Skip to main content
Log in

A fast temporal second-order compact ADI difference scheme for the 2D multi-term fractional wave equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, a fast temporal second-order compact ADI scheme is proposed for the 2D time multi-term fractional wave equation. At the super-convergence point, the multi-term Caputo derivative is approximated by combining the order reduction technique with the sum-of-exponential approximation to the kernel function appeared in Caputo derivative. The difference scheme can be solved by the recursion, which reduces the storage and computational cost significantly. The obtained scheme is uniquely solvable. The unconditional convergence and stability of the scheme in the discrete H1-norm are proved by the discrete energy method and the convergence accuracy is second-order in time and fourth-order in space. Numerical example illustrates the efficiency of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdel-Rehim, E.A., El-Sayed, A.M.A., Hashem, A.S.: Simulation of the approximate solutions of the time-fractional multi-term wave equations. Comput. Math. Appl. 73, 1134–1154 (2017)

    Article  MathSciNet  Google Scholar 

  2. Alikhanov, A.A.: A new difference scheme for the fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  Google Scholar 

  3. Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)

    Article  MathSciNet  Google Scholar 

  4. Dehghan, M., Abbaszadeh, M., Deng, W.H.: Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation. Appl. Math. Letters 73, 120–127 (2017)

    Article  MathSciNet  Google Scholar 

  5. Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290, 174–195 (2015)

    Article  MathSciNet  Google Scholar 

  6. Du, R., Cao, W., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34, 2998–3009 (2010)

    Article  MathSciNet  Google Scholar 

  7. Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)

    Article  MathSciNet  Google Scholar 

  8. Gao, G.H., Alikhanov, A.A., Sun, Z.Z.: The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations. J. Sci. Comput. 73, 93–121 (2017)

    Article  MathSciNet  Google Scholar 

  9. Gao, G.H., Yang, Q.: Fast evaluation of linear combinations of Caputo fractional derivatives and its applications to multi-term time-fractional sub-diffusion equations, Numer. Math.: Theory, Methods and Appl. https://doi.org/10.4208/nmtma.OA-2019-0013 (2020)

  10. Godoy, S., Garcia-Colin, L.S.: From the quantum random walk to classical mesoscopic diffusion in crystalline solids. Phys. Rev. E 53, 5779–5785 (1996)

    Article  Google Scholar 

  11. Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)

    Article  MathSciNet  Google Scholar 

  12. Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)

    Article  MathSciNet  Google Scholar 

  13. Lei, S.L., Sun, H.W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  Google Scholar 

  14. Li, C.P., Cao, J.X.: A finite difference method for time-fractional telegraph equation. In: 2012 IEEE /ASME International Conference, pp. 314–318

  15. Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 9–25 (2013)

    Article  MathSciNet  Google Scholar 

  16. Luchko, Y.: Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374, 538–548 (2011)

    Article  MathSciNet  Google Scholar 

  17. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, San Diego (1974)

    MATH  Google Scholar 

  18. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, New York (1997)

    MATH  Google Scholar 

  19. Ren, J.C., Sun, Z.Z.: Efficient Numerical solution of the multi-term time fractional diffusion-dave equation. East Asian J. Appl. Math. 5, 1–28 (2015)

    Article  MathSciNet  Google Scholar 

  20. Salehi, R.: A meshless point collocation method for 2-D multi-term time fractional diffusion-wave equation. Numer Algor. 74, 1145–1168 (2017)

    Article  MathSciNet  Google Scholar 

  21. Shiralashetti, S.C., Deshi, A.B.: An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations. Nonlinear Dyn. 83, 293–303 (2016)

    Article  MathSciNet  Google Scholar 

  22. Srivastava, V., Rai, K.N.: A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues. Math. Comput. Model. 51, 616–624 (2010)

    Article  MathSciNet  Google Scholar 

  23. Sun, H.G., Li, Z.P., Zhang, Y., Chen, W.: Fractional and fractal derivative models for transient anomalous diffusion: model comparison. Chaos, Solitons & Fractals 102, 346–353 (2017)

    Article  MathSciNet  Google Scholar 

  24. Sun, H.G., Zhang, Y., Chen, W., Reeves, D.M.: Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media. J. Contam. Hydrol. 157, 47–58 (2014)

    Article  Google Scholar 

  25. Sun, Z.Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012). in Chinese

    Google Scholar 

  26. Sun, H., Sun, Z.Z., Gao, G.H.: Some temporal second order difference schemes for fractional wave equations. Numer. Methods Partial Differential Eq. 32, 970–1001 (2016)

    Article  MathSciNet  Google Scholar 

  27. Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  Google Scholar 

  28. Sun, H., Zhao, X., Sun, Z.Z.: The temporal second order difference schemes based on the interpolation approximation for the time multi-term fractional wave equation. J Sci Comput. 78, 467–498 (2019)

    Article  MathSciNet  Google Scholar 

  29. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    Article  MathSciNet  Google Scholar 

  30. Vong, S.W., Pang, H.K., Jin, X.Q.: A high-order difference scheme for the generalized Cattaneo equation. East Asian J. Appl. Math. 2, 170–184 (2012)

    Article  MathSciNet  Google Scholar 

  31. Wang, Z.B., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  Google Scholar 

  32. Pan, J., Ng, M.K., Wang, H.: Fast iterative solvers for linear systems arising from timedependent space-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2806–A2826 (2016)

    Article  Google Scholar 

  33. Yan, Y.G., Sun, Z.Z., Zhang, J.W.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22, 1028–1048 (2017)

    Article  MathSciNet  Google Scholar 

  34. Zhang, Y.N., Sun, Z.Z., Zhao, X.: Compact alternating direction implicit schemes for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, 1535–1555 (2012)

    Article  MathSciNet  Google Scholar 

  35. Zhao, X., Sun, Z.Z.: Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 62, 747–771 (2015)

    Article  MathSciNet  Google Scholar 

  36. Zhao, X., Sun, Z.Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The research is supported by the National Natural Science Foundation of China (grant number 11701229, 11671081), Natural Science Youth Foundation of Jiangsu Province (No. BK20170567), China Postdoctoral Science Foundation (No. 2019M651634), High-level Scientific Research foundation for the introduction of talent of Nanjing Institute of Technology (No. YKL201856).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-zhong Sun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. The proof of Theorem 2

Appendix. The proof of Theorem 2

Firstly, we present some lemmas which are necessary for proving Theorem 2.

