is non-positive and the second factor is positive by noting that

θ̄
(k)
j > σi, j = 1, 2, . . . , k − 1 for i = k0 + 1, . . . , j∗ − 1. As a result, f

(k,cgme)
i ≥ 1 for

i = k0 + 1, . . . , j∗ − 1, showing that xcgme
k has been deteriorated by the noise e and

the semi-convergence of CGME has occurred at some iteration k∗cgme < k0.

Finally, we prove k∗cgme ≤ k∗lsqr . Notice that θ̄
(k)
k < θ

(k)
k means that the first

iteration k such that θ̄
(k)
k < σk0+1 for CGME is no more than the one such that

θ
(k)
k < σk0+1 for LSQR. Therefore, applying a similar proof to that of the semi-
convergence of CGME to (4.17)–(4.18), it is direct that the semi-convergence of CGME
occurs no later than that of LSQR, i.e., k∗cgme ≤ k∗lsqr .

It is seen from the above proof that, due to θ̄
(k)
k < θ

(k)
k , the semi-convergence of

CGME can occur much earlier than that of LSQR.
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We can, informally, deduce more features of CGME. By definition, the optimality
of CGME means that

(4.26) ‖xnaive − xcgme
k ‖ ≤ ‖xnaive − xlsqr

k ‖

holds unconditionally for i = 1, 2, . . . , n. Since xcgme
k and xlsqr

k converge to xtrue

until iterations k∗cgme and k∗lsqr at which the semi-convergence of CGME and LSQR

occurs, respectively, it is known that, for k ≤ k∗cgme and k ≤ k∗lsqr , ‖xtrue − xcgme
k ‖

and ‖xtrue − xlsqr
k ‖ are negligible relative to ‖xnaive − xtrue‖, which is supposed very

large in the context of discrete ill-posed problems. As a consequence, we have

‖xnaive − xcgme
k ‖ = ‖xnaive − xtrue + xtrue − xcgme

k ‖
≈ ‖xnaive − xtrue‖+ ‖xtrue − xcgme

k ‖,(4.27)

‖xnaive − xlsqr
k ‖ = ‖xnaive − xtrue + xtrue − xlsqr

k ‖
≈ ‖xnaive − xtrue‖+ ‖xtrue − xlsqr

k ‖.(4.28)

Since the first terms in the right-hand sides of (4.27) and (4.28) are the same constant,
a combination of (4.26) with (4.27) and (4.28) means that

(4.29) ‖xtrue − xcgme
k ‖ ≤ ‖xtrue − xlsqr

k ‖

generally holds until k = k∗cgme. That is, xcgme
k should be at least as accurate as

xlsqr
k until the semi-convergence of CGME occurs. Then for k > k∗cgme, according

to Theorem 4.4, xlsqr
k continues approximating xtrue as k increases until iteration

k = k∗lsqr , at which LSQR ultimately computes a more accurate approximation xlsqr
k∗

lsqr

to xtrue than xcgme
k∗

cgme
.

We will have more exciting findings. Observe that after Lanczos bidiagonalization
is run k steps, we have already obtained B̄k+1, Pk+1 and Qk+1, but LSQR and CGME
exploit only Bk, Qk and B̄k, Qk, respectively. Since αk+1 > 0 for k ≤ n− 1, applying
the strict interlacing property of singular values to Bk and B̄k+1, we have

(4.30) θ̄
(k+1)
1 > θ

(k)
1 > θ̄

(k+1)
2 > · · · > θ̄

(k+1)
k > θ

(k)
k > θ̄

(k+1)
k+1 , k = 1, 2, . . . , n− 1.

Note from (4.15) that θ̄
(k+1)
i < σi, i = 1, 2, . . . , k + 1. Combining (4.30) with (4.15),

we see that as approximations to the first large k singular values σi of A, although the

k singular values θ̄
(k)
i of B̄k are less accurate than the singular values θ

(k)
i of Bk, the

first k singular values θ̄
(k+1)
i of B̄k+1 are more accurate than the θ

(k)
i correspondingly.

Based on the above property and (4.4), we next show how to extract a best possi-
ble rank k approximation to A from the available rank k+1 matrix Pk+1B̄k+1Q

T
k+1 =

Pk+1P
T
k+1A generated by Algorithm 1.

Theorem 4.5. Let C̄k be the best rank k approximation to B̄k+1 with respect to
the 2-norm. Then for k = 1, 2, . . . , n− 1 we have

‖A− Pk+1C̄kQ
T
k+1‖ ≤ σk+1 + γcgme

k+1 ,(4.31)

‖A− Pk+1C̄kQ
T
k+1‖ ≤ θ̄

(k+1)
k+1 + γcgme

k+1 ,(4.32)

where θ̄
(k+1)
k+1 is the smallest singular value of B̄k+1 and γcgme

k+1 is defined by (4.5).
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Proof. Write A − Pk+1C̄kQ
T
k+1 = A − Pk+1B̄k+1Q

T
k+1 + Pk+1(B̄k+1 − C̄k)Q

T
k+1.

Then exploiting (4.4), we obtain

‖A− Pk+1C̄kQ
T
k+1‖ ≤ ‖A− Pk+1B̄k+1Q

T
k+1‖+ ‖Pk+1(B̄k+1 − C̄k)Q

T
k+1‖

(4.33)

= ‖A− Pk+1B̄k+1Q
T
k+1‖+ ‖Pk+1P

T
k+1A− Pk+1C̄kQ

T
k+1‖.(4.34)

By the definition of Ck and (4.4), it is easily justified that Pk+1C̄kQ
T
k+1 is the best

rank k approximation to Pk+1B̄k+1Q
T
k+1 = Pk+1P

T
k+1A in the 2-norm as Pk+1 and

Qk+1 are column orthonormal. Keep in mind that Ak is the best rank k approximation
to A. Since Pk+1P

T
k+1Ak is a rank k approximation to Pk+1P

T
k+1A, we obtain

‖Pk+1P
T
k+1A− Pk+1C̄kQ

T
k+1‖ ≤ ‖Pk+1P

T
k+1A− Pk+1P

T
k+1Ak‖

= ‖Pk+1P
T
k+1(A− Ak)‖

≤ ‖A−Ak‖ = σk+1.

