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Abstract

This paper is concerned with the problem of finding a zero of a tangent vector field
on a Riemannian manifold. We first reformulate the problem as an equivalent Riemannian
optimization problem. Then we propose a Riemannian derivative-free Polak-Ribiére-Polyak
method for solving the Riemannian optimization problem, where a non-monotone line search
is employed. The global convergence of the proposed method is established under some mild
assumptions. To further improve the efficiency, we also provide a hybrid method, which
combines the proposed geometric method with the Riemannian Newton method. Finally,
some numerical experiments are reported to illustrate the efficiency of the proposed method.
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1 Introduction

Let M be a finite-dimensional Riemannian manifold and let 〈·, ·〉 be the Riemannian metric on
M with its induced norm ‖ · ‖. Let ∇ denote the Riemannian connection on M induced by
the Riemannian metric 〈·, ·〉. Let TXM be the tangent space of M at a point X ∈ M and
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TM := ∪X∈MTXM be the tangent bundle of M. In this paper, we aim to find a zero of a
continuously differentiable tangent vector field F :M→ TM, i.e., find X ∈M such that

F (X) = 0X , (1.1)

where 0X is the zero tangent vector of TXM.

Such smooth tangent vector fields arise in many applications such as geodesic convex opti-
mizations on Riemannian manifolds where the gradients of the convex objective functions are
geodesic monotone vector fields [11, 27], statistical principal component analysis where the Oja’s
flow leads to the Oja’s vector field [29, 30], the discretized Kohn-Sham (KS) total energy mini-
mization in electronic structure calculations [6, 26, 32], and the trace ratio optimization in the
linear discriminant analysis (LDA) for dimension reduction [28, 41, 42] where the corresponding
eigenvector-dependent nonlinear eigenvalue problems are smooth tangent vector fields, etc.

In particular, for multivalued monotone tangent vector fields on Hadamard manifolds, several
proximal point algorithms have been proposed in [17, 23, 34, 35, 36], where the convergence anal-
ysis is investigated under some different assumptions. However, these proximal point algorithms
are mainly restricted to finding zeros of monotone tangent vector fields.

For smooth tangent vector fields on general Riemannian manifolds, Riemannian Newton
method was widely studied (see for instance [1, 3, 14, 24]). In [1, Section 6.1], Absil et al.
presented a geometric Newton method for solving (1.1): Given current Xk ∈ M, solve the
Riemannian Newton equation

JF (Xk)[∆Xk] = −F (Xk)

for ∆Xk ∈ TXk
M and set

Xk+1 = RXk
(∆Xk),

where R is a retraction defined onM [1, Definition 4.1.1] and for X ∈M, RX is the restriction
of R to TXM. Here, JF (X) denotes the Jacobian of F at a point X ∈ M, which is a linear
operator from TXM to TXM defined by [1, p.111]

JF (X)[ξX ] := ∇ξXF, ∀ξX ∈ TXM.

With respect to the Riemannian metric 〈·, ·〉, the adjoint (JF (X))∗ : TXM→ TXM of JF (X)
is defined by

〈ξX , (JF (X))∗[ηX ]〉 = 〈JF (X)[ξX ], ηX〉, ∀ξX , ηX ∈ TXM.

The quadratic convergence of the Riemannian Newton method was established under the
nonsingularity assumption of the Jacobian of F at a solution point [1, Theorem 6.3.2]. In [2],
Absil et al. also proposed a geometric Newton method for finding a zero of Oja’s vector field.

The advatange of a geometric Newton method lies in its quadratic convergence. However, it
is often computationally costly to solve the Riemannian Newton equation, especially when the
Jacobian is ill-conditioned. In the case of large-scale problems, the Jacobians of some tangent
vector fields (e.g., monotone tangent vector fields on Hadamard manifolds) may not be easily
available. Finally, the convergence of the Riemannian Newton method also depends on the
starting point. Therefore, it is indispensable to find an efficient globally convergent Jacobian-
free method for solving (1.1), especially for large-scale problems.
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In recent years, some derivative-free optimization methods have been proposed for solving
nonlinear systems of equations of the form of G(x) = 0 defined on Euclidean spaces [8, 9, 10,
16, 25, 39, 40], where G : Rn → Rn is a continuously differentiable mapping. These methods
use ±G(xk) at the current iterate xk as a search direction and their global convergence are
guaranteed by using some non-monotone line search techniques. These methods need not to form
the Jacabian matrices and require a small storage space and thus are applicable to solving large-
scale nonlinear systems of equations. Sparked by this, in this paper, we propose a Riemannian
Derivative-Free Polak-Ribiére-Polyak (PRP) conjugate gradient method for solving (1.1). The
global convergence is established under some assumptions. We apply the proposed method to
finding zeros of Oja’s vector fields, the tangent vector field corresponding to the trace ratio
optimization problem, and monotone tangent vector fields on Hadamard manifolds accordingly.
Finally, we combine the proposed method with the Riemannian Newton method to get a solution
of high accuracy.

The remaining part of this paper is organized as follows. In section 2, we present a Rie-
mannian derivative-free PRP conjugate gradient method for solving (1.1). In section 3, we give
the global convergence of the proposed method under some basic assumptions. In section 4, the
proposed method is used to find zeros of tangent vector fields for some practical applications.
In section 5, we present a hybrid method. Finally some concluding remarks are given in section
6.

2 A Riemannian Derivative-free Polak-Ribiére-Polyak Method

We first recall the Riemannian nonlinear conjugate gradient method for solving the following
optimization problem

min g(Z)

subject to (s.t.) Z ∈M,
(2.1)

where g : M → R is a continuously differentiable function. A nonlinear conjugate gradient
method aims to update the current iterate Zk ∈M by

Zk+1 = RZk
(αk∆Zk), (2.2)

where the step length αk is determined by a line search. The search direction ∆Zk ∈ TZk
M is

given by

∆Zk =

{
−grad g(Zk), if k = 0,
−grad g(Zk) + βkTαk−1∆Zk−1

∆Zk−1, if k ≥ 1,
(2.3)

where βk is a scalar, grad g(Zk) is the Riemannian gradient of g at the point Zk, and T is a
vector transport associated with the retraction R [1, Definition 8.1.1]. In particular, for the
Riemannian PRP method in [1, p.182], the parameter βk is given by

βk =
〈grad g(Zk), grad g(Zk)− Tαk−1∆Zk−1

grad g(Zk−1)〉
‖grad g(Zk−1)‖2

. (2.4)

For more Riemannian nonlinear conjugate gradient methods, one may refer to [1, 15, 31, 33, 38,
44, 45]. However, for any Riemannian nonlinear conjugate gradient method for solving problem
(2.1), the Riemannian gradient of g is needed.
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To solve (1.1), it is natural to consider the following minimization problem

min f(X) :=
1

2
‖F (X)‖2

s.t. X ∈M.
(2.5)

Since F : M → TM is continuously differentiable, the function f : M → R is also continu-
ously differentiable. By the definition of Riemannian gradient and using the compatibility of
Riemannian connection ∇ with the Riemannian metric 〈·, ·〉, we have

Df(X)[ξX ] =
1

2

(
〈∇ξXF, F (X)〉+ 〈F (X),∇ξXF 〉

)
= 〈∇ξXF, F (X)〉 = 〈JF (X)[ξX ], F (X)〉
= 〈ξX , (JF (X))∗[F (X)]〉 = 〈ξX , gradf(X)〉,

for all ξX ∈ TXM. Thus,
gradf(X) = (JF (X))∗[F (X)]. (2.6)

In order to apply the Riemannian PPR method determined by (2.2), (2.3), and (2.4) for
solving problem (2.5), we need the Riemannian gradient of f . By using (2.6), to calculate the
Riemannian gradient of f at the current iterate Xk, we need to compute the adjoint of the
Jacobian of F at Xk. If the Jacobian of F is not available or numerically expensive to calculate,
then it is unsuitable to directly apply a Riemannian nonlinear conjugate gradient method to
problem (2.5).