Lemma 9

[8] Given any non-negative integer m and positive constants λ0,λ1,…,λm, for any γi ∈ (0, 1],i = 0, 1,…,m, it holds

$$ \begin{array}{@{}rcl@{}} \widehat{g}_{1}^{(k+1)}&>&\widehat{g}_{2}^{(k+1)}>{\cdots} >\widehat{g}_{k-1}^{(k+1)}>\widehat{g}_{k}^{(k+1)}\\ &>&\sum\limits_{r=0}^{m}\lambda_{r}\ \frac {\tau^{-\gamma_{r}}}{\Gamma (2-\gamma_{r})}\cdot\frac{1-\gamma_{r}}2(k-1+\sigma)^{-\gamma_{r}}. \end{array} $$

In addition, there exists a constant τ0 such that when ττ0,

$$ (2\sigma-1)\widehat{g}_{0}^{(k+1)}-\sigma\widehat{g}_{1}^{(k+1)}>0 $$

and hence

$$ \widehat{g}_{0}^{(k+1)}>\widehat{g}_{1}^{(k+1)}. $$

Lemma 10

The sequence \(\{\widehat {g}_{n}^{(k+1)}\}\) satisfies

$$ \sum\limits_{n=1}^{k}\widehat{g}_{n}^{(n+1)}\leq \ \sum\limits_{r=0}^{m}{\frac {\lambda_{r}\tau^{-\gamma_{r}}}{\Gamma (2-\gamma_{r})}}(k+\sigma)^{1-\gamma_{r}}, $$

and

$$ \sum\limits_{n=1}^{k}\widehat{g}_{n-1}^{(n+1)}\leq \ \sum\limits_{r=0}^{m}\sum\limits_{r=0}^{m}{\frac{\lambda_{r}\tau^{-\gamma_{r}}}{\Gamma(2-\gamma_{r})}(k+\sigma)^{1-\gamma_{r}}.} $$

Proof

Similar to the derivation of Corollary 2 in [2], \(\{a_{n}^{(\gamma _{r})}\}\) and \(\{b_{n}^{(\gamma _{r})}\}\) have the relation \(b_{n}^{(\gamma _{r})}=a_{n}^{(\gamma _{r})}\Big (\kappa ^{(\gamma _{r})}_{n}-\frac {1}{2}\Big ),\) where \(\frac {1}{2}\leq \kappa ^{(\gamma _{r})}_{n}\leq \frac {1}{2-\gamma _{r}}.\)

It follows that

$$ \begin{array}{@{}rcl@{}} \sum\limits_{n=1}^{k}\widehat{g}_{n}^{(n+1)}&=&\sum\limits_{r=0}^{m}\sum\limits_{n=1}^{k} \lambda_{r}g_{n}^{(n+1,\gamma_{r})} =\sum\limits_{r=0}^{m}\sum\limits_{n=1}^{k}\frac{\lambda_{r}\tau^{-\gamma_{r}}}{\Gamma(2-\gamma_{r})}\Big(a_{n}^{(\gamma_{r})}-b_{n}^{(\gamma_{r})}\Big)\\ &=&\sum\limits_{r=0}^{m}\sum\limits_{n=1}^{k}\frac{\lambda_{r}\tau^{-\gamma_{r}}}{\Gamma(2-\gamma_{r})}a_{n}^{(\gamma_{r})}\Big(\frac{3}{2}-\kappa^{(\gamma_{r})}_{n}\Big)\\ &=&\sum\limits_{r=0}^{m}\sum\limits_{n=1}^{k}\frac{\lambda_{r}\tau^{-\gamma_{r}}}{\Gamma(2-\gamma_{r})}\Big(\frac{3}{2}-\kappa^{(\gamma_{r})}_{n}\Big) \Big((n+\sigma)^{1-\gamma_{r}}-(n-1+\sigma)^{1-\gamma_{r}}\Big)\\ &\leq&\sum\limits_{r=0}^{m}{\frac{\lambda_{r}\tau^{-\gamma_{r}}}{\Gamma(2-\gamma_{r})}}(k+\sigma)^{1-\gamma_{r}}. \end{array} $$

For the second inequality, we have

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{n=1}^{k}\widehat{g}_{n-1}^{(n+1)}=\sum\limits_{r=0}^{m}\lambda_{r} g_{0}^{(2,\gamma_{r})}+ \sum\limits_{r=0}^{m}\sum\limits_{n=2}^{k}\lambda_{r} g_{n-1}^{(n+1,\gamma_{r})}\\ &=&\sum\limits_{r=0}^{m}\frac{\lambda_{r}\tau^{-\gamma_{r}}}{\Gamma(2-\gamma_{r})}\Big(a^{(\gamma_{r})}_{0}+b^{(\gamma_{r})}_{1}\Big)+ \sum\limits_{r=0}^{m}\sum\limits_{n=2}^{k}\frac{\lambda_{r}\tau^{-\gamma_{r}}}{\Gamma(2-\gamma_{r})}\Big(a_{n-1}^{(\gamma_{r})}+b_{n}^{(\gamma_{r})}-b_{n-1}^{(\gamma_{r})}\Big)\\ &=&{\sum\limits_{r=0}^{m}\frac{\lambda_{r}\tau^{-\gamma_{r}}}{\Gamma(2-\gamma_{r})}\Big(\sum\limits_{n=0}^{k-1}a_{n}^{(\gamma_{r})}+b_{k}^{(\gamma_{r})}\Big) \leq\sum\limits_{r=0}^{m}\frac{\lambda_{r}\tau^{-\gamma_{r}}}{\Gamma(2-\gamma_{r})}\sum\limits_{n=0}^{k}a_{n}^{(\gamma_{r})}}\\ &=&{\sum\limits_{r=0}^{m}\frac{\lambda_{r}\tau^{-\gamma_{r}}}{\Gamma(2-\gamma_{r})} \Big(\sigma^{1-\gamma_{r}}+\sum\limits_{n=1}^{k}\big((n+\sigma)^{1-\gamma_{r}}-(n-1+\sigma)^{1-\gamma_{r}}\big)\Big)}\\ &=&{\sum\limits_{r=0}^{m}\frac{\lambda_{r}\tau^{-\gamma_{r}}}{\Gamma(2-\gamma_{r})}(k+\sigma)^{1-\gamma_{r}}.} \end{array} $$