Note that the first term in the right-hand side of (4.34) is just γcgme
k+1 . Therefore, it

follow from (4.34) that (4.31) holds.

Since Pk+1 and Qk+1 are column orthonormal and Ck is the best rank k approx-
imation to B̄k+1, by the orthogonal invariance of 2-norm we obtain

‖Pk+1(B̄k+1 − C̄k)Q
T
k+1‖ = ‖B̄k+1 − C̄k‖ = θ̄

(k+1)
k+1 ,

which, together with (4.33), yields (4.32).

The bound (4.32) is always smaller than the bound (4.31) because of θ̄
(k+1)
k+1 <

σk+1 from (4.13) and (4.15). Indeed, the bound (4.31) can be conservative since we
have amplified ‖Pk+1(B̄k+1 − C̄k)Q

T
k+1‖ twice and obtained its bound σk+1, which

might be a considerable overestimate. Moreover, as we have explained previously,

(4.13) and (4.15) show that θ̄
(k+1)
k+1 > σn may approach σn for m = n and θ̄

(k+1)
k+1 > 0

can be close to zero arbitrarily for m > n. By definition (3.3) of γlsqr
k , since γcgme

k+1 <

γlsqr
k (cf. the upper bound of (4.6)), γlsqr

k ≥ σk+1 > θ̄
(k+1)
k+1 and ‖A−Pk+1C̄kQ

T
k+1‖ ≥

σk+1, the right-hand side of (4.32) satisfies

σk+1 ≤ θ̄
(k+1)
k+1 + γcgme

k+1 < 2γlsqr
k .

Therefore, θ̄
(k+1)
k+1 + γcgme

k+1 is as small as and can even be smaller than γlsqr
k , meaning

that Pk+1C̄kQ
T
k+1 is as accurate as the rank k approximation Pk+1BkQ

T
k in LSQR.

Define Qn+1 = (Qn,0) ∈ R
n×(n+1), and note from (4.10) that B̄n+1 = (Bn,0).

Recall that the singular values of B̄n+1 and Bn are θ̄
(n+1)
i , i = 1, 2, . . . , n + 1 and

θ
(n)
i , i = 1, 2, . . . , n, respectively, and θ̄

(n+1)
i = θ

(n)
i = σi, i = 1, 2, . . . , n and θ̄

(n+1)
n+1 =

0. From (4.8) and the definition of C̄n, since B̄n+1 is of rank n, we have

C̄n = B̄n+1

and

A = Pn+1BnQ
T
n = Pn+1B̄n+1Q

T
n+1 = Pn+1C̄nQ

T
n+1.
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Based on Theorem 4.5 and the analysis followed, just as done in CGME and LSQR,
we can replace A in (1.1) by the rank k approximation Pk+1C̄kQ

T
k+1 and propose a

modified CGME (MCGME) method that solves

(4.35) min ‖x‖ subject to ‖Pk+1C̄kQ
T
k+1x− b‖ = min

for the regularized solution xmcgme
k = Qk+1y

mcgme
k of (1.1) with

(4.36) ymcgme
k = C̄†

kP
T
k+1b = β1C̄

†
ke

(k+1)
1

starting with k = 1 onwards. MCGME is expected to have the same regularization

ability as LSQR because (i) the k nonzero singular values θ̄
(k+1)
i of C̄k are more ac-

curate than the k singular values θ
(k)
i of Bk as approximations to the first k singular

values of A and (ii) Pk+1C̄kQ
T
k+1 is a rank k approximation which is as accurate

as Pk+1BkQ
T
k in LSQR. Regarding implementations, we comment that the singular

values, and left and right singular vectors of C̄†
k is already available when C̄k is ex-

tracted from the SVD of B̄k+1, whose computational cost is O(k3) flops. As a result,
by (4.36) we can compute ymcgme

k at cost of O(k2) flops. A difference from CGME
and LSQR is that MCGME seeks xmcgme

k in the k + 1 dimensional Krylov subspace
Kk+1(A

TA,AT b) other than in Kk(A
TA,AT b). Numerical experiments will justify

that MCGME has very comparable regularizing effects to LSQR and can obtain the
best regularized solutions with very similar accuracy to those by LSQR. We will not
consider the by-product MCGME method further in this paper.

C̄k may have some other potential applications. For example, when we are re-
quired to compute several largest singular triplets of a large scale matrix A, we can use
the nonzero singular values of C̄k to replace the ones of Bk as more accurate approxi-
mations to the largest singular values of A in Lanczos bidiagonaliation type algorithms
[34]. In such a way, exploiting the SVD of C̄k, we can also compute more accurate
approximate left and right singular vectors of A simultaneously. A development of
such modified algorithms is beyond the scope of this paper.

5. The accuracy of truncated rank k approximate SVDs by randomized
algorithms. In this section, we deviate from the context of Krylov solvers. Using the
analysis approach in the last section, we consider the accuracy of a truncated rank k
SVD approximation to A constructed by standard randomized algorithms and their
improved variants [16]. This topic has been intensively investigated in recent years; see
the survey paper [16] and the references therein. Algorithm 2 is one of the two basic
randomized algorithms from [16] for computing an approximate SVD and extracting
a truncated rank k approximate SVD from it. A minor difference from the other
sections in this paper is that we drop the restrictions that the singular values of A are
simple and m ≥ n, that is, the singular values of A are σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n}.

Algorithm 2: Randomized approximate SVD of A
• Input: Given A ∈ R

m×n, a target rank k, and an oversampling parameter p
satisfying ℓ = k + p ≤ min{m,n}.

• Output: a truncated rank k approximate SVD A(k) of A.
Stage A

1. Draw an n× ℓ Gaussian random matrix Ω.
2. Form the m× ℓ matrix Y = AΩ.
3. Compute the compact QR factorization Y = PR.

Stage B
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1. Form B = PTA.
2. Compute the compact SVD of the ℓ× n matrix B: B = Ũ Σ̃Ṽ T .
3. Set Û = PŨ . Compute a rank ℓ SVD approximation PPTA = Û Σ̃Ṽ T to A.
4. Let B(k) = ŨkΣ̃(k)Ṽ

T
k be the best rank k approximation to B with the diag-

onal Σ̃(k) being the first k diagonals of Σ̃, and Ũk and Ṽk the first k columns

of Ũ and Ṽ , respectively. Form a truncated rank k SVD approximation
A(k) = PB(k) = ÛkΣ̃(k)Ṽ

T
k to A with Ûk = PŨk.