In the following, we propose a derivative-free PRP method for solving (1.1). This is motivated
by the derivative-free PRP method for solving a large-scale nonlinear system of equations of the
form G(x) = 0 with G : Rn → Rn being continuously differentiable [25], where the search
direction uses G(xk) and G(xk−1) at the current iterate xk and the previous iterate xk−1 and a
non-monotone line search is used. In particular, we use the PRP method defined by (2.2), (2.3),
and (2.4) to problem (2.5), where the Riemannian gradients of f at the current iterate Xk is
replaced by the values of the tangent vector field F at Xk, and a Riemannian nonmonotnoe line
search is employed. We now describe a Riemannian derivative-free PRP algorithm for solving
(1.1) as follows.

Algorithm 2.1 (A Riemannian derivative-free PRP method (RDF-PRP))

Step 0. Choose an initial point X0 ∈ M, ε̄ > 0, t1, t2 > 0, 0 < ρ < 1, 0 < λmin < λmax < 1,
0 < αmin ≤ α ≤ αmax. Let k := 0, Γ0 := f(X0), Φ0 := 1. Select a positive sequence {δk}
such that

∞∑
k=0

δk = δ <∞. (2.7)

Step 1. If ‖F (Xk)‖ ≤ ε̄, then stop. Otherwise, go to Step 2.

Step 2. Set

∆Xk :=

{
−F (X0) if k = 0,

−F (Xk) + βkT∆Zk−1
∆Xk−1, if k ≥ 1,

(2.8)
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where

βk :=
〈F (Xk), Yk−1〉
‖F (Xk−1)‖2

, Yk−1 := F (Xk)− T∆Zk−1
F (Xk−1). (2.9)

Step 3. Determine αk = max{αρj , j = 0, 1, 2, . . .} such that
if

f(RXk
(αk∆Xk)) ≤ Γk + δk − t1α2

k‖∆Xk‖2 − t2α2
kf(Xk), (2.10)

then set
∆Zk := αk∆Xk, Xk+1 := RXk

(∆Zk). (2.11)

Else if
f(RXk

(−αk∆Xk)) ≤ Γk + δk − t1α2
k‖∆Xk‖2 − t2α2

kf(Xk), (2.12)

then set
∆Zk := −αk∆Xk, Xk+1 := RXk

(∆Zk). (2.13)

Step 4. Choose λk ∈ [λmin, λmax] and compute

Φk+1 = λkΦk + 1, Γk+1 =
λkΦk(Γk + ηk) + f(Xk+1)

Φk+1
. (2.14)

Step 5. Replace k by k + 1 and go to Step 1.

We point out that the non-monotone line search in Step 3 of Algorithm 2.1 can be seen as
a generalization of that in [7, 25]. Let

Λk :=

∑k
j=1(f(Xk) + jδj−1)

k + 1
and δ−1 = 0.

By following the similar proof of [7, Lemma 2.2], for any choice of λk ∈ [0, 1], we have for all
k ≥ 0 that

f(Xk) ≤ Γk ≤ Λk, Γk+1 ≤ Γk + δk. (2.15)

Then condition (2.10) or (2.12) holds for some αk. This shows that the line search step in
Algorithm 2.1 is well-defined.

3 Convergence Analysis

In this section, we establish the global convergence of Algorithm 2.1. To facilitate the analysis,
we define the pullback f̂ : TM→ R of f :M→ R through R by [1, p.55]

f̂(ξ) := f(R(ξ)), ∀ξ ∈ TM.

For X ∈M, let f̂X denote the restriction of f̂ to TXM, i.e.,

f̂X(ξX) := f(RX(ξX)), ∀ξX ∈ TXM.

We also need the following assumptions.
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Assumption 3.1 1. The level set Ω := {X ∈ M | f(X) ≤ f(X0) + δ} is bounded, where δ
is a constant defined by (2.7).

2. In some neighborhood V of Ω, F is continuously differentiable and is Lipschitz continuous
with respect to the vector transport T , i.e., there is a constant L > 0 such that

‖F (RX(ξX))− TξXF (X)‖ ≤ L · dist(X,RX(ξX)), (3.1)

for all X ∈ V and ξX ∈ TXM with RX(ξX) ∈ V .

3. The vector transport T is bounded, i.e., there exists a constant C > 0 such that

‖TηX ξX‖ ≤ C · ‖ξX‖, (3.2)

for all X ∈M and ξX , ηX ∈ TXM.

Under Assumption 3.1, the tangent vector field F is bounded on Ω, i.e., there exists a constant
τ1 > 0 such that

‖F (X)‖ ≤ τ1, ∀X ∈ Ω. (3.3)

By using the continuity of f and Assumption 3.1, it is easy to see that the level set Ω is closed
and bounded and thus Ω is a compact subset of M. According to Corollary 7.4.6 in [1], there
exist two scalars ν > 0 and µ > 0 such that

ν‖ξX‖ ≥ dist
(
X,RX(ξX)

)
, (3.4)

for X ∈ Ω and ξX ∈ TXM with ‖ξX‖ ≤ µ. If the vector tansport T is chosen as the parallel
translation, then the inequality in (3.2) holds as an equality with C = 1. Specially, if M is an
embedded Riemannian submanifold of a Euclidean space and T is defined through orthogonal
projection by the formula (8.10) in [1, p.174], then the inequality in (3.2) holds with C = 1.

To establish the global convergence Algorithm 2.1, we need the following preliminary lemma
whose proof is similar to that of Lemma 3.2 and Lemma 3.3 in [25], and thus we omit it here.

Lemma 3.2 Suppose Assumption 3.1 is satisfied. Then the sequence {Xk} generated by Algo-
rithm 2.1 is contained in Ω. In addition, we have

lim
k→∞

αk‖∆Xk‖ = 0 and lim
k→∞

α2
kf(Xk) = 0.

For the search directions {∆Xk} generated by Algorithm 2.1, we have the following result.
The proof can be can seen as a generalization of [25, Lemma 3.4].