Similar to the derivation of Lemma 4.1 in [33], we can obtain the following lemma.

Lemma 11

The sequences \(\{g_{n}^{(k+1,\gamma _{r})}\}\) and \(\{{~}^{\mathcal {F}}g_{n}^{(k+1,\gamma _{r})}\}\) satisfy

$$ {~}^{\mathcal{F}}g_{0}^{(1,\gamma_{r})}=g_{0}^{(1,\gamma_{r})}, $$

and for k ≥ 1,

$$ \begin{array}{@{}rcl@{}} \Big|{~}^{\mathcal{F}}g_{n}^{(k+1,\gamma_{r})}-g_{n}^{(k+1,\gamma_{r})}\Big|\leq \frac{\varepsilon}{\Gamma(1-\alpha)} \left\{\begin{array}{lll} &\frac{1}{4},~n=0, \\ &\frac{5}{4},~1\leq n\leq k-1,\\ &1,~n=k. \end{array}\right. \end{array} $$

Lemma 12

[9] For the coefficients \(\big \{{~}^{\mathcal {F}}\widehat {g}_{n}^{(k+1)} (0\leq n\leq k, 0\leq k\leq N-1)\big \}\) defined in (8), and a sufficiently small ε, it holds

$$ \begin{array}{@{}rcl@{}} {~}^{\mathcal{F}}\widehat{g}_{1}^{(k+1)}\geq{~}^{\mathcal{F}}\widehat{g}_{2}^{(k+1)} \geq\cdots\geq{~}^{\mathcal{F}}\widehat{g}_{k}^{(k+1)}\geq C. \end{array} $$

In addition, there exists a constant τ0 such that, when ττ0,

$$ \begin{array}{@{}rcl@{}} (2\sigma-1){~}^{\mathcal{F}}\widehat{g}_{0}^{(k+1)}-\sigma{~}^{\mathcal{F}}\widehat{g}_{1}^{(k+1)}\geq0, \end{array} $$

and hence

$$ \begin{array}{@{}rcl@{}} {~}^{\mathcal{F}}\widehat{g}_{0}^{(k+1)}>{~}^{\mathcal{F}}\widehat{g}_{1}^{(k+1)}. \end{array} $$

where C is a positive constant.

Lemma 13

The sequence \(\{{~}^{\mathcal {F}}\widehat {g}_{n}^{(k)}\}\) satisfies

$$ \begin{array}{@{}rcl@{}} {~}^{\mathcal{F}}\widehat{g}_{n}^{(k+1)} =\left\{\begin{array}{ll} &{~}^{\mathcal{F}}{\widehat{g}}_{n}^{(k)},~~0\leq n\leq k-2,\\ &{~}^{\mathcal{F}}{\widehat{g}}_{k-1}^{(k)}+\widehat{B}_{k-1},~~n=k-1. \end{array}\right. \end{array} $$
(84)

where \(\widehat {B}_{k-1}=\sum \limits _{r=0}^{m}\lambda _{r}^{(\gamma _{r})}\Big (\sum \limits _{l=1}^{N_{exp}^{(\gamma _{r})}}\hat {\omega }_{1}^{(\gamma _{r})}e^{-(k-1)s_{l}^{(\gamma _{r})}\tau }B_{l}^{(\gamma _{r})}\Big ).\) In addition,

$$ \sum\limits_{n=1}^{k}{~}^{\mathcal{F}}{\widehat{g}}_{n}^{(n+1)}\leq \sum\limits_{r=0}^{m}\frac {3\lambda_{r}\tau^{-\gamma_{r}}}{2{\Gamma} (2-\gamma_{r})}(k+\sigma)^{1-\gamma_{r}}+\kappa_{1}k\varepsilon, $$

and

$$ \sum\limits_{n=1}^{k}\widehat{B}_{n-1}\leq\sum\limits_{r=0}^{m}\frac{(4-\gamma_{r})\lambda_{r}\tau^{-\gamma_{r}}}{2{\Gamma}(3-\gamma_{r})}(k-1+\sigma)^{1-\gamma_{r}} +\kappa_{1}k\varepsilon, $$

where κ1 is a positive constant.