For the approximation accuracy of A(k) to A, Halko et al. [16] establish a funda-
mental result (cf. Theorem 9.3 there):

(5.1) ‖A−A(k)‖ ≤ σk+1 + ‖(I − PPT )A‖.

Assume that the oversampling parameter p ≥ 4. Making use of the probability
theory, in terms of σk+1, Halko et al. [16] have established a number of bounds for
‖(I − PPT )A‖; see, e.g., Theorems 10.5–10.8 and Corollary 10.9–10.10 there. How-
ever, concerning (5.1), they point out in Remark 9.1 that ”In the randomized setting,
the truncation step appears to be less damaging than the error bound of Theorem 9.3
suggests, but we currently lack a complete theoretical understanding of its behavior.”
That is to say, the first term σk+1 in (5.1) is generally conservative and an overesti-
mate.

Motivated by the proof of (4.32) in Theorem 4.5, we can improve (5.1) substan-
tially and reveal why (5.1) is an overestimate. Let

(5.2) σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃k+p

be the singular values of B = PTA defined in Algorithm 2. It is clear from Algorithm
2 that

PTAATP = BBT

is an (k+p)×(k+p) symmetric matrix, which is the projection matrix of AAT onto the

subspace span{P} in the orthonormal basis of {pi}k+p
i=1 with P = (p1, p2, . . . , pk+p),

whose eigenvalues are σ̃2
i , i = 1, 2, . . . , k+p. Keep in mind that the eigenvalues of AAT

are σ2
i , i = 1, 2, . . . ,min{m,n} and m−min{m,n} zeros, denoted by σ2

min{m,n}+1 =

· · · = σ2
m = 0 for later use.

Theorem 5.1. For A ∈ R
m×n, let P and A(k) be defined as in Algorithm 2, and

σ̃k+1 defined as in (5.2). Then

(5.3) ‖A−A(k)‖ ≤ σ̃k+1 + ‖(I − PPT )A‖

with

(5.4) σm−p+1 ≤ σ̃k+1 ≤ σk+1.

Proof. Since P is orthonormal, the eigenvalues of BBT interlace those of AAT and
satisfy (cf. [44, p.198, Corollary 4.4])

σm−(k+p)+i ≤ σ̃i ≤ σi, i = 1, 2, . . . , k + p,

from which (5.4) follows.
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From Algorithm 2, we can write

A−A(k) = A− PPTA+ PPTA−A(k)

= A− PPTA+ PŨ Σ̃Ṽ T − PŨkΣ̃(k)Ṽ
T
(k)

= (I − PPT )A+ P (Ũ Σ̃Ṽ T − ŨkΣ̃(k)Ṽ
T
(k)).

Since B(k) is the best rank k approximation to B, by the column orthonormality of
P we obtain

‖A−A(k)‖ ≤ ‖(I − PPT )A‖ + ‖P (ŨΣ̃Ṽ T − ŨkΣ̃(k)Ṽ
T
(k))‖

= ‖(I − PPT )A‖ + ‖ŨΣ̃Ṽ T − ŨkΣ̃(k)Ṽ
T
(k)‖

= ‖(I − PPT )A‖ + ‖B −B(k)‖
= ‖(I − PPT )A‖ + σ̃k+1,

which proves (5.3).
Remark 5.1. This theorem indicates that σ̃k+1 never exceeds σk+1 and, for m,n

large and k + p small, it may be much smaller than σk+1. Specifically, σ̃k+1 can be
as small as σm−p+1. For m > n, whenever m − p + 1 > n, we have σm−p+1 = 0.
Consequently, the bound (5.3) is unconditionally superior to the bound (5.1) and is
sharper than the latter when σ̃k+1 < σk+1. On the other hand, however, note that
σk+1 ≤ ‖A−A(k)‖. Therefore, if ‖(I −PPT )A‖ < σk+1, we must have σ̃k+1 ≈ σk+1,
that is, σ̃k+1 dominates the bound (5.3). Summarizing the above, in response of Re-
mark 9.1 in [16], we conclude that the truncation step does damage the approximation
accuracy of the truncated rank k approximation when ‖(I − PPT )A‖ < σk+1 and it
is less damaging when ‖(I − PPT )A‖ ≥ σk+1.

As we have seen, the column space of P constructed by Algorithm 2 aims to
capture the (k + p)-dimensional dominant left singular subspace of A. A variant
of it is to capture the (k + p)-dimensional right dominant singular subspace of A.
Mathematically, it amounts to applying Algorithm 2 to AT and computes a truncated
rank k SVD approximation A(k) to A in a similar way. We call such variant Algorithm
3, for which (5.1) now becomes

(5.5) ‖A−A(k)‖ ≤ σk+1 + ‖A(I − PPT )‖

with the orthonormal P ∈ R
n×(k+p).

Note that the eigenvalues of ATA are σ2
i , i = 1, 2, . . . ,min{m,n} and n −

min{m,n} zeros, denoted by σ2
min{m,n}+1 = · · · = σ2

n = 0. Since the eigenvalues

of (AP )TAP interlace those of ATA, using the same proof approach as that of The-
orem 5.1, we can establish the following result.

Theorem 5.2. For A ∈ R
m×n, let P and A(k) be defined as in Algorithm 3, and

σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃k+p be the singular values of AP . Then

(5.6) ‖A−A(k)‖ ≤ σ̃k+1 + ‖A(I − PPT )‖

with

(5.7) σn−p+1 ≤ σ̃k+1 ≤ σk+1.
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We comment that, in the casem < n, whenever n−p+1 > m, we have σn−p+1 = 0,
and consequently the bound (5.6) is unconditionally superior to and can be substan-
tially sharper than the bound (5.5) for m,n large and k + p small.

Remark 5.2. If the singular values σi of A are all simple, by the strict interlacing
properties of eigenvalues, the singular values of B in Algorithms 2–3 are all simple
too, and the lower and upper bounds in (5.4) and (5.7) are strict, i.e., σ̃k+1 < σk+1.