Lemma 3.3 Suppose Assumption 3.1 is satisfied and Algorithm 2.1 generates infinite sequences
{Xk} and {∆Xk}. If the sequence {‖F (Xk)‖} is bounded below by a constant τ > 0, i.e.,

‖F (Xk)‖ ≥ τ, ∀k ≥ 0, (3.5)

then there exists a constant T > 0 such that

‖∆Xk‖ ≤ T, ∀k ≥ 0, (3.6)

and
lim
k→∞

βk‖∆Xk−1‖ = 0, ∀k ≥ 0. (3.7)
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Proof: We first prove (3.6). From (2.9), (2.11), (2.13), (3.1), and (3.4) it follows that for all k
sufficiently large,

‖Yk−1‖ = ‖F (Xk)− T∆Zk−1
F (Xk−1)‖

= ‖F (RXk−1
(∆Zk−1))− T∆Zk−1

F (Xk−1)‖
≤ L · dist(Xk, Xk−1) = L · dist(RXk−1

(∆Zk−1), Xk−1)

≤ Lν‖∆Zk−1‖ = Lναk−1‖∆Xk−1‖. (3.8)

It follows from (2.8), (2.9), (3.2), (3.3), and (3.8) that for all k sufficiently large,

‖∆Xk‖ = ‖ − F (Xk) +
〈F (Xk), Yk−1〉
‖F (Xk−1)‖2

T∆Zk−1
∆Xk−1‖

≤ ‖F (Xk)‖+
‖F (Xk)‖ · ‖Yk−1‖
‖F (Xk−1)‖2

‖T∆Zk−1
∆Xk−1‖

≤ τ1 +
τ1CLναk−1‖∆Xk−1‖

τ2
‖∆Xk−1‖. (3.9)

By Lemma 3.2, for any constant π ∈ (0, 1), there exists an index k0 > 0 such that

τ1CLναk−1‖∆Xk−1‖
τ2

< π, ∀k > k0.

This, together with (3.9), yields for all k > k0,

‖∆Xk‖ ≤ τ1 + π‖∆Xk−1‖
≤ τ1(1 + π + π2 + · · ·+ πk−k0+1) + πk−k0‖∆Xk0‖

≤ τ1

1− π
+ ‖∆Xk0‖.

Hence, (3.6) holds by setting T := max{‖∆X1‖, ‖∆X2‖, . . . , ‖∆Xk0‖, τ1
1−π + ‖∆Xk0‖}.

Next, we prove (3.7). By using Lemma 3.2, (3.1), (3.5), (3.6), and (3.8) we have for all k
sufficiently large that

|βk|‖∆Xk−1‖ =
|〈F (Xk), Yk−1〉|
‖F (Xk−1)‖2

‖∆Xk−1‖

≤ ‖F (Xk)‖ · ‖Yk−1‖
‖F (Xk−1)‖2

‖∆Xk−1‖ ≤
‖F (Xk)‖Lναk−1‖∆Xk−1‖

‖F (Xk−1)‖2
‖∆Xk−1‖

≤ Lν
‖F (Xk)‖
‖F (Xk−1)‖2

αk−1‖∆Xk−1‖2 ≤ LTν
τ1

τ2
· αk−1‖∆Xk−1‖.

This, together with Lemma 3.2, yields (3.7).

On the global convergence of Algorithm 2.1, we have the following theorem. The proof is a
generalization of Theorem 3.5 in [25] and Theorem 1 in [9].
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Theorem 3.4 Suppose Assumption 3.1 is satisfied and Algorithm 2.1 generates an infinite se-
quence {Xk}. Then we have

lim inf
k→∞

‖F (Xk)‖ = 0

or for any accumulation point X∗ of {Xk}

〈JF (X∗)[F (X∗)], F (X∗)〉 = 0. (3.10)

Proof: Let X∗ be any accumulation point of the sequence {Xk}. One may assume that
lim
k→∞

Xk = X∗, taking a subsequence if necessary. By Lemma 3.2 we have

lim
k→∞

α2
kf(Xk) = lim

k→∞

1

2
α2
k‖F (Xk)‖2 = 0. (3.11)

If lim inf
k→∞

αk > 0, then it follows from (3.11) that

lim inf
k→∞

‖F (Xk)‖ = 0.

In this case, ‖F (X∗)‖ = 0 since F is continuous and lim
k→∞

Xk = X∗.

In the following, we assume that lim inf
k→∞

αk = 0 and lim inf
k→∞

‖F (Xk)‖ > 0. From Step 3 of

Algorithm 2.1, taking a subsequence if necessary, we may assume that ρ−1αk satisfies neither
(2.10) nor (2.12) for k large enough and thus

f(RXk
(ρ−1αk∆Xk)) > Γk + δk − t1ρ−2α2

k‖∆Xk‖2 − t2ρ−2α2
kf(Xk) (3.12)

and

f(RXk
(−ρ−1αk∆Xk)) > Γk + δk − t1ρ−2α2

k‖∆Xk‖2 − t2ρ−2α2
kf(Xk). (3.13)

From (2.15) we have Γk ≥ f(Xk) ≥ 0. This, together with (3.12), yields

f(RXk
(ρ−1αk∆Xk)) > f(Xk)− t1ρ−2α2

k‖∆Xk‖2 − t2ρ−2α2
kf(Xk).

From Assumption 3.1, it follows that

f(Xk) ≤ f(X0) + δ.

By hypothesis, the sequence {‖F (Xk)‖} is bounded from below. Thus, the condition (3.5) in
Lemma 3.3 is satisfied. By using Lemma 3.3 and (3.3) we have

f(RXk
(ρ−1αk∆Xk))− f(Xk) > −Υα2

k,

where Υ = t1ρ
−2T 2 + t2ρ

−2(f(X0) + δ). Hence,

f(RXk
(ρ−1αk∆Xk))− f(Xk)

αk
> −Υαk. (3.14)
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Let γ(t) := RXk
(tρ−1αk∆Xk) for all t ∈ [0, 1]. It follows from (2.8) that for t ∈ (0.1),

γ̇(t) = DRXk
(tρ−1αk∆Xk)[ρ

−1αk∆Xk] = ρ−1αkDRXk
(tρ−1αk∆Xk)[∆Xk]

= −ρ−1αkDRXk
(tρ−1αk∆Xk)[F (Xk)]

+ρ−1αkDRXk
(tρ−1αk∆Xk)[T∆Zk−1

βk∆Xk−1]. (3.15)

By the mean value theorem and using (3.15), there exists a θ ∈ (0, 1) such that

f(RXk
(ρ−1αk∆Xk))− f(Xk) = f(γ(1))− f(γ(0))

= γ̇(θ)(f) = 〈∇γ̇(θ)F, F (γ(θ))〉 = 〈JF (γ(θ)[γ̇(θ)], F (γ(θ))〉
= 〈JF (γ(θ))

[
ρ−1αkDRXk

(θρ−1αk∆Xk)[∆Xk]
]
, F (γ(θ))〉

= ρ−1αk〈JF (γ(θ))
[
DRXk

(θρ−1αk∆Xk)[∆Xk]
]
, F (γ(θ))〉

= −ρ−1αk〈JF (γ(θ))
[
DRXk

(θρ−1αk∆Xk)[F (Xk)]
]
, F (γ(θ))〉

+ρ−1αk〈JF (γ(θ))
[
DRXk

(θρ−1αk∆Xk)[T∆Zk−1
βk∆Xk−1]

]
, F (γ(θ))〉.