Proof

The relation between \(\{{~}^{\mathcal {F}}{\widehat {g}}_{n}^{(k+1)}\}\) and \(\{{~}^{\mathcal {F}}{\widehat {g}}_{n}^{(k)}\}\) is obvious. We omit the details. □

It follows from Lemma 11 that

$$ {~}^{\mathcal{F}}{\widehat{g}}_{n}^{(k+1)}\leq {\widehat{g}}_{n}^{(k+1)}+\kappa_{1}\varepsilon,~0\leq n\leq k, $$

where κ1 is a constant. By Lemma 10 and noticing that \(\widehat {B}_{n-1}\leq {~}^{\mathcal {F}}\widehat {g}_{n-1}^{(n+1)} ~(1\leq n\leq k),\) it yields

$$ \sum\limits_{n=1}^{k}{~}^{\mathcal{F}}{\widehat{g}}_{n}^{(n+1)}\leq \sum\limits_{n=1}^{k}\widehat{g}_{n}^{(n+1)}+\kappa_{1}k\varepsilon \leq \sum\limits_{r=0}^{m}\frac {3\lambda_{r}\tau^{-\gamma_{r}}}{2{\Gamma} (2-\gamma_{r})}(k+\sigma)^{1-\gamma_{r}}+\kappa_{1}k\varepsilon, $$

and

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{n=1}^{k}\widehat{B}_{n-1}\leq \sum\limits_{n=1}^{k}{~}^{\mathcal{F}}\widehat{g}_{n-1}^{(n+1)}\leq \sum\limits_{n=1}^{k}\widehat{g}_{n-1}^{(n+1)}+\kappa_{1}k\varepsilon\\ &\leq& \sum\limits_{r=0}^{m}\frac{(4-\gamma_{r})\lambda_{r}\tau^{-\gamma_{r}}}{2{\Gamma}(3-\gamma_{r})}(k-1+\sigma)^{1-\gamma_{r}}+\kappa_{1}k\varepsilon. \end{array} $$

The coefficients \(\{{~}^{\mathcal {F}}g_{n}^{(k+1,\gamma _{r})}\}\) defined in (8) have the similar property as \(\{g_{n}^{(k+1,\gamma _{r})}\}\); thus, we have the following lemma.

Lemma 14

[8] Suppose 〈⋅,⋅〉 is an inner product on \(\mathcal {U}_{h},\) ∥⋅∥ is its deduced norm. For any grid functions \(v^{0},v^{1},\ldots ,v^{k+1}\in \mathcal {U}_{h},\) we have the following inequality

$$ \begin{array}{@{}rcl@{}} \Big\langle\sum\limits_{n=0}^{k}{~}^{\mathcal{F}}\widehat{g}_{n}^{(k+1)}(v^{n+1}-v^{n}), v^{k+\sigma}\Big\rangle_{*}\geq \frac {1}{2}\sum\limits_{n=0}^{k}{~}^{\mathcal{F}}\widehat{g}_{n}^{(k+1)}\big(\|v^{n+1}\|_{*}^{2}-\|v^{n}\|_{*}^{2}\big). \end{array} $$

Lemma 15

[26] For any grid functions \(u^{0},u^{1},\ldots ,u^{N}\in \mathcal {U}_{h}\), we have the following inequality

$$ \begin{array}{@{}rcl@{}} \big(D_{\hat{t}}u^{k}, u^{k+\sigma}\big)\geq \frac{1}{4\tau}(E^{k+1}-E^{k}),~k\geq1, \end{array} $$

with

$$ E^{k+1}=(2\sigma+1)\|u^{k+1}\|^{2}-(2\sigma-1)\|u^{k}\|^{2}+(2\sigma^{2}+\sigma-1)\|u^{k+1}-u^{k}\|^{2},~k\geq0. $$

In addition, it holds

$$ E^{k+1}\geq\frac{1}{\sigma}\|u^{k+1}\|^{2},~k\geq0. $$

The proof of Theorem 2

. The proof is divided into two steps, which correspond to the case k = 0 and k ≥ 1. □

It follows from (62)–(65) that \(~~~~u_{ij}^{k}=0,~~v_{ij}^{k}=0, \quad (i,j)\in \partial \omega ,~~0\leq k\leq N.\) Consequently,

$$ \begin{array}{@{}rcl@{}} && ({\Lambda}_{h}u^{1}, v^{1})=(u^{1}, {\Lambda}_{h}v^{1}), \end{array} $$
(A.1)
$$ \begin{array}{@{}rcl@{}} &&({\Lambda}_{h}u^{k+\sigma}, v^{k+\sigma})=(u^{k+\sigma}, {\Lambda}_{h}v^{k+\sigma}),\quad 1\le k\le N-1. \end{array} $$
(A.2)
  • Step 1. When k = 0, the system is as follows

    $$ \begin{array}{@{}rcl@{}} &&\mathcal{A}{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}(v_{ij}^{1}-v_{ij}^{0}) +\frac{\sigma^{2}\tau^{2}}{4p_{0}}{\delta_{x}^{2}}{\delta_{y}^{2}}v_{ij}^{1} =\sigma{\Lambda}_{h}u_{ij}^{1}+(1-\sigma){\Lambda}_{h}u_{ij}^{0}\\ &&\qquad\qquad\qquad\qquad\qquad\qquad\quad\qquad +p_{ij}^{0},~(i,j)\in\omega, \end{array} $$
    (A.3)
    $$ \begin{array}{@{}rcl@{}} &&\delta_{t}u_{ij}^{\frac{1}{2}}=v_{ij}^{\frac{1}{2}}+g_{ij}^{0},~(i,j)\in\overline{\omega}, \end{array} $$
    (A.4)
    $$ \begin{array}{@{}rcl@{}} &&u_{ij}^{0}=w_{1}(x_{i},y_{j}),~v_{ij}^{0}=w_{2}(x_{i},y_{j}),~(i,j)\in\overline{\omega}, \end{array} $$
    (A.5)
    $$ \begin{array}{@{}rcl@{}} &&u_{ij}^{1}=0,~(i,j)\in\partial\omega. \end{array} $$
    (A.6)
  1. (1)

    Taking the inner product of (A.3) with v1, we have

    $$ \begin{array}{@{}rcl@{}} &&{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}\|v^{1}\|_{\mathcal{A}}^{2} +\frac{\sigma^{2}\tau^{2}}{4p_{0}}\|\delta_{x}\delta_{y}v^{1}\|^{2}\\ &=&{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}(\mathcal{A}v^{0},v^{1}) + \sigma\big({\Lambda}_{h}u^{1},v^{1}\big) + (1-\sigma)({\Lambda}_{h}u^{0},v^{1}) + (p^{0},v^{1}). \end{array} $$
    (A.7)