Remark 5.3. (5.1) and (5.5) and Theorems 5.1–5.2 hold for all the truncated
rank k SVD approximations generated by the enhanced variants of Algorithm 2–3 in
[16], where the unique difference between the variants is the way that P is generated.
More generally, Theorems 5.1–5.2 are true for arbitrarily given orthonormal P ∈
R

m×(k+p) and P ∈ R
n×(k+p) with k + p ≤ min{m,n}, respectively.

6. The regularization of LSMR. From Algorithm 1 we obtain

(6.1) QT
k+1A

TAQk = (BT
k Bk, αk+1βk+1e

(k)
k )T .

Therefore, from (2.8), noting that QT
k+1A

T b = α1β1e
(k+1)
1 , we have

(6.2) xlsmr
k = Qk(Q

T
k+1A

TAQk)
†QT

k+1A
T b,

which means that LSMR solves the problem

(6.3) min ‖x‖ subject to ‖Qk+1Q
T
k+1A

TAQkQ
T
k x−AT b‖ = min

for the regularized solution xlsmr
k starting with k = 1 onwards. In the meantime, it is

direct to justify that the TSVD solution xtsvd
k solves the problem

(6.4) min ‖x‖ subject to ‖AT
kAkx−AT b‖ = min

starting with k = 1 onwards. Therefore, (6.3) and (6.4) deal with the normal
equation ATAx = AT b of (1.1) by replacing ATA with its rank k approximations
Qk+1Q

T
k+1A

TAQkQ
T
k and AT

k Ak, respectively.
In view of (6.3) and (6.4), we need to accurately estimate the approximation

accuracy ‖ATA − Qk+1Q
T
k+1A

TAQkQ
T
k ‖ and investigate how the singular values of

QT
k+1A

TAQk approximate the k large singular values σ2
i , i = 1, 2, . . . , k of ATA. We

are concerned with some intrinsic relationships between the regularizing effects of
LSMR and those of LSQR and compare the regularization ability of the two methods.

By (3.1), (2.1), (2.2), (2.4) and Pk+1P
T
k+1b = b, the LSQR iterate

xlsqr
k = QkB

†
kP

T
k+1b = Qk(B

T
k Bk)

−1BT
k P

T
k+1b

= Qk(Q
T
kA

TAQk)
−1QT

kA
TPk+1P

T
k+1b

= Qk(Q
T
kA

TAQk)
−1QT

kA
T b,

which is the solution to the problem

(6.5) min ‖x‖ subject to ‖QkQ
T
kA

TAQkQ
T
k x−AT b‖ = min

that replaces ATA by its rank k approximation QkQ
T
kA

TAQkQ
T
k = QkB

T
k BkQ

T
k

in the normal equation ATAx = AT b. In this sense, the accuracy of such rank k
approximation is measured in terms of ‖ATA−QkQ

T
kA

TAQkQ
T
k ‖ for LSQR.
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Firstly, we present the following result, which compares the accuracy of two rank
k approximations involved in LSMR and LSQR in the sense of solving the normal
equation ATAx = AT b.

Theorem 6.1. For the rank k approximations to ATA in (6.3) and (6.5), k =
1, 2, . . . , n− 1, we have

‖ATA−Qk+1Q
T
k+1A

TAQkQ
T
k ‖ < ‖ATA−QkQ

T
kA

TAQkQ
T
k ‖.(6.6)

Proof. For the orthogonal matrix Qn generated by Algorithm 1, noticing that
αn+1 = 0, from (2.1) and (2.2) we obtain QT

nA
TAQn = BT

nBn and

‖ATA−Qk+1Q
T
k+1A

TAQkQ
T
k ‖ = ‖QT

n (A
TA−Qk+1Q

T
k+1A

TAQkQ
T
k )Qn‖

= ‖BT
nBn − (I,0)T (BT

k Bk, αk+1βk+1ek)
T (I,0)‖

= ‖Fk‖, k = 1, 2, . . . , n− 1,(6.7)

where

Fk =




αk+1βk+1

α2
k+1 + β2

k+2 αk+2βk+2

αk+2βk+2 α2
k+2 + β2

k+3

. . .

αk+3βk+3
. . .

αn−1βn−1

. . . α2
n−1 + β2

n αnβn

αnβn α2
n + β2

n+1




(6.8)

=

(
αk+1βk+1(e

(n−k)
1 )T

GT
k Gk

)
∈ R

(n−k+1)×(n−k)(6.9)

is the matrix by deleting the (k + 1) × k leading principal matrix of the symmetric
tridiagonal matrix BT

nBn and the first k − 1 zero rows and k zero columns of the

resulting matrix, where Gk is defined by (3.6) and e
(n−k)
1 are the first canonical

vector of Rn−k.
On the other hand, it is direct to verify that

‖ATA−QkQ
T
kA

TAQkQ
T
k ‖ = ‖QT

n (A
TA−QkQ

T
kA

TAQkQ
T
k )Qn‖

= ‖BT
nBn − (I,0)TBT

k Bk(I,0)‖
= ‖F ′

k‖,(6.10)

where F ′
k =

(
αk+1βk+1e

(n−k+1)
2 , Fk

)
∈ R

(n−k+1)×(n−k+1) with e
(n−k+1)
2 being the

second canonical vector of Rn−k+1.
From (6.8) and (6.9), we obtain

F ′
k(F

′
k)

T = (αk+1βk+1e
(n−k+1)
2 , Fk)(αk+1βk+1e

(n−k+1)
2 , Fk)

T

= FkF
T
k + α2

k+1β
2
k+1e

(n−k+1)
2 (e

(n−k+1)
2 )T .(6.11)

Since GT
k Gk is unreduced symmetric tridiagonal, its eigenvalues are all simple. Ob-

serve from (6.9) that

(6.12) FT
k Fk = (GT

k Gk)
2 + α2

k+1β
2
k+1e

(n−k)
1 (e

(n−k)
1 )T , k = 1, 2, . . . , n− 1.