This, together with (3.14), yields

−Υαk < −ρ−1〈JF (γ(θ))
[
DRXk

(θρ−1αk∆Xk)[F (Xk)]
]
, F (γ(θ))〉

+ρ−1〈JF (γ(θ))
[
DRXk

(θρ−1αk∆Xk)[T∆Zk−1
βk∆Xk−1]

]
, F (γ(θ))〉. (3.16)

By Lemma 3.2 and using the smoothness and local rigidity condition of retraction [1, (4.2)] we
have

lim
k→∞

DRXk
(θρ−1αk∆Xk) = DRX∗(0X∗) = idTX∗M, (3.17)

where idTX∗M denotes the identity operator on TX∗M. From Lemma 3.2, Lemma 3.3, (2.11),
(2.13), and using the smoothness and consistency condition of vector transport [1, Definition
8.1.1], we obtain

lim
k→∞

T∆Zk−1
βk∆Xk−1 = T0X∗0X∗ = 0X∗ . (3.18)

By using Lemma 3.2, Lemma 3.3, (3.17), (3.18), and taking limits in (3.16), we have

〈JF (X∗)[F (X∗)], F (X∗)〉 ≤ 0.

Similarly, we can deduce from (3.13) that

〈JF (X∗)[F (X∗)], F (X∗)〉 ≥ 0.

The equality (3.10) follows from the last two inequalities.

From Theorem 3.4, we have the following corollary.

Corollary 3.5 Suppose Assumption 3.1 is satisfied and Algorithm 2.1 generates an infinite
sequence {Xk}. Let X∗ be an accumulation point of {Xk}. If

〈JF (X∗)[ξX∗ ], ξX∗〉 6= 0, ∀0X∗ 6= ξX∗ ∈ TX∗M,

then F (X∗) = 0X∗.
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Suppose F : M → TM is a strongly geodesic monotone vector field [12, 23, 27, 37] and is
continuously differentiable, then there exists a positive constant λ > 0 such that

〈JF (X)[ξX ], ξX〉 > λ‖ξX‖2, ∀0X 6= ξX ∈ TXM, X ∈M. (3.19)

By Corollary 3.5 and (3.19), we have the following result.

Corollary 3.6 Suppose F or −F is strictly monotone and continuously differentiable, and Al-
gorithm 2.1 generates an infinite sequence {Xk}. Then every accumulation point of {Xk} is a
zero of F .

4 Numerical Experiments

In this section, we consider the application of Algorithm 2.1 to finding zeros of Oja’s vector fields
[2], the tangent vector field corresponding to the trace ratio optimization problem [28, 41, 42],
and monotone tangent vector fields on Hadamard manifolds [13]. All numerical tests are carried
out using MATLAB R2010a on a Lenovo Laptop Intel(R) Core(TM)2 i7-8550U with a 1.80 GHz
CPU and 16-GB RAM.

In our numerical tests, we set ρ = 0.5, λk = 0.6, t1 = t2 = 10−10, αmin = 10−10, αmax = 1010,
and δk = ‖F (X0)‖/((2+k) ln2(2+k)) for all k. In Step 3 of Algorithm 2.1, the initial steplength
αk0 is set to be

αk0 =


αmax, if σ > αmax,

σ, if σ ∈ [αmin, αmax],

αmin, if σ < αmax,

where

σ =

∣∣∣∣ 〈F (Xk),∆Xk〉
〈Zk, Tε∆Xk

∆Xk〉

∣∣∣∣ , Zk =
F (RXk

(ε∆Xk))− Tε∆Xk
F (Xk)

ε
, ε = 10−8.

The stopping criterion for Algorithm 2.1 for solving (1.1) is set to be [9, 25]

‖F (Xk)‖√
M

≤ ea + er
‖F (X0)‖√

M
,

where ea = 10−6, er = 10−5, and M denotes the dimension of M.

For comparison purposes, we repeat our experiments over 10 different random generated
problems. In our numerical tests, ‘DIM.’ denotes the dimension of M, ‘CT.’, IT.’, and ‘NF.’
mean the averaged total computing time in seconds, the averaged number of iterations, the
averaged number of function evaluations at the final iterates of our algorithm accordingly. In
addition, ‘Res0.’ and ‘Res.’ denote the averaged residual ‖F (Xk)‖ at the initial iterates and
final iterates of our algorithm, respectively.

Example 4.1 We consider the problem of finding a zero of Oja’s vector field defined by real
symmetric positive-definite matrices [2]. Let A ∈ Rm×m be a symmetric positive-definite matrix,
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and p be a positive integer smaller than m. The Oja’s vector field F : Rm×p → Rm×p associated
with A is given by [2, 29, 30]

F (X) = AX −XXTAX, ∀X ∈ Rm×p. (4.1)

Suppose X ∈ Rm×p is of full column rank. Then X is a solution to F (X) = 0 if and only if the
column space of X is an invariant subspace of A and X is orthonormal (i.e., XTX = Ip) (see [2,
Proposition 2.1]), where Ip is the identity matrix of order p. Thus we can restrict the nonlinear
map F to the compact Stiefel manifold St(p,m) [1, p.26], i.e., F : St(p,m) → TSt(p,m). The
dimension of the Stiefel manifold St(p,m) is equal to mp− 1

2p(p+1) [1, p.27]. Let O(p) = St(p, p),
which is the orthogonal group [1, p.27]. Since F (XQ) = F (X)Q for any Q ∈ O(p), the zeros of
F are degenerate, thus Newton’s method can’t be applied directly. To apply Riemannian Newton’s
method, one need to restrict F to the Grassmann manifold Grass(p,m) := St(p,m)/O(p), while
the application of Algorithm 2.1 to finding a zero of (4.1) does not need the nondegeneracy
condition of the zeros of F . Let St(p,m) be endowed with induced Riemannian metric from
Rm×p, i.e.,

gX(ξX , ηX) := tr(ξTXηX), ∀ξX , ηX ∈ TXSt(p,m), X ∈ St(k, n).

The retraction R on St(k, n) is chosen as [1, p.59]

RX(ξX) = qf(X + ξX), (4.2)

for all ξX ∈ TXSt(p,m) and X ∈ St(p,m), where qf(X + ξX) is the Q factor of the QR
decomposition of X + ξX ∈ Rm×p∗ with X + ξX = QR̃. Here, the set Rm×p∗ denotes the set of
all real m × p matrices with linearly independent columns, Q ∈ St(p,m), and R̃ is an upper
triangular p× p matrix with strictly positive diagonal elements. The orthogonal projection of a
matrix Z ∈ Rm×p onto TXSt(p,m) is given by

PXZ = (In −XXT )Z +Xskew(XTZ) = Z −Xsym(XTZ),

where skew(A) := (A − AT )/2 and sym(A) := (A + AT )/2 for a real square matrix. Since
St(p,m) is an embeded submanifold of Rm×p, we may adopt the vector transport defined by [1,
p.174]

TηX ξX := (In − Y Y T )ξX + Y skew(Y TZ) = ξX − Y sym(Y T ξX), (4.3)

for ξX , ηX ∈ TXSt(p,m), where Y := RX(ηX) ∈ St(p,m). Thus condition (3.2) in Assumption
3.1 is satisfied.