    From (A.4), we have

    $$ \begin{array}{@{}rcl@{}} \delta_{t}{\Lambda}_{h}u_{ij}^{\frac{1}{2}}={\Lambda}_{h}v_{ij}^{\frac{1}{2}}+{\Lambda}_{h}g_{ij}^{0},~(i,j)\in\omega. \end{array} $$
    (A.8)

    Taking the inner product of (A.8) with − 2σu1 and by the summation by parts, it yields

    $$ \begin{array}{@{}rcl@{}} -\frac{2\sigma}{\tau}({\Lambda}_{h}u^{1},u^{1}) &=&-\frac{2\sigma}{\tau}({\Lambda}_{h}u^{0},u^{1})-\sigma({\Lambda}_{h}v^{1},u^{1}) -\sigma({\Lambda}_{h}v^{0},u^{1})\\ &&-2\sigma({\Lambda}_{h}g^{0},u^{1}). \end{array} $$
    (A.9)

    Adding (A.7) with (A.9) and using (A.1), Young inequality, and Lemma 7, we obtain

    $$ \begin{array}{@{}rcl@{}} &&{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}\|v^{1}\|_{\mathcal{A}}^{2} +\frac{\sigma^{2}\tau^{2}}{4p_{0}}\|\delta_{x}\delta_{y}v^{1}\|^{2} +\frac{4\sigma}{3\tau}(\|\delta_{x}u^{1}\|^{2}+\|\delta_{y}u^{1}\|^{2})\\ &\leq&{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}(\mathcal{A}v^{0},v^{1})+(p^{0},v^{1}) +(1-\sigma)({\Lambda}_{h}u^{0},v^{1})-2\sigma({\Lambda}_{h}g^{0},u^{1})\\ &&-\frac{2\sigma}{\tau}({\Lambda}_{h}u^{0},u^{1})-\sigma({\Lambda}_{h}v^{0},u^{1})\\ &\leq&\Big(\frac{{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}}{3}\|v^{1}\|_{\mathcal{A}}^{2} +\frac{3{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}}{4}\|v^{0}\|_{\mathcal{A}}^{2}\Big) +\Big(\frac{{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}}{9}\|v^{1}\|^{2}+\frac{9}{4{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}}\|p^{0}\|^{2}\Big)\\ &&+\Big(\frac{{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}}{9}\|v^{1}\|^{2} +\frac{9(1-\sigma)^{2}}{4{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}}\|{\Lambda}_{h}u^{0}\|^{2}\Big) +\Big({\delta}\|u^{1}\|^{2}+\frac{\sigma^{2}}{{\delta}}\|{\Lambda}_{h}g^{0}\|^{2}\Big)\\ &&+\Big({\delta}\|u^{1}\|^{2}+\frac{\sigma^{2}}{{\delta}\tau^{2}}\|{\Lambda}_{h}u^{0}\|^{2}\Big) +\Big({\delta}\|u^{1}\|^{2}+\frac{\sigma^{2}}{4{\delta}}\|{\Lambda}_{h}v^{0}\|^{2}\Big) \\ &\leq&{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}\|v^{1}\|_{\mathcal{A}}^{2}+3{\delta}\|u^{1}\|^{2} +\frac{3{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}}{4}\|v^{0}\|_{\mathcal{A}}^{2} +\frac{9(1-\sigma)^{2}}{4{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}}\|{\Lambda}_{h}u^{0}\|^{2} \\ &&+\frac{9}{4{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}}\|p^{0}\|^{2}+\frac{\sigma^{2}}{{\delta}}\|{\Lambda}_{h}g^{0}\|^{2}+\frac{\sigma^{2}}{{\delta}\tau^{2}}\|{\Lambda}_{h}u^{0}\|^{2} +\frac{\sigma^{2}}{4{\delta}}\|{\Lambda}_{h}v^{0}\|^{2}, \end{array} $$
    (A.10)

    where we use \(\|v^{1}\|^{2}\leq 3\|v^{1}\|_{\mathcal {A}}^{2}.\)

    Using \(\|u^{1}\|^{2}\leq \frac {1}{\frac {6}{{L_{1}^{2}}}+\frac {6}{{L_{2}^{2}}}}(\|\delta _{x}u^{1}\|^{2}+\delta _{y}u^{1}\|^{2})\) and taking \({\delta }=\frac 1{9\tau }\cdot (\frac {6\sigma }{{L_{1}^{2}}}+\frac {6\sigma }{{L_{2}^{2}}}),\) we have

    $$ \begin{array}{@{}rcl@{}} \|\delta_{x}u^{1}\|^{2}+\|\delta_{y}u^{1}\|^{2}&\leq& \frac{3{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}\tau}{4\sigma}\|v^{0}\|_{\mathcal{A}}^{2} +\frac{9(1-\sigma)^{2}\tau}{4{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}\sigma}\|{\Lambda}_{h}u^{0}\|^{2} \\ &&+\frac{9\tau}{4{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}\sigma}\|p^{0}\|^{2}+\frac{3\tau^{2}}{\frac{2}{{L_{1}^{2}}}+\frac{2}{{L_{2}^{2}}}}\|{\Lambda}_{h}g^{0}\|^{2} \\ &&+\frac{3}{\frac{2}{{L_{1}^{2}}}+\frac{2}{{L_{2}^{2}}}}\|{\Lambda}_{h}u^{0}\|^{2}\\ &&+\frac{3}{\frac{8}{{L_{1}^{2}}}+\frac{8}{{L_{2}^{2}}}}\tau^{2}\|{\Lambda}_{h}v^{0}\|^{2}. \end{array} $$
    (A.11)
  2. (2)