REGULARIZATION OF CGME AND LSMR 21

Therefore, we know from [7, p.218] that the eigenvalues of FT
k Fk strictly interlace

those of (GT
kGk)

2 and are all simple. Furthermore, we see from (3.6) that Gk is of
full column rank, which means that the eigenvalues of FT

k Fk are all positive.
Note that the eigenvalues of FkF

T
k are those of FT

k Fk and zero. As a result, the
eigenvalues of FkF

T
k are all simple. According to [7, p.218], we know from (6.11) that

the eigenvalues of F ′
k(F

′
k)

T strictly interlace those of FkF
T
k . Therefore, we obtain

‖F ′
k‖2 = ‖F ′

k(F
′
k)

T ‖ > ‖FkF
T
k ‖ = ‖Fk‖2,

which, from (6.7) and (6.10), establishes (6.6).
This theorem indicates that, as far as solving ATAx = AT b is concerned, the rank

k approximation in LSMR is more accurate than that in LSQR.
Recall that (3.3) measures the quality of the rank k approximation involved in

LSQR for the regularization problem (3.2). We now estimate the approximation

accuracy of Qk+1Q
T
k+1A

TAQkQ
T
k to ATA in terms of (γlsqr

k )2.

Theorem 6.2. For k = 1, 2, 3, . . . , n − 1, let γlsqr
k be defined as (3.3). For

k = 2, 3, . . . , n− 1 we have

(6.13) (γlsqr
k )2 < ‖ATA−Qk+1Q

T
k+1A

TAQkQ
T
k ‖ ≤

√
1 +mk(γ

lsqr
k−1/γ

lsqr
k )2(γlsqr

k )2

with 0 < mk < 1 and γlsqr
0 = ‖A‖. For k = 1, 2, . . . , n − 2, the strict monotonic

decreasing property holds:

(6.14) ‖ATA−Qk+1Q
T
k+1A

TAQkQ
T
k ‖ < ‖ATA−Qk+2Q

T
k+2A

TAQk+1Q
T
k+1‖.

Proof. Combining (6.9) with (3.5) and (3.7), for k = 2, 3, . . . , n − 1 we obtain
from [48, p.98] and [7, p.218] that

(6.15) ‖Fk‖2 = ‖Gk‖4 +m′
kα

2
k+1β

2
k+1 ≤ (γlsqr

k )4 +mk(γ
lsqr
k−1γ

lsqr
k )2

with 0 < m′
k ≤ 1 and 0 < mk < m′

k, from which the lower and upper bounds in (6.13)
follow directly.

For k = 1, the equality in (6.15) is still true. From (3.7), we have α2 < γlsqr
1 , β2 <

‖A‖ = γlsqr
0 . Therefore, we obtain

(γlsqr
1 )4 < ‖F1‖2 = ‖G1‖4 +m′

1α
2
2β

2
2 ≤ (γlsqr

1 )4 +m1(γ
lsqr
0 γlsqr

1 )2,

from which it follows that (6.13) holds for k = 1.
From (6.8), we see that Fk+1 is the matrix that first deletes the first column and

row of Fk and then deletes the first zero column and row of the resulting matrix.
Therefore, applying the interlacing property of singular values to Fk+1 and Fk yields

‖Fk‖ ≤ ‖Fk+1‖.

We next prove that the above ”≤” is the strict ”<”. Since BT
nBn = QT

nA
TAQn

is an unreduced symmetric tridiagonal matrix, its singular values σ2
i , i = 1, 2, . . . , n

are simple. Observe that Fk is the matrix deleting the first k columns of BT
nBn

and the first k zero rows of the resulting matrix. Consequently, the singular values

ζ
(k)
i , i = 1, 2, . . . , n − k of Fk strictly interlace the simple singular values σ2

i , i =
1, 2, . . . , n of BT

nBn and are thus simple for k = 1, 2, . . . , n−1. Moreover, the singular
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values of Fk+1 strictly interlace those of Fk, which means that ζ
(k)
1 < ζ

(k+1)
1 , i.e.,

‖Fk‖ < ‖Fk+1‖, which proves (6.14).

Remark 6.1. According to the results and analysis in [33], we have γlsqr
k−1/γ

lsqr
k ∼

ρ for severely ill-posed problems, and γlsqr
k−1/γ

lsqr
k ∼ (k/(k − 1))α for moderately and

mildly ill-posed problems. Therefore, the lower and upper bounds of (6.13) indicate

that ‖ATA−Qk+1Q
T
k+1A

TAQkQ
T
k ‖ ∼ (γlsqr

k )2.
Finally, let us investigate the relationship between the singular values of rank k

approximation matrices in LSMR and LSQR. From (6.1) and (2.4), we know that

they are the singular values of (BT
k Bk, αk+1βk+1e

(k)
k )T and BT

k Bk, respectively.

Theorem 6.3. Let (θ̃
(k)
1 )2 > (θ̃

(k)
2 )2 > · · · > (θ̃

(k)
k )2 be the singular values of

(BT
k Bk, αk+1βk+1e

(k)
k )T . Then for i = 1, 2, . . . , k we have

θ
(k)
i < θ̃

(k)
i < σi,(6.16)

(θ̃
(k)
i )2 < (θ

(k)
i )2 + γlsqr

k γlsqr
k−1.(6.17)

Proof. Observe that (BT
k Bk, αk+1βk+1e

(k)
k )T is the matrix consisting of the first

k columns of BT
nBn and deleting the last n − k − 1 zero rows of the resulting ma-

trix. As a result, since σi, i = 1, 2, . . . , n, are simple, the singular values (θ̃
(k)
i )2 of

(BT
k Bk, αk+1βk+1e

(k)
k )T strictly interlace the singular values σ2

i of BT
nBn:

σ2
n−k+i < (θ̃

(k)
i )2 < σ2

i , i = 1, 2, . . . , k

and are simple, which means the upper bound (6.16).

Note that (BT
k Bk, αk+1βk+1e

(k)
k )T (BT

k Bk, αk+1βk+1e
(k)
k ) has the k+1 eigenvalues

(θ̃
(k)
i )4 and zero, and (BT

k Bk)
T (BT

k Bk) = (BT
k Bk)

2 is its k × k leading principal

submatrix and has k simple eigenvalues (θ
(k)
i )4. Therefore, (θ

(k)
i )4 strictly interlace

(θ̃
(k)
i )4 and zero, which proves the lower bound of (6.16).
On the other hand, we have

(BT
k Bk, αk+1βk+1e

(k)
k )(BT

k Bk, αk+1βk+1e
(k)
k )T = (BT

k Bk)
2 + α2

k+1β
2
k+1e

(k)
k (e

(k)
k )T .

