Skip to main content
Log in

Adaptive total variation and second-order total variation-based model for low-rank tensor completion

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Recently, low-rank regularization has achieved great success in tensor completion. However, only considering the global low-rankness is not sufficient, especially for a low sampling rate (SR). Total variation (TV) is introduced into low-rank tensor completion (LRTC) problem to promote the local smoothness by incorporating the first-order derivatives information. However, TV usually leads to undesirable staircase effects. To alleviate these staircase effects, we suggest a first- and second-order TV-based parallel matrix factorization model for LRTC problem, which integrates the local smoothness and global low-rankness by simultaneously exploiting the first- and second-order derivatives information. To solve the proposed model, an efficient proximal alternating optimization (PAO)-based algorithm is developed with theoretical guarantee. Moreover, we suggest a regularization parameter selection strategy to automatically update two regularization parameters, which is able to take advantage of the best properties of each of the two regularization terms. Extensive experiments on different tensor data show the superiority of the proposed method over other methods, particularly for extremely low SRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://www.cardiacatlas.org/studies/amrg-cardiac-atlas/

References

  1. Zhao, X.-L., Wang, F., Huang, T.-Z., Ng, M.K., Plemmons, R.J.: Deblurring and sparse unmixing for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 51(7), 4045–4058 (2013)

    Article  Google Scholar 

  2. Wang, B., Gao, X.-B., Tao, D.-C., Li, X.-L.: A unified tensor level set for image segmentation. IEEE Trans. Syst. Man Cybern. Part B Cybern. 40(3), 857–867 (2010)

    Article  Google Scholar 

  3. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wen, Z.: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Program. Comput. 4(4), 333–361 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Candes, E.J., Plan, Y.: Matrix completion with noise. Proc. IEEE 98(6), 925–936 (2010)

    Article  Google Scholar 

  6. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ma, S., Goldfarb, D., Chen, L.: Fixed point and bregman iterative methods for matrix rank minimization. Math. Program. 128(1-2), 321–353 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Toh, K.-C., Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Pac. J. Optim. 6(3), 615–640 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Tan, H.-C., Cheng, B., Wang, W.-H., Zhang, Y.-J., Ran, B.: Tensor completion via a multi-linear low-n-rank factorization model. Neurocomputing 133, 161–169 (2014)

    Article  Google Scholar 

  10. Yang, J.-H., Zhao, X.-L., Ji, T.-Y., Ma, T.-H., Huang, T.-Z.: Low-rank tensor train for tensor robust principal component analysis. Appl. Math. Comput. 367, 124783 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Hillar, C.J., Lim, L.-H.: Most tensor problems are np-hard. J. ACM (JACM) 60(6), 45 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, X.-J.: A nonconvex relaxation approach to low-rank tensor completion. IEEE Trans. Neural Netw. Learn. Syst. 30, 1659–1671 (2019)

    Article  MathSciNet  Google Scholar 

  13. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–220 (2013)

    Article  Google Scholar 

  14. Xu, Y., Hao, R., Yin, W., Su, Z.: Parallel matrix factorization for low-rank tensor completion. Inverse Probl. Imag. 9(2), 601–624 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sauve, A.C., Hero, A., Rogers, W.L., Wilderman, S., Clinthorne, N.: 3d image reconstruction for a compton spect camera model. IEEE Trans. Nucl. Sci. 46(6), 2075–2084 (1999)

    Article  Google Scholar 

  16. Xu, Y.-Y., Yin, W.-T., Wen, Z.-W., Zhang, Y.: An alternating direction algorithm for matrix completion with nonnegative factors. Front. Math. China 7(2), 365–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via convex optimization, vol. 27 (2011)

  18. Li, X.-T., Ye, Y.-M., Xu, X.-F.: Low-rank tensor completion with total variation for visual data inpainting. In: 31st AAAI conference on artificial intelligence (2017)

  19. Li, X.-T., Zhao, X.-L., Jiang, T.-X., Zheng, Y.-B., Ji, T.-Y., Huang, T.-Z.: Low-rank tensor completion via combined non-local self-similarity and low-rank regularization. Neurocomputing 367, 1–12 (2019)

    Article  Google Scholar 

  20. Ji, T.-Y., Huang, T.-Z., Zhao, X.-L., Ma, T.H., Liu, G.: Tensor completion using total variation and low-rank matrix factorization. Inform. Sci. 326 (C), 243–257 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, T.-X., Huang, T.-Z., Zhao, X.-L., Ji, T.-Y., Deng, L.-J.: Matrix factorization for low-rank tensor completion using framelet prior. Inform. Sci. 436, 403–417 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cai, J.-F., Chan, R.H., Shen, Z.: A framelet-based image inpainting algorithm. Appl. Comput. Harmon. Anal. 24(2), 131–149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zheng, Y.-B., Huang, T.-Z., Zhao, X.-L., Jiang, T.-X., Huang, J.: Hyperspectral image denoising via convex low-fibered-rank regularization, IEEE Transactions on Geoscience and Remote Sensing, to be published. https://doi.org/10.1109/TGRS.2019.2940534