    It follows from (A.8) that

    $$ \begin{array}{@{}rcl@{}} {\Lambda}_{h}u_{ij}^{1}={\Lambda}_{h}u_{ij}^{0}+\tau{\Lambda}_{h}v_{ij}^{\frac{1}{2}}+\tau {\Lambda}_{h}g_{ij}^{0},~~(i,j)\in\omega. \end{array} $$
    (A.12)

    Substituting (A.12) into (A.3), we have

    $$ \begin{array}{@{}rcl@{}} \mathcal{A}{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}(v_{ij}^{1}-v_{ij}^{0}) +\frac{\sigma^{2}\tau^{2}}{4p_{0}}{\delta_{x}^{2}}{\delta_{y}^{2}}v_{ij}^{1} &=&\sigma{\Lambda}_{h}u_{ij}^{0}+\sigma\tau{\Lambda}_{h}v_{ij}^{\frac{1}{2}}+(1-\sigma){\Lambda}_{h}u_{ij}^{0}\\ &&+{p_{i}^{0}}+\sigma\tau {\Lambda}_{h}{g_{i}^{0}},~~(i,j)\in\omega. \end{array} $$
    (A.13)

Taking the inner product of (A.13) with \(v^{\frac {1}{2}},\) we obtain

$$ \begin{array}{@{}rcl@{}} &&{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}(\mathcal{A}v^{1}-\mathcal{A}v^{0},v^{\frac{1}{2}}) +\frac{\sigma^{2}\tau^{2}}{8p_{0}}\|\delta_{x}\delta_{y}v^{1}\|^{2}\\ \!&=&\!\frac{\sigma^{2}\tau^{2}}{8p_{0}}(\delta_{x}\delta_{y}v^{1}\!,\delta_{x}\delta_{y}v^{0}) + ({\Lambda}_{h}u^{0}\!,v^{\frac{1}{2}}) + \sigma\tau({\Lambda}_{h}v^{\frac{1}{2}},v^{\frac{1}{2}}) + (p^{0}\!,v^{\frac{1}{2}}) + \sigma\tau ({\Lambda}_{h}g^{0}\!,v^{\frac{1}{2}}) \\ \!&\le&\! \big({\Lambda}_{h}u^{0},v^{\frac{1}{2}}\big)+(p^{0},v^{\frac{1}{2}})+\sigma\tau ({\Lambda}_{h}g^{0},v^{\frac{1}{2}})+\frac{\sigma^{2}\tau^{2}}{8p_{0}}(\delta_{x}\delta_{y}v^{1},\delta_{x}\delta_{y}v^{0}) . \end{array} $$

By the summation by parts and Young inequality \(ab\leq \frac {a^{2}}{2{\delta }}+\frac {{\delta } b^{2}}{2}\) (taking \(\delta =\frac {{~}^{\mathcal {F}}\widehat {g}_{0}^{(1)}}{9}\)), it yields

$$ \begin{array}{@{}rcl@{}} &&\frac{1}{2}{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}(\|v^{1}\|_{\mathcal{A}}^{2}-\|v^{0}\|_{\mathcal{A}}^{2}) +\frac{\sigma^{2}\tau^{2}}{8p_{0}}\|\delta_{x}\delta_{y}v^{1}\|^{2}\\ &\leq&\Big(\frac{1}{2{\delta}}\|{\Lambda}_{h}u^{0}\|^{2}+\frac{{\delta}}{2}\|v^{\frac{1}{2}}\|^{2}\Big) +\Big(\frac{1}{2{\delta}}\|p^{0}\|^{2}+\frac{{\delta}}{2}\|v^{\frac{1}{2}}\|^{2}\Big) \\ &&+ \Big(\frac{\sigma^{2}\tau^{2} }{2{\delta}}\|{\Lambda}_{h}g^{0}\|^{2}+\frac{{\delta}}{2}\|v^{\frac{1}{2}}\|^{2}\Big)+\frac{\sigma^{2}\tau^{2}}{16p_{0}}\Big(\|\delta_{x}\delta_{y}v^{1}\|^{2}+\|\delta_{x}\delta_{y}v^{0}\|^{2}\Big)\\ &\leq&\frac{3{\delta}}{2}\|v^{\frac{1}{2}}\|^{2} +\frac{1}{2{\delta}}\|{\Lambda}_{h}u^{0}\|^{2}+\frac{1}{2{\delta}}\|p^{0}\|^{2} +\frac{\sigma^{2}\tau^{2}}{2{\delta}}\|{\Lambda}_{h}g^{0}\|^{2}\\ &&+\frac{\sigma^{2}\tau^{2}}{16p_{0}}\Big(\|\delta_{x}\delta_{y}v^{1}\|^{2} +\|\delta_{x}\delta_{y}v^{0}\|^{2}\Big)\\ &\leq&\frac{{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}}{4}\|v^{1}\|_{\mathcal{A}}^{2}+\frac{{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}}{4}\|v^{0}\|_{\mathcal{A}}^{2} +\frac{9}{2{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}}\|{\Lambda}_{h}u^{0}\|^{2} +\frac{9}{2{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}}\|p^{0}\|^{2} \\ &&+\frac{9\sigma^{2}\tau^{2}}{2{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}}\|{\Lambda}_{h}g^{0}\|^{2}+\frac{\sigma^{2}\tau^{2}}{16p_{0}}\Big(\|\delta_{x}\delta_{y}v^{1}\|^{2}+\|\delta_{x}\delta_{y}v^{0}\|^{2}\Big), \end{array} $$
(A.14)

where we have used \(\|v^{1}\|^{2}\leq 3\|v^{1}\|_{\mathcal {A}}\) in Lemma 7.