We consider the problem of finding a zero of the Oja’s vector field F : St(p,m)→ TSt(p,m)
defined by (4.1) with varying m and p. Let A be a random m×m matrix generated by the MATLAB

built-in functions rand, randn, and qr:

D = rand(m, 1), B = randn(m,m), [Q,S] = qr(B), A = QDQT .

Thus A is a random symmetric positive-definite matrix with uniformly distributed eigenvalues in
the interval [0, 1]. The starting points are randomly generated by the MATLAB built-in functions
randn and qr:

W = randn (m, p),
[
X0, R̂

]
= qr (W ).
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Table 4.1 lists the numerical results for Example 4.1. We observe from Table 4.1 that the
iteration number and the number of function evaluations do not change obviously with the
increase of the dimension of the Stiefel manifold St(p,m). This indicates that Algorithm 2.1 is
stable and suitable for solving large-scale problems.

To further illustrate the effectiveness of our algorithm, in Figure 4.1, we give the convergence
history of Algorithm 2.1 for two tests with (m, p) = (6000, 30) and (m, p) = (3000, 120). Figure
4.1 depicts the logarithm of the residual versus the number of iterations for finding a zero of
Oja’s vector field defined in Example 4.1. The convergence trajectory indicates that the residual
decreases steadily as the number of iterations increases.

Table 4.1: Numerical results for Example 4.1.

p = 30
m DIM. CT. IT. NF. Res0. Res.

1000 29535 0.6938 s 131.7 137.7 1.5558 1.8068× 10−4

2000 59535 2.5411 s 147.5 154.1 1.5714 2.5403× 10−4

3000 89535 5.1273 s 179.4 185 1.5780 3.1178× 10−4

4000 119535 7.8231 s 176.3 185.7 1.5746 3.5450× 10−4

5000 149535 14.0162 s 186.9 195.9 1.5710 3.9744× 10−4

6000 179535 19.1962 s 188.3 198.1 1.5707 4.3520× 10−4

7000 209535 25.5629 s 179.4 189.8 1.5765 4.6722× 10−4

8000 239535 33.7059 s 176.3 197.1 1.5816 5.0002× 10−4

9000 269535 41.5631 s 186.9 194.1 1.5789 5.3148× 10−4

10000 299535 54.4226 s 188.3 202.7 1.5754 5.5995× 10−4

m = 3000
p DIM. CT. IT. NF. Res0. Res.

20 59790 3.9187 s 186.1 193.7 1.2880 2.5059× 10−4

40 119180 5.7383 s 169.0 175.2 1.8110 3.5750× 10−4

60 178170 9.1466 s 170.9 179.1 2.2136 4.3705× 10−4

80 236760 11.8402 s 165.5 176.1 2.5571 5.0355× 10−4

100 294950 15.9621 s 155.2 165.6 2.8397 5.6216× 10−4

120 352740 17.1358 s 151.5 160.9 3.1074 6.1428× 10−4

140 410130 19.2442 s 139.3 148.9 3.3493 6.6242× 10−4

160 467120 21.7834 s 134.7 143.9 3.5464 7.0720× 10−4

180 523710 24.5269 s 131.8 142.4 3.7413 7.4701× 10−4

200 579900 30.2070 s 157.5 149.1 3.9330 7.8585× 10−4

Example 4.2 We consider the problem of finding a zero of the tangent vector field corresponding
to the first-order optimization conditions for the trace ratio optimization problem [28, 41, 42].
Let A,B,C ∈ Rm×m be real symmetric matrices with B being positive-definite and p be a positive
integer smaller than m/2. The tangent vector field F : St(p,m) → TSt(p,m) is given by [41,
Theorem 2.1]

F (X) = E(X)X −X(XTE(X)X), ∀X ∈ St(p,m), (4.4)

where

E(X) := A
1

φB(X)
−BφA(X)

φ2
B(X)

+ C,

and φS(X) := tr(XTSX) for any m×m real symmetric matrix S. We choose the retraction R
on St(k, n) as in (4.2). The vector transport on St(p,m) is chosen the same as (4.3) and thus
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Figure 4.1: Convergence history of two tests for Example 4.1.

condition (3.2) in Assumption 3.1 is satisfied.
We consider the problem of finding a zero of the tangent vector field F defined by (4.4) with

varying m and p. Let A,B,C be random m × m matrices generated by the MATLAB built-in
functions rand, randn, orth, diag, and ones [5]:

A = rand(m,m), A = (A+AT )/2, Q = orth(randn(m,m)),

B = Qdiag(50 + 10 ∗ (2 ∗ rand(m, 1)− ones(m, 1))) ∗QT , B = (B +BT )/2,

C = randn(m,m), C = (C + CT )/2.

The starting points are randomly generated by the MATLAB built-in functions randn and qr:

W = randn (m, p),
[
X0, R̂

]
= qr (W ).

In Table 4.2, we report numerical results for Example 4.2 with varying values of m and p. In
Figure 4.2, we give the convergence history of Algorithm 2.1 for two tests with (m, p) = (3000, 30)
and (m, p) = (2000, 100). Figure 4.2 depicts the logarithm of the residual versus the number of
iterations for finding a zero of the tangent vector field F defined in (4.4). We see from Table 4.2
and Figure 4.2 that Algorithm 2.1 is stable and efficient for solving large-scale problems.

Example 4.3 Let Sm++ denote the set of all m ×m real symmetric positive definite matrices.
Endowing Sm++ with the following Riemannian metric

〈ξX , ηX〉 := tr(ξXX
−1ηXX

−1), ∀ξX , ηX ∈ TXSm++, X ∈ Sm++.

Thus, Sm++ is a Hadamard manifold manifold of nonpositive curvature everywhere [22, 36]. The
dimension of Sm++ is equal to m(m + 1)/2 [21, Proposition 2.1]. The geodesic monotone vector
field F : Sm++ → TSm++ is defined by [13]

F (X) = 2(ln det(X))X, ∀X ∈ Sm++. (4.5)

The retraction R on Sm++ is chosen as [22, (3.10)]

RX(ξX) = ξX ,

13



Table 4.2: Numerical results for Example 4.2.

p = 30
m DIM. CT. IT. NF. Res0. Res.

200 5535 0.1362 s 100.6 112.4 5.0376× 101 5.3678× 10−4

400 11535 0.4595 s 114.6 128.2 7.4573× 101 8.1477× 10−4

600 17535 1.5889 s 135.5 149.1 9.2751× 101 1.0105× 10−3

800 23535 1.5889 s 124.8 138.6 1.0726× 102 1.1774× 10−3

1000 29535 2.6262 s 139.3 156.9 1.2027× 102 1.3185× 10−3

2000 59535 13.6532 s 219.3 235.5 1.7193× 102 1.9084× 10−3

3000 89535 36.7627 s 276.1 291.9 2.1109× 102 2.3692× 10−3

4000 119535 63.2379 s 275.2 292.6 2.4399× 102 2.7274× 10−3

5000 149535 120.2924 s 307.0 325.6 2.7326× 102 3.0436× 10−3

m = 2000
p DIM. CT. IT. NF. Res0. Res.