  24. Rubin, L.: Nonlinenr total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60, 259–265 (1992)

    Article  MathSciNet  Google Scholar 

  25. Yang, J.-H., Zhao, X.-L., Ji, T.-Y., Ma, T.-H., Huang, T.-Z.: Low-rank tensor train for tensor robust principal component analysis. Appl. Math. Comput. 367, 124783 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  27. Chen, C., Li, X.-T., Ng, M.K., Yuan, X.-M.: Total variation based tensor decomposition for multi-dimensional data with time dimension. Numer. Linear Algebra Appl. 22(6), 999–1019 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, F., Ng, M.K., Plemmons, R.J.: Coupled segmentation and denoising/deblurring models for hyperspectral material identification. Numer. Linear Algebra Appl. 19(1), 153–173 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhao, X.-L., Wang, W., Zeng, T.-Y., Huang, T.-Z., Ng, M.K.: Total variation structured total least squares method for image restoration. SIAM J. Sci. Comput. 35(6), B1304–B1320 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yue, Z.-S., Meng, D.-Y., Sun, Y.-Q., Zhao, Q.: Hyperspectral image restoration under complex multi-band noises. Remote Sens. 10(10), 1631 (2018)

    Article  Google Scholar 

  31. Varghees, V.N., Manikandan, M.S., Gini, R.: Adaptive mri image denoising using total-variation and local noise estimation. In: IEEE-international conference on advances in engineering, science and management (ICAESM-2012). IEEE, pp. 506–511 (2012)

  32. Jiang, T.-X., Huang, T.-Z., Zhao, X.-L., Deng, L.-J., Wang, Y.: Fastderain: A novel video rain streak removal method using directional gradient priors. IEEE Trans. Image Process. 28(4), 2089–2102 (2018)

    Article  MathSciNet  Google Scholar 

  33. Yang, J.-H., Zhao, X.-L., Ma, T.-H., Chen, Y., Huang, T.-Z., Ding, M.: Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization. J. Comput. Appl. Math. 363, 124–144 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hu, Y., Jacob, M.: Higher degree total variation (hdtv) regularization for image recovery. IEEE Trans. Image Process. 21(5), 2559–2571 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhu, J., Li, K., Hao, B.: Restoration of remote sensing images based on nonconvex constrained high-order total variation regularization. J. Appl. Remote Sens. 13(2), 022006 (2019)

    Article  Google Scholar 

  36. Adam, T., Paramesran, R.: Image denoising using combined higher order non-convex total variation with overlapping group sparsity. Multidim. Syst. Sign. Process. 30(1), 503–527 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, F., Shen, C.-M., Fan, J.-S., Shen, C.-L.: Image restoration combining a total variational filter and a fourth-order filter. J. Vis. Commun. Image Represent. 18(4), 322–330 (2007)

    Article  Google Scholar 

  38. Lysaker, M., Tai, X.-C.: Iterative image restoration combining total variation minimization and a second-order functional. Int. J. Comput. Vis. 66(1), 5–18 (2006)

    Article  MATH  Google Scholar 

  39. Yang, J.-H., Zhao, X.-L., Mei, J.-J., Wang, S., Ma, T.-H., Huang, T.-Z.: Total variation and high-order total variation adaptive model for restoring blurred images with cauchy noise. Comput. Math. Appl. 77(5), 1255–1272 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the kurdyka-?ojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, S., Huang, T.-Z., Zhao, X.-L., Mei, J.-J., Huang, J.: Speckle noise removal in ultrasound images by first-and second-order total variation. Numer. Algorithms 78(2), 513–533 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Li, S.-T., Dian, R., Fang, L., Bioucas-Dias, J.M.: Fusing hyperspectral and multispectral images via coupled sparse tensor factorization. IEEE Trans. Image Process. 27(8), 4118–4130 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zheng, Y.-B., Huang, T.-Z., Ji, T.-Y., Zhao, X.-L., Jiang, T.-X., Ma, T.-H.: Low-rank tensor completion via smooth matrix factorization. Appl. Math. Model. 70, 677–695 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized gauss–seidel methods. Math. Program. 137(1-2), 91–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (61772003, 61876203) and the Fundamental Research Funds for the Central Universities (31020180QD126).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting-Zhu Huang or Xi-Le Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Huang, TZ., Zhao, XL. et al. Adaptive total variation and second-order total variation-based model for low-rank tensor completion. Numer Algor 86, 1–24 (2021). https://doi.org/10.1007/s11075-020-00876-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00876-y

Keywords

Navigation