From (A.14), we obtain

$$ \begin{array}{@{}rcl@{}} &&\|v^{1}\|_{\mathcal{A}}^{2}+\frac{\sigma^{2}\tau^{2}}{4{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}p_{0}}\|\delta_{x}\delta_{y}v^{1}\|^{2}\\ &\leq& 3\|v^{0}\|_{\mathcal{A}}^{2}+\frac{18}{({~}^{\mathcal{F}}\widehat{g}_{0}^{(1)})^{2}}\|{\Lambda}_{h}u^{0}\|^{2} +\frac{18}{({~}^{\mathcal{F}}\widehat{g}_{0}^{(1)})^{2}}\|p^{0}\|^{2} +\frac{18\sigma^{2}\tau^{2}}{({~}^{\mathcal{F}}\widehat{g}_{0}^{(1)})^{2}}\|{\Lambda}_{h}g^{0}\|^{2}\\ &&+\frac{\sigma^{2}\tau^{2}}{4{~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}p_{0}}\|\delta_{x}\delta_{y}v^{0}\|^{2}. \end{array} $$
(A.15)
  • Step 2.

    1. (1)

      When k ≥ 1, taking the inner product (61) with vk+σ, we obtain

      $$ \begin{array}{@{}rcl@{}} &&\Big(\mathcal{A}{\sum}_{n=0}^{k}{~}^{\mathcal{F}}\widehat{g}_{k-n}^{(k+1)}(v^{n+1}-v^{n}),v^{k+\sigma}\Big) \\ &&+\frac{4\sigma^{4}\tau^{2}}{(2\sigma+1)^{2}p}\Big({\delta_{x}^{2}}{\delta_{y}^{2}}v^{k+1},v^{k+\sigma}\Big)\\ &=&\Big({\Lambda}_{h}u^{k+\sigma},v^{k+\sigma}\Big) +\Big(p^{k},v^{k+\sigma}\Big),~1\leq k\leq N-1. \end{array} $$
      (A.16)

      By Lemma 14 and Lemma 13, we have

      $$ \begin{array}{@{}rcl@{}} &&\Big(\sum\limits_{n=0}^{k}{~}^{\mathcal{F}}\widehat{g}_{k-n}^{(k+1)}(\mathcal{A}v^{n+1}-\mathcal{A}v^{n}),v^{k+\sigma}\Big) \\ &\geq&\frac{1}{2}\sum\limits_{n=0}^{k}{~}^{\mathcal{F}}\widehat{g}_{k-n}^{(k+1)}\big(\|v^{n+1}\|_{A}^{2}-\|v^{n}\|_{\mathcal{A}}^{2}\big)\\ &=&\frac{1}{2}\Big(\sum\limits_{n=1}^{k+1}{~}^{\mathcal{F}}\widehat{g}_{k-n+1}^{(k+1)}\|v^{n}\|_{\mathcal{A}}^{2} -\sum\limits_{n=1}^{k}{~}^{\mathcal{F}}\widehat{g}_{k-n}^{(k)}\|v^{n}\|_{\mathcal{A}}^{2}-\widehat{B}_{k-1}\|v^{1}\|_{\mathcal{A}}^{2}\\ &&\qquad -{~}^{\mathcal{F}}\widehat{g}_{k}^{(k+1)}\|v^{0}\|_{\mathcal{A}}^{2}\Big),\\ && 1\leq k\leq N-1. \end{array} $$
      (A.17)

      It is easy to know that

      $$ \Big({\delta_{x}^{2}}{\delta_{y}^{2}}v^{k+1},v^{k+\sigma}\Big)=\sigma\|\delta_{x}\delta_{y}v^{k+1}\|^{2}+(1-\sigma) \Big(\delta_{x}\delta_{y}v^{k+1},\delta_{x}\delta_{y}v^{k}\Big) $$

      and

      $$ \begin{array}{@{}rcl@{}} \Big|\Big(p^{k},v^{k+\sigma}\Big)\Big|\leq {\delta}\|v^{k+\sigma}\|^{2}+\frac{1}{4{\delta}}\|p^{k}\|^{2}. \end{array} $$
      (A.18)

      Substituting (A.17) and (A.18) into (A.16), it yields

      $$ \begin{array}{@{}rcl@{}} &&\frac{1}{2}\Big(\sum\limits_{n=1}^{k+1}{~}^{\mathcal{F}}\widehat{g}_{k-n+1}^{(k+1)}\|v^{n}\|_{\mathcal{A}}^{2} -\sum\limits_{n=1}^{k}{~}^{\mathcal{F}}\widehat{g}_{k-n}^{(k)}\|v^{n}\|_{\mathcal{A}}^{2}-\widehat{B}_{k-1}\|v^{1}\|_{\mathcal{A}}^{2} \\ &&\qquad -{~}^{\mathcal{F}}\widehat{g}_{k}^{(k+1)}\|v^{0}\|_{\mathcal{A}}^{2}\Big)+\frac{4\sigma^{4}\tau^{2}}{(2\sigma+1)^{2}p}\sigma\|\delta_{x}\delta_{y}v^{k+1}\|^{2}\\ &\leq&{-}\frac{4\sigma^{4}\tau^{2}}{(2\sigma+1)^{2}p}(1-\sigma)\Big(\delta_{x}\delta_{y}v^{k+1},\delta_{x}\delta_{y}v^{k}\Big)+ \Big({\Lambda}_{h}u^{k+\sigma},v^{k+\sigma}\Big)\\ &&+{\delta}\|v^{k+\sigma}\|^{2}+\frac{1}{4{\delta}}\|p^{k}\|^{2},~~1\leq k\leq N-1. \end{array} $$
      (A.19)
    2. (2)

      From (63), it yields that

      $$ \begin{array}{@{}rcl@{}} D_{\hat{t}}{\Lambda}_{h}u_{ij}^{k} = {\Lambda}_{h}v_{ij}^{k+\sigma} + {\Lambda}_{h}g_{ij}^{k},~~(i,j)\!\in\!\omega,~1\!\leq\! k\!\leq\! N - 1, \end{array} $$
      (A.20)