Recall (3.6) that αk+1 < γlsqr
k and βk+1 < γlsqr

k−1. By standard perturbation theory,
we obtain

(θ̃
(k)
i )4 − (θ

(k)
i )4 ≤ α2

k+1β
2
k+1 < (γlsqr

k γlsqr
k−1)

2, i = 1, 2, . . . , k,

from which it follows that (6.17) holds.

Remark 6.2. (6.16) indicates that θ̃
(k)
i , 1 = 1, 2, . . . , k approximate the first k

large singular values σi more accurately than θ
(k)
i . Particularly, since θ

(k)
k < θ̃

(k)
k ,

the first iteration step k such that θ̃
(k)
k < σk0+1 must be no smaller than the k such

that θ
(k)
k < σk0+1. A combination of this and the previous analysis on the semi-

convergence of CGME and LSQR implies that the semi-convergence of LSMR must

occur no sooner than that of LSQR. On the other hand, (6.17) shows that θ̃
(k)
i is

bounded from the above by θ
(k)
i as an approximation to σi, which and (6.16) imply

that θ̃
(k)
i and θ

(k)
i interact and θ

(k)
i cannot be considerably more accurate than θ̃

(k)
i as

approximations to the large singular values of A for i = 1, 2, . . . , k.
Remark 6.3. A combination of Theorem 6.1 and the above two remarks means

that the regularizing effects of LSMR are not inferior to those of LSQR and the best
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regularized solutions by LSMR are at least as accurate as those by LSQR, that is,
LSMR has the same regularization ability as that of LSQR. Particularly, from the
results on LSQR in Section 3, we conclude that LSMR has the full regularization for
severely or moderately ill-posed problems with suitable ρ > 1 or α > 1.

A final note is that Huang and Jia [31] have derived the eigendecomposition, i.e.,
equivalent SVD, filtered expansion of MINRES iterates for Ax = b with A symmetric;
see Theorem 3.1 there. The result can be directly adapted to the LSMR iterates xlsmr

k

by keeping in mind that LSMR is mathematically equivalent to MINRES applied to
the specific symmetric positive definite linear system ATAx = AT b.

7. Numerical experiments. All the computations are carried out in Matlab
R2017b on the Intel Core i7-4790k with CPU 4.00 GHz processor and 16 GB RAM
with the machine precision ǫmach = 2.22 × 10−16 under the Miscrosoft Windows 8
64-bit system.

We have tested LSQR, CGME, LSMR and MCGME on almost all the 1D and
2D problems from [2, 23, 25] and have observed similar phenomena. For the sake of
length, we list only some of them in Table 1, where each problem takes its default
parameter(s). We mention that the relatively easy 1D problems are all from [23, 25],
where shaw, gravity and baart are severely ill-posed and phillips, heat and and deriv2 are
moderately. The 2D image deblurring problems blur, fanbeamtomo and seismictomo

are also from [23, 25], and the other 2D problems are from [2]. We notice that for
blur, fanbeamtomo, although the orders m and n are already tens of thousands, their
condition numbers σ1/σn are only 31.5 and 2472, respectively, which, intuitively, do
not satisfy the definition of a discrete ill-posed problem whose singular values decay
and are centered at zero, so that the ratio σ1/σn is very large. For each test problem,
we compute btrue = Axtrue and add a Gaussian white noise e with zero mean to btrue
by prescribing the relative noise level

(7.1) ε =
‖e‖

‖btrue‖
.

We use the code lsqr b.m of [23], where the reorthogonalization is exploited during
Lanczos bidiagonalization in order to maintain the numerical orthogonality of Pk+1

and Qk. We have written the Matlab codes of CGME, LSMR and MCGME based on
the same Lanczos bidiagonalization process used in lsqr b.m.

For all the 1D problems and the 2D seismictomo, we report the results on them for
ε = 10−3; for all the 2D problems except blur and fanbeamtomo, we report the results
on them for ε = 5 × 10−3. For several other ε ∈ [10−3, 5 × 10−2], we have the same
findings. For blur and fanbeamtomo, however, we will observe some fundamental
distinctions between the convergence features for ε lying in this practical interval.
Figures 2–7 depict the convergence processes of LSQR, CGME, LSMR and MCGME,
and we give some key details, including the iterations k∗ at which the semi-convergence
of an algorithm occurs and the relative error of the best regularized solution obtained
by each algorithm, which is defined by

‖xlsqr
k∗ − xtrue‖
‖xtrue‖

for LSQR. Similar relative errors are defined for CGME, LSMR and MCGME with
the superscript “lsqr” replaced by “cgme”, “lsmr” and “mcgme”, respectively. In
addition, as a comparison standard on the solution accuracy, we depict the semi-
convergence process of the TSVD method for blur and seismictomo, and report the
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Table 1

The description of test problems.

Problem Description Size of m, n
shaw 1D image restoration model m = n = 5000
gravity 1D gravity surveying problem m = n = 5000
baart 1D image deblurring m = n = 5000
phillips phillips’ famous test problem m = n = 5000
heat Inverse heat problem m = n = 5000
deriv2 Computation of second derivative m = n = 10000
AtmosphericBlur10 Spatially Invariant Gaussian Blur m = n = 65536
AtmosphericBlur30 Spatially Invariant Gaussian Blur m = n = 65536
GaussianBlur420 Spatially Invariant Atmospheric m = n = 65536

Turbulence Blur
GaussianBlur422 Spatially Invariant Atmospheric m = n = 65536

Turbulence Blur
VariantGaussianBlur1 Spatially Variant Gaussian Blur m = n = 99856
VariantGaussianBlur2 Spatially Variant Gaussian Blur m = n = 99856
VariantMotionBlur large Spatially Variant Motion Blur m = n = 65536
VariantMotionBlur medium Spatially Variant Motion Blur m = n = 65536
blur 2D image restoration m = n = 22500
fanbeamtomo 2D fan-beam tomography problem 61200× 14400
seismictomo 2D seismic tomography 20000× 10000

relative errors of the best TSVD regularized solutions xtsvd
k0

with k0 the transition
point at which the semi-convergence of TSVD occurs. For the other nine larger 2D
problems, we cannot compute the SVDs of the matrices due to out of memory in our
computer. We mention that for the first six 1D test problems we have found that
the best regularized solutions obtained by TSVD method have the same accuracy
as those by LSQR, where the k0 are very small relative to n and all the k∗ ≤ k0
correspondingly. We omit the results on the 1D problems obtained by the TSVD
method.