20 39790 8.6164 s 170.7 186.1 1.4107× 102 1.5714× 10−3

40 79180 13.0390 s 196.6 212.8 1.9777× 102 2.2190× 10−3

60 118170 17.9773 s 211.5 228.9 2.4134× 102 2.7032× 10−3

80 156760 22.1530 s 198.1 215.3 2.7716× 102 3.1042× 10−3

100 194950 31.0476 s 241.0 258.6 3.0827× 102 3.4166× 10−3

120 232740 38.5245 s 238.3 258.7 3.3572× 102 3.7598× 10−3

140 270130 42.8672 s 232.4 249.8 3.6124× 102 4.0373× 10−3

160 307120 53.2935 s 252.0 270.6 3.8352× 102 4.2983× 10−3

180 343710 48.4526 s 203.9 223.1 4.0462× 102 4.5413× 10−3

200 379900 60.0266 s 222.1 240.3 4.2432× 102 4.7507× 10−3
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Figure 4.2: Convergence history of two tests for Example 4.2.
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for ξX ∈ TXSm++ and X ∈ Sm++. The vector transport associated with the above R is chosen as
[22, (3.13)]

TηX ξX = ξX ,

for ξX , ηX ∈ TXSm++ and X ∈ Sm++. Thus condition (3.2) in Assumption 3.1 is satisfied.

We consider the problem of finding a zero of the vector field F defined by (4.5) with varying
m. The starting points are randomly generated by the MATLAB built-in functions rand, randn,
and qr:

G = 0.1 + rand(m, 1), H = randn(m,m), [W,T ] = qr(H), X0 = WGW T .

Table 4.3 shows the numerical results for Example 4.3. We observe from Table 4.3 that
Algorithm 2.1 requires only a few iterations and function evaluations for finding an approximate
zero of the monotone vector field (4.5) with different values of m. This indicates that Algorithm
2.1 is very stable and efficient for solving large-scale problems. In Figure 4.3, we give the
convergence history of Algorithm 2.1 for two tests with m = 600 and m = 1000. Figure
4.3 depicts the logarithm of the residual versus the number of iterations for finding a zero
of the tangent vector field F defined in (4.5). The convergence trajectory indicates that the
residual decreases very rapidly as the number of iterations increases, which shows the local fast
convergence speed of Algorithm 2.1 for solving large-scale problems.

Table 4.3: Numerical results for Example 4.3.

m DIM. CT. IT. NF. Res0. Res.

100 5050 0.0159 s 5.9 7.0 1.3313× 103 2.0499× 10−4

200 20100 0.0432 s 6.2 7.2 3.7973× 103 3.8884× 10−4

300 45150 0.1038 s 6.4 7.4 6.9051× 103 3.0280× 10−5

400 80200 0.2603 s 6.5 7.5 1.0638× 104 6.7415× 10−5

500 125250 0.4486 s 6.6 7.6 1.4760× 104 9.8202× 10−5

600 180300 0.6918 s 6.3 7.3 1.9674× 104 6.4741× 10−5

700 245350 1.0513 s 6.4 7.4 2.4651× 104 1.7830× 10−4

800 320400 1.5852 s 6.6 7.6 3.0098× 104 2.6627× 10−4

900 405450 2.1248 s 6.6 7.6 3.6046× 104 3.6220× 10−4

1000 500500 2.8110 s 6.5 7.5 4.2361× 104 2.6249× 10−4

5 Hybrid Method

We note that Algorithm 2.1 is globally convergent. We see from the numerical experiments in
section 4 that, in general, Algorithm 2.1 converges at a low or medium order of accuracy. To
improve the efficiency, one may adopt some hybrid method. A possible strategy is to combine
Algorithm 2.1 with the Riemannian Newton method. As noted in section 1, the Riemannian
Newton method may be computationally expensive but has quadratic convergence. In particular,
one may use Algorithm 2.1 to generate an initial point for the Riemannian Newton method with
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Figure 4.3: Convergence history of two tests for Example 4.3.

a relatively low accuracy and then switch to the Riemannian Newton method for finding a
solution of high accuracy. A hybrid algorithm for solving (1.1) is described as follows.

Algorithm 5.1 (PRP-Newton Method)

Step 0. Choose an initial point X0 ∈ M, 0 < ζ2 < ζ1, and 0 < ς < 1, t1, t2 > 0, 0 < ρ < 1,
0 < λmin < λmax < 1, 0 < αmin ≤ α ≤ αmax. Let k := 0, Γ0 := f(X0), Φ0 := 1. Select a
positive sequence {δk} such that (2.7) is satisfied.

Step 1. For k = 1, 2, . . ., do the RDF-PRP iteration as follows:

(a). Set ∆Xk to be (2.8) where βk and Yk are given by (2.9).

(b). Determine αk = max{αρj , j = 0, 1, 2, . . .} such that if the condition (2.10) is satisfied,
then compute Xk+1 from (2.11); else if the condition (2.12) is satisfied, then compute
Xk+1 from (2.13).

(c). Choose λk ∈ [λmin, λmax] and compute Φk+1 = λkΦk + 1 and Γk+1 from (2.14).

(d). Stop if ‖F (Xk)‖ < ζ1.

Step 2. Set X0 to be the limit point of the RDF-PRP iteration.

Step 3. For k = 1, 2, . . ., do the Riemannian Newton iteration as follows:

(a). Apply the conjugate gradient (CG) method [19, Algorithm 10.2.1] to solving

JF (Xk−1)[∆Xk−1] = −F (Xk−1)

for ∆Xk−1 ∈ TXk−1
M such that

‖JF (Xk−1)[∆Xk−1] + F (Xk−1)‖ ≤ ςk−1‖F (Xk−1)‖,

where ςk−1 := min{ς, ‖F (Xk−1)‖}.
(b). Set

Xk := RXk−1
(∆Xk−1).
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(c). Stop if ‖F (Xk)‖ < ζ2.

We point out that, in Step 3 of Algorithm 5.1, the Riemannian Newton equation is solved
inexactly by choosing appropriate value of ς. In addition, different values of ζ1 lead to different
starting points for the Riemannian Newton method.