We now comment the figures and the related details in order.
Firstly, for all the problems in Table 1, the semi-convergence of CGME occurs

earlier than LSQR and can be much earlier. This confirms Theorem 4.4. The much

earlier semi-convergence of CGME indicates that θ̄
(k)
k < σk0+1 occurs much earlier for

CGME than θ
(k)
k < σk0+1 for LSQR.

Secondly, for all the problems, the best regularized solutions xcgme
k∗ are corre-

spondingly less accurate than xlsqr
k∗ considerably except for blur in Figure 5, where the

best regularized solution by CGME is almost as accurate as those by LSQR, LSMR
and MCGME. For all the 1D problems but baart and the 2D problem fanbeamtomo

with ε = 10−3, the relative errors of the best regularized solutions by CGME are
twice to five times larger than the counterparts by the other three ones, indicating
that the regularization ability is considerably inferior to the other three ones, given
that the relative errors by LSQR, LSMR and MCGME themselves are only roughly
0.01 ∼ 0.1; see Figures 1 (a) and 6 (a). These results confirm Theorems 4.1–4.2 and
the analysis on them. We will make more comments on Figure 5 later.

Thirdly, for each of the problems, by a careful observation and comparison, we
have found that xcgme

k is more accurate than and at least at least as accurate as xlsqr
k



REGULARIZATION OF CGME AND LSMR 25

0 5 10 15 20 25 30 35 40 45 50

The number k of iterations

10-5

100

105

1010

1015

1020

R
el

at
iv

e 
er

ro
rs

 o
f r

eg
ul

ar
iz

ed
 s

ol
ut

io
ns

shaw of n=5,000 with relative noise level 0.001

LSQR, k*=9, error=0.0359

CGME, k*=6, error=0.0854

MCGME, k*=9, error=0.0369

LSMR, k*=9, error=0.0359
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gravity of n=5,000 with relative noise level 0.001

LSQR, k*=10, error=0.0094

CGME, k*=6, error=0.0322

MCGME, k*=11, error=0.0078

LSMR, k*=10, error=0.0094

(b)
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baart of n=5,000 with relative noise level 0.001

LSQR, k*=4, error=0.1139

CGME, k*=3, error=0.1660

MCGME, k*=4, error=0.1148

LSMR, k*=4, error=0.1139

(c)
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phillips of n=5,000 with relative noise level 0.001

LSQR, k*=11, error=0.0049

CGME, k*=4, error=0.0243

MCGME, k*=11, error=0.0044

LSMR, k*=11, error=0.0046
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heat of n=5,000 with relative noise level 0.001

LSQR, k*=24, error=0.0160

CGME, k*=14, error=0.0677

MCGME, k*=26, error=0.0167

LSMR, k*=24, error=0.0158

(e)
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deriv2 of n=10,000 with relative noise level 0.001

LSQR, k*=22, error=0.1146

CGME, k*=8, error=0.2135

MCGME, k*=23, error=0.1230

LSMR, k*=23, error=0.1135

(f)

Fig. 1. 1D problems with the relative noise level ε = 10−3.

until the occurrence of CGME, after which LSQR continues improving iterates until
the occurrence of its semi-convergence, as is clearly seen from Figures 1–7. These
results justify our arguments on (4.29).

Fourthly, for each of the 2D problems, the best regularized solution xlsmr
k∗ is at

least as accurate as xlsqr
k∗ , and the semi-convergence of LSMR always occurs no sooner

and actually later than that of LSQR. We notice that the relative error of xlsmr
k∗ is

only slightly smaller than that of xlsqr
k∗ , and there is little difference between them.

For all the 1D problems, the semi-convergence of LSMR and LSQR occurs exactly
at the same iterations, and the best regularized solutions obtained by them have the
same accuracy. These results confirm Remark 6.2 and justify that LSMR has the
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The semi-convergence process for AtmosphericBlur10 with relative noise 0.005

LSQR, k*=54, error=0.1377

CGME, k*=27, error=0.1548

MCGME, k*=93, error=0.1458

LSMR. k*=68, error=0.1367

(a)
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The semi-convergence process for AtmosphericBlur30 with relative noise 0.005

LSQR, k*=80, error=0.1837

CGME, k*=52, error=0.2161

MCGME, k*=115, error=0.1927

LSMR, k*=92, error=0.1825

(b)

Fig. 2. (a): AtmosphericBlur10 and (b): AtmosphericBlur30 with ε = 5× 10−3.
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The semi-convergence process for GaussianBlur420 with relative noise 0.05

LSQR, k*=17, error=0.2798

CGME, k*=3, error=0.3230

MCGME, k*=28, error=0.2834

LSMR, k*=21, error=0.2792
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The semi-convergence process for GaussianBlur422 with relative noise 0.05

LSQR, k*=15, error=0.2772

CGME, k*=3, error=0.3179

MCGME, k*=25, error=0.2820

LSMR, k*=19, error=0.2764

(b)

Fig. 3. (a): GaussianBlur420 and (b): GaussianBlur422 with ε = 5× 10−3

same regularization ability as that of LSQR.

Fifthly, for each of the test problems, MCGME improves CGME substantially.
As a matter of fact, for the 1D problems, the best regularized solutions by MCGME
have the same accuracy as those by LSQR and LSMR; for the 2D problems, the best
regularized solutions xmcgme

k∗ are almost as accurate as xlsqr
k∗ and xlsmr

k∗ .

Sixthly, as we have stated, blur and fanbeamtomo are quite well conditioned.
With the relatively small ε = 10−3, we observe from Figures 5–6 that there is no
semi-convergence phenomenon for LSQR, LSMR and MCGME as well as the TSVD
method. This means that e does not plays a part in regularization and these methods
solve these two problems as if they were ordinary linear systems. Furthermore, it
is clear from the figures that the relative errors of regularized solutions obtained by
LSQR, LSMR and MCGME stabilize after 30 iterations for blur and 80 iterations for
fanbeamtomo, respectively. Figures 5 (a) and 6 (a) seems to indicate that CGME has
no semi-convergence phenomenon for the square blur and given ε but it has for the
rectangular fanbeamtomo. However, this semi-convergence is in disguise and is not
caused by the noise e: For the rectangular fanbeamtomo, (4.15), its proof and the

analysis on it state that the smallest singular value θ̄
(k)
k of B̄k can be arbitrarily small

and approaches zero as k increases. As we have elaborated, (θ̄
(k)
k )2 approaches the

eigenvalue zero of AAT as k increases. As a result, the projected problem B̄ky
cgme
k =
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VariantMotionBlur_large with relative noise 0.005

LSQR, k*=106, error=0.2571

CGME, k*=68, error=0.2813

MCGME, k*=146, error=0.2639

LSMR, k*=120, error=0.2557

(a)
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VariantMotionBlur_medium with relative noise 0.005

LSQR, k*=104, error=0.2580

CGME, k*=68, error=0.2817

MCGME, k*=142, error=0.2653

LSMR, k*=118, error=0.2567

(b)

Fig. 4. (a): VariantMotionBlur large and (b): VariantMotionBlur medium with ε = 5× 10−3.
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blur of m=n=22,500 with relative noise 0.005

LSQR, k*=27, error=0.0375

CGME, k*=26, error=0.0408

MCGME, k*=70, error=0.0427

LSMR, k*=32, error=0.0367
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TSVD: blur of m=n=22,500 with relative noise 0.005

TSVD, error=0.0408

(b)

Fig. 5. blur.

βe
(k)
1 involved in CGME can become even worse conditioned than (1.1) itself as k

increases for A rectangular, causing that ‖xcgme
k ‖, which equals ‖Qky

cgme
k ‖ = ‖ycgme

k ‖,
and the relative error

‖xcgme

k
−xtrue‖

‖xtrue‖
tends to infinity with respect to k. This can also

be seen from (4.20), where we can easily check that |f (k,cgme)
k | → ∞ as k increases

since σk is a constant but θ̄
(k)
k → 0 as k increases.

In contrast, the smallest singular values of the projection matrices are always
bounded from below by either σn for LSQR (cf. (4.14)) and MCGME (cf. (4.30))
or σ2

n for LSMR (cf. (6.16)), no matter how A is rectangular or square. This is
why CGME has seemingly semi-convergence phenomenon for A rectangular when the
other solvers do not have. In the meantime, we see that the best regularized solution
by CGME is substantially less accurate than those by the other three algorithms for
fanbeamtomo. For the square blur with ε = 10−3, we see that the four Krylov solvers
and the TSVD method do not exhibit semi-convergence and compute the solutions
with very comparable accuracy. These results and analysis tell us that CGME is
definitely not a good choice when A is rectangular.

Seventhly, if the relative noise level ε is increased to ε = 0.05, the semi-convergence
of LSQR, LSMR and MCGME occurs for fanbeamtomo, as is seen from Figure 6. We
have also observed the semi-convergence of the four algorithms and the TSVD method
for blur with ε = 0.05. We find that the best regularized solutions by LSQR, LSMR
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fanbeamtomo of m=61,200 and n=14,400 with relative noise 0.001

LSQR, k*=121, error=0.0057

CGME, k*=37, error=0.0232

MCGME, k*=200, error=0.0057

LSMR, k*=133, error=0.0057
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fanbeamtomo of m=61,200 and n=14,400 with relative noise 0.05

LSQR, k*=13, error=0.1781

CGME, k*=7, error=0.2995

MCGME, k*=20, error=01928

LSMR, k*=15, error=0.1759

(b)

Fig. 6. fanbeamtomo with ε = 10−3 and 5× 10−2.
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seismictomo of m=20,000 and n=10,000 with relative noise 0.001

LSQR, k*=120, error=0.0633

CGME, k*=37, error=0.0771

MCGME, k*=189, error=0.0670

LSMR, k*=160, error=0.0624

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

The indices k

10-5

100

105

1010

1015
R

el
at

iv
e 

er
ro

rs
 o

f r
eg

ul
ar

iz
ed

 s
ol

ut
io

ns
TSVD: seismictomo of m=20,000 and n=10,000 with relative noise 0.001

TSVD, k
0
=8545, error=0.6860

(b)

Fig. 7. seismictomo with ε = 10−3.

and MCGME have very comparable accuracy but CGME computes a less accurate
best regularized solution. We omit the corresponding figure. For the test problems,
we have also observed that the semi-convergence of the TSVD method occurs much
later than the four Krylov solvers, i.e., k∗ ≪ k0.

8. Conclusions. For a general large-scale ill-posed problem (1.1), iterative solvers
are only computationally viable. Of them, the Krylov solvers LSQR, CGLS, CGME
and LSMR have been commonly used. In terms of the accuracy of the rank k ap-
proximation to A in LSQR, in this paper we have derived accurate estimates for the
accuracy of the rank k approximations to A and ATA that are involved in CGME
and LSMR, respectively. We have made detailed analyses on the approximation be-
havior of the singular values of the projection matrices associated with CGME and
LSMR. In the meantime, we have derived the filtered SVD expansion of CGME reg-
ularized iterates. In conclusion, we have shown that the regularization of CGME is
generally inferior to LSQR and the semi-convergence of CGME occurs no later than
that of LSQR. We have extracted a best possible rank k approximation to A from
the rank (k+1) approximation Pk+1P

T
k+1A, and have shown why such approximation

is as accurate as the rank k approximation in LSQR. Based on this analysis, as a
by-product, we have proposed a modified CGME (MCGME) method that improves
CGME substantially and has the same regularization ability as LSQR.

We have substantially improved a fundamental result, Theorem 9.3 in [16], which
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gives a bound for the approximation accuracy of the truncated rank k SVD approxima-
tion to A generated by randomized algorithms and lacks a complete understanding
to its considerable overestimate. Our new bounds are unconditionally superior to
theirs and reveal how the truncation step affects the accuracy of the truncated rank
k approximation to A.

In the meantime, we have proved that LSMR has the same regularization ability
as LSQR and the semi-convergence of LSMR occurs no sooner than that of LSQR.
Particularly, we have shown that LSMR has the full regularization for severely and
moderately ill-posed problems with suitable ρ > 1 and α > 1.

We have made detailed numerical experiments to confirm our regularization re-
sults on CGME and LSMR. We have also numerically demonstrated that the best
regularized solutions by MCGME are very comparable to those by LSQR.
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