For demonstration purpose, we use Algorithm 5.1 to Examples 4.1–4.2, i.e., finding zeros of
the tangent vector fields defined by (4.1) and (4.4). To develop the Riemannian Newton method,
one need to restrict the tangent vector fields in (4.1) and (4.4) to the Grassmann manifold
Grass(p,m) endowed with the induced Riemannian metric from St(p,m). The restriction F̂ :
Grass(p,m)→ TGrass(p,m) of F defined in (4.1) to Grass(p,m) is given by

F̂ ([X]) = [AX −XXTAX],

where [X] := {XQ ∈ St(p,m) | Q ∈ O(p)} ∈ Grass(p,m) denotes the equivalent class corre-
sponding to a pointX ∈ St(p,m). GivenX ∈ St(p,m) and a tangent vector ξ[X] ∈ T[X]Grass(p,m),

let ξ[X] ∈ HX denote the horizontal lift of ξ[X] ∈ T[X]Grass(p,m) at X ∈ St(p,m), where HX de-

notes the horizontal space at X ∈ St(p,m) [43, p.757]. The horizontal lift of JF̂ ([X])
[
ξ[X]

]
∈ HX

at X ∈ St(p,m) is denoted by JF̂ ([X])
[
ξ[X]

]
, which has the following form:

JF̂ ([X])
[
ξ[X]

]
= (I −XXT )(Aξ[X] − ξ[X]X

TAX).

Similarly, the restriction F̂ : Grass(p,m)→ TGrass(p,m) of F defined in (4.4) to Grass(p,m)
is given by

F̂ ([X]) = [E(X)X −X(XTE(X)X)], ∀[X] ∈ Grass(p,m).

Given a point X ∈ St(p,m) and a tangent vector ξ[X] ∈ T[X]Grass(p,m), the horizontal lift of

JF̂ ([X])
[
ξ[X]

]
∈ HX at X ∈ St(p,m) is denoted by JF̂ ([X])

[
ξ[X]

]
, which is given by

JF̂ ([X])
[
ξ[X]

]
= (I −XXT )

(
E(X)ξ[X] +G(X, ξ[X])X − ξ[X]X

TE(X)X
)
,

where

G(X, ξ[X]) := A
−φ′B(X; ξ[X])

φ2
B(X)

−B
φ′A(X; ξ[X])φ

2
B(X)− 2φB(X)φ′B(X; ξ[X])φA(X)

φ4
B(X)

and
φ′A(X; ξ[X]) := 2tr(V TAξ[X]), φ′B(X; ξ[X]) := 2tr(V TBξ[X]).

For the application of Riemannian optimization algorithms on Riemannian quotient manifolds,
one can refer to [1, p.86 and p.121] and [43].

Next, we consider the application of Algorithm 5.1 to Examples 4.1–4.2 for different values
of m and p. In our numerical tests, ‘NCG.’ denotes the total number of CG iterations of the
Newton step at the final iterate of Algorithm 5.1. In our numerical tests, we set ς = 10−8, the
parameter pairs (ζ1, ζ2) are set to be (10−1, 10−7) and (10−3, 10−7), respectively, and the other
parameters and the starting points are set as in section 4. For simplicity, two different pairs of
(ζ1, ζ2) are tested.
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Table 5.1 displays the numerical results for Example 4.1 with different values of m and p. In
Figure 5.1, we give the convergence history of Algorithm 5.1 for two tests of Example 4.1 with
(m, p) = (2000, 30) and (m, p) = (3000, 60). Figure 5.1 depicts the logarithm of the residual
versus the number of iterations for finding a zero of the tangent vector field F defined in (4.1).
Table 5.2 shows the numerical results for Example 4.2 with different values of m and p. In
Figure 5.2, we give the convergence history of Algorithm 5.1 for for two tests of Example 4.2
with (m, p) = (1000, 30) and (m, p) = (2000, 60). Figure 5.2 depicts the logarithm of the residual
versus the number of iterations for finding a zero of the tangent vector field F defined in (4.4).

We observe from Tables 5.1–5.2 and Figures 5.1–5.2 that, by choosing suitable ζ1, Algorithm
2.1 may provide a good initial point for the Riemannian Newton method, which give a high
accuracy solution. This shows that the proposed hybrid method is very effective for solving
large-scale problems.
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Figure 5.1: Convergence history of two tests for Example 4.1.
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Figure 5.2: Convergence history of two tests for Example 4.2.
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Table 5.1: Numerical results for Example 4.1.

p = 30
m (ζ1, ζ2) PRP-Newton CT. IT. NF. NCG. Res0. Res.

1000
(10−1, 10−7)

PRP Step 0.0970 s 13 20 1.5637 9.2121× 10−2

Newton Step 3.5740 s 12 13 1073 9.2121× 10−2 1.2530× 10−8

(10−3, 10−7)
PRP Step 0.4780 s 85 92 1.5637 9.6138× 10−4

Newton Step 1.3960 s 2 3 425 9.6138× 10−4 4.2673× 10−10

2000
(10−1, 10−7)

PRP Step 0.1720 s 13 18 1.5877 9.8514× 10−2

Newton Step 15.9840 s 16 17 1761 9.8514× 10−2 1.4495× 10−11

(10−3, 10−7)
PRP Step 1.1880 s 95 100 1.5877 9.7528× 10−4

Newton Step 6.5630 s 2 3 705 9.7528× 10−4 9.9379× 10−11

3000
(10−1, 10−7)

PRP Step 0.5150 s 13 22 1.5635 8.6702× 10−2

Newton Step 46.9220 s 22 23 1967 8.6702× 10−2 3.6051× 10−8

(10−3, 10−7)
PRP Step 3.3630 s 114 123 1.5635 9.9517× 10−4

Newton Step 14.8350 s 2 3 621 9.9517× 10−4 5.1732× 10−13

4000
(10−1, 10−7)

PRP Step 0.7770 s 13 20 1.5762 8.6654× 10−2

Newton Step 155.6490 s 38 39 3940 8.6654× 10−2 2.3522× 10−8

(10−3, 10−7)
PRP Step 5.3730 s 114 121 1.5762 9.9009× 10−4

Newton Step 33.8150 s 2 3 859 9.9009× 10−4 1.6149× 10−8

5000
(10−1, 10−7)

PRP Step 1.1880 s 13 18 1.5813 9.4306× 10−2

Newton Step 315.0050 s 49 50 5008 9.4306× 10−2 5.9576× 10−8

(10−3, 10−7)
PRP Step 13.7560 s 184 189 1.5813 9.8964× 10−4

Newton Step 136.9180 s 5 6 2154 9.8964× 10−4 5.2168× 10−11

m = 3000
p (ζ1, ζ2) PRP-Newton CT. IT. NF. NCG. Res0. Res.

20
(10−1, 10−7)

PRP Step 0.3950 s 12 21 1.2778 8.5232× 10−2

Newton Step 48.8860 s 23 24 2605 8.5232× 10−2 2.9885× 10−11

(10−3, 10−7)
PRP Step 2.9630 s 132 141 1.2778 9.8691× 10−4

Newton Step 15.7150 s 4 5 838 9.8691× 10−4 1.2869× 10−8

40
(10−1, 10−7)

PRP Step 0.5300 s 13 18 1.8237 9.9742× 10−2

Newton Step 104.7220 s 30 31 3771 9.9742× 10−2 3.3097× 10−9

(10−3, 10−7)
PRP Step 3.4950 s 98 103 1.8237 9.6445× 10−4

Newton Step 38.1140 s 3 4 1348 9.6445× 10−4 2.0956× 10−10

60
(10−1, 10−7)

PRP Step 0.9530 s 15 30 2.2435 9.6070× 10−2

Newton Step 63.3580 s 15 16 1778 9.6070× 10−2 6.9081× 10−10

(10−3, 10−7)
PRP Step 6.4520 s 121 136 2.2435 9.8044× 10−4

Newton Step 27.8180 s 2 3 726 9.8044× 10−4 4.1246× 10−9

80
(10−1, 10−7)

PRP Step 1.5960 s 16 27 2.5407 9.9187× 10−2

Newton Step 128.4430 s 22 23 2445 9.9187× 10−2 1.6713× 10−9

(10−3, 10−7)
PRP Step 12.2660 s 159 170 2.5407 9.8479× 10−4

Newton Step 56.0430 s 3 4 1062 9.8479× 10−4 1.0519× 10−11

100
(10−1, 10−7)

PRP Step 2.1910 s 17 30 2.9047 9.6005× 10−2

Newton Step 251.5150 s 25 26 3773 9.6005× 10−2 1.9501× 10−11

(10−3, 10−7)
PRP Step 11.0250 s 105 118 2.9047 9.9363× 10−4

Newton Step 76.9210 s 3 4 1148 9.9363× 10−4 4.1883× 10−8
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Table 5.2: Numerical results for Example 4.2.

p = 30
m (ζ1, ζ2) PRP-Newton CT. IT. NF. NCG. Res0. Res.

1000
(10−1, 10−7)

PRP Step 1.2650 s 81 98 1.2016× 102 9.8709× 10−2

Newton Step 4.6090 s 3 4 629 9.8709× 10−2 4.9052× 10−10

(10−3, 10−7)
PRP Step 2.5630 s 161 178 1.2016× 102 9.5649× 10−4

Newton Step 1.5150 s 1 2 189 9.5649× 10−4 2.0833× 10−10

2000
(10−1, 10−7)

PRP Step 5.9340 s 90 105 1.7128× 102 9.8977× 10−2

Newton Step 29.3860 s 3 4 855 9.8977× 10−2 2.4162× 10−9

(10−3, 10−7)
PRP Step 10.9610 s 174 189 1.7128× 102 9.8098× 10−4

Newton Step 9.1750 s 1 2 265 9.8098× 10−4 6.9162× 10−10

3000
(10−1, 10−7)

PRP Step 13.8460 s 98 111 2.0983× 102 9.9004× 10−2

Newton Step 64.1920 s 3 4 860 9.9004× 10−2 7.2418× 10−11

(10−3, 10−7)
PRP Step 26.5980 s 197 210 2.0983× 102 9.4199× 10−4

Newton Step 20.1030 s 1 2 260 9.4199× 10−4 8.3461× 10−11

4000
(10−1, 10−7)

PRP Step 34.0490 s 138 155 2.4355× 102 9.9053× 10−2

Newton Step 110.148 s 3 4 850 9.9053× 10−2 1.4005× 10−9

(10−3, 10−7)
PRP Step 67.5570 s 289 306 2.4355× 102 9.7171× 10−4

Newton Step 34.1720 s 1 2 257 9.7171× 10−4 1.3732× 10−10

5000
(10−1, 10−7)

PRP Step 37.3010 s 91 116 2.7389× 102 9.8258× 10−2

Newton Step 214.2700 s 3 4 936 9.8258× 10−2 1.1501× 10−9

(10−3, 10−7)
PRP Step 75.7800 s 199 224 2.7389× 102 9.6717× 10−4

Newton Step 54.7750 s 1 2 276 9.6717× 10−4 1.9560× 10−11

m = 2000
p (ζ1, ζ2) PRP-Newton CT. IT. NF. NCG. Res0. Res.

20
(10−1, 10−7)

PRP Step 5.8470 s 95 121 1.4046× 102 9.5643× 10−2

Newton Step 14.6980 s 2 3 461 9.5643× 10−2 4.7077× 10−9

(10−3, 10−7)
PRP Step 14.6830 s 199 225 1.4046× 102 9.3379× 10−4

Newton Step 9.2240 s 1 2 239 9.3379× 10−4 2.2436× 10−10

40
(10−1, 10−7)

PRP Step 7.9220 s 109 128 1.9775× 102 9.9096× 10−2

Newton Step 65.6650 s 3 4 1799 9.9096× 10−2 5.1574× 10−10

(10−3, 10−7)
PRP Step 16.3930 s 235 254 1.9775× 102 9.8092× 10−4

Newton Step 8.9040 s 1 2 240 9.8092× 10−4 1.2536× 10−10

60
(10−1, 10−7)

PRP Step 7.2970 s 95 114 2.4225× 102 9.7040× 10−2

Newton Step 46.2810 s 4 5 1142 9.7040× 10−2 2.5144× 10−10

(10−3, 10−7)
PRP Step 13.6400 s 179 198 2.4225× 102 9.8101× 10−4

Newton Step 9.8130 s 1 2 240 9.8101× 10−4 1.5623× 10−10

80
(10−1, 10−7)

PRP Step 11.2390 s 94 111 2.7770× 102 9.9043× 10−2

Newton Step 50.2640 s 3 4 847 9.9043× 10−2 6.0549× 10−10

(10−3, 10−7)
PRP Step 22.1340 s 193 210 2.7770× 102 9.6451× 10−4

Newton Step 15.2620 s 1 2 252 9.6451× 10−4 1.0738× 10−10

100
(10−1, 10−7)

PRP Step 15.1400 s 104 121 3.0711× 102 9.7853× 10−2

Newton Step 148.2740 s 6 7 2104 9.7853× 10−2 2.1292× 10−11

(10−3, 10−7)
PRP Step 28.7670 s 212 229 3.0711× 102 9.7389× 10−4

Newton Step 18.3350 s 1 2 257 9.7389× 10−4 4.2447× 10−10

20



6 Conclusions

In this paper, we have proposed a Riemannian Derivative-Free PRP Method for finding a zero
of a tangent vector field on a Riemannian manifold. By using a non-monotone line search, the
global convergence of the proposed geometric method is established under some mild conditions.
To further improve the efficiency, we also provide a hybrid method, which combines the pro-
posed geometric algorithm with the Riemannian Newton method. Numerical tests illustrate the
efficiency of the proposed geometric algorithm for large-scale problems. An interesting question
is how to choose the stopping tolerance ζ1 such that the overall computational cost of Algorithm
5.1 is minimized, which needs further study.
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[18] O. P. Ferreira, L. R. L. Pérez, and S. Z. Németh, Singularities of monotone vector
fields and an extragradienttype algorithm, J. Glob. optim., 31 (2005), pp. 133–151.

[19] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd edition, Johns Hopkins
University Press, Baltimore and London, 1996.

[20] U. Helmke and J. B. Moore, Optimization and Dynamical Systems, Springer-Verlag,
London, 1994.

[21] U. Helmke and M. A. Shayman, Critical points of matrix least squares distance func-
tions, Linear Algebra Appl., 215, 1995, pp. 1–19.

[22] B. Jeuris, Riemannian Optimization for Averaging Positive Definite Matrices, Ph.D. dis-
sertation, Department of Computer Science, KU Leuven, 2015,
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