      Taking the inner product (A.20) with − uk+σ, we get

      $$ \begin{array}{@{}rcl@{}} -\Big(D_{\hat{t}}{\Lambda}_{h}u^{k},u^{k+\sigma}\Big)&=&-\Big({\Lambda}_{h}v^{k+\sigma},u^{k+\sigma}\Big) -\Big({\Lambda}_{h}g^{k},u^{k+\sigma}\Big),\\ &&1\leq k\leq N-1. \end{array} $$
      (A.21)

Using Lemma 15, it yields

$$ \begin{array}{@{}rcl@{}} -\Big(D_{\hat{t}}{\Lambda}_{h}u^{k},u^{k+\sigma}\Big)&=&\Big(D_{\hat{t}}\mathcal{A}_{1}\delta_{y}u^{k},\delta_{y}u^{k+\sigma}\Big) +\Big(D_{\hat{t}}\mathcal{A}_{2}\delta_{x}u^{k},\delta_{x}u^{k+\sigma}\Big)\\ &=&\langle D_{\hat{t}}\delta_{y}u^{k},\delta_{y}u^{k+\sigma}\rangle_{\mathcal{A}_{1}} +\langle D_{\hat{t}}\delta_{x}u^{k},\delta_{x}u^{k+\sigma}\rangle_{\mathcal{A}_{2}}\\ &\geq& \frac{1}{4\tau}(F^{k+1}-F^{k}), \end{array} $$
(A.22)

where

$$ \begin{array}{@{}rcl@{}} F^{k+1}&=&(2\sigma+1)\|\delta_{x}u^{k+1}\|_{\mathcal{A}_{2}}^{2}-(2\sigma-1)\|\delta_{x}u^{k}\|_{\mathcal{A}_{2}}^{2} +(2\sigma^{2}+\sigma-1)\|\delta_{x}u^{k+1}\\ &&-\delta_{x}u^{k}\|_{\mathcal{A}_{2}}^{2}+(2\sigma+1)\|\delta_{y}u^{k+1}\|_{\mathcal{A}_{1}}^{2}-(2\sigma-1)\|\delta_{y}u^{k}\|_{\mathcal{A}_{1}}^{2} \\ &&+(2\sigma^{2}+\sigma-1)\|\delta_{y}u^{k+1}-\delta_{y}u^{k}\|_{\mathcal{A}_{1}}^{2}. \end{array} $$
(A.23)

and

$$ \begin{array}{@{}rcl@{}} F^{k+1}&\geq& \frac{1}{\sigma} (\|\delta_{x}u^{k+1}\|_{\mathcal{A}_{2}}^{2}+\|\delta_{y}u^{k+1}\|_{\mathcal{A}_{1}}^{2}) \geq\frac{1}{3\sigma} (\|\delta_{x}u^{k+1}\|^{2}+\|\delta_{y}u^{k+1}\|^{2}),\\ && k\geq0. \end{array} $$
(A.24)

By Cauchy-Schwarz inequality, we have

$$ \begin{array}{@{}rcl@{}} \Big|-\Big({\Lambda}_{h}g^{k},u^{k+\sigma}\Big)\Big|\leq \frac{1}{2}\|{\Lambda}_{h}g^{k}\|^{2}+\frac{1}{2}\|u^{k+\sigma}\|^{2},~~1\leq k\leq N-1. \end{array} $$
(A.25)

Substituting (A.22) and (A.25) into (A.21), it yields

$$ \begin{array}{@{}rcl@{}} \frac{1}{4\tau}(F^{k+1}-F^{k})&\leq& -\Big({\Lambda}_{h}v^{k+\sigma},u^{k+\sigma}\Big) +\frac{1}{2}\|{\Lambda}_{h}g^{k}\|^{2}+\frac{1}{2}\|u^{k+\sigma}\|^{2},\\ &\leq& k\leq N-1. \end{array} $$
(A.26)

Adding (A.19) with (A.26) and using (A.2), we obtain

$$ \begin{array}{@{}rcl@{}} &&\frac{1}{2}\Big(\sum\limits_{n=1}^{k+1}{~}^{\mathcal{F}}\widehat{g}_{k-n+1}^{(k+1)}\|v^{n}\|_{\mathcal{A}}^{2} -\sum\limits_{n=1}^{k}{~}^{\mathcal{F}}\widehat{g}_{k-n}^{(k)}\|v^{n}\|_{\mathcal{A}}^{2}-\widehat{B}_{k-1}\|v^{1}\|_{\mathcal{A}}^{2} -{~}^{\mathcal{F}}\widehat{g}_{k}^{(k+1)}\|v^{0}\|_{\mathcal{A}}^{2}\Big)\\ &&+\frac{4\sigma^{4}\tau^{2}}{(2\sigma+1)^{2}p}\sigma\|\delta_{x}\delta_{y}v^{k+1}\|^{2}+\frac{1}{4\tau}(F^{k+1}-F^{k})\\ &\leq&\frac{4\sigma^{4}\tau^{2}}{(2\sigma+1)^{2}p}(1-\sigma)\Big({\delta_{1}}\|\delta_{x}\delta_{y}v^{k+1}\|^{2} +\frac{1}{4{\delta_{1}}}\|\delta_{x}\delta_{y}v^{k}\|^{2}\Big) +{\delta}\|v^{k+\sigma}\|^{2}\\ &&+\frac{1}{4{\delta}}\|p^{k}\|^{2} +\frac{1}{2}\|{\Lambda}_{h}g^{k}\|^{2}+\frac{1}{2}\|u^{k+\sigma}\|^{2},~~1\leq k\leq N-1. \end{array} $$

Taking \({\delta _{1}}=\frac {\sigma +\sqrt {2\sigma -1}}{2(1-\sigma )},\) it yields

$$ \begin{array}{@{}rcl@{}} &&\frac{1}{2}\Big(\sum\limits_{n=1}^{k+1}{~}^{\mathcal{F}}\widehat{g}_{k-n+1}^{(k+1)}\|v^{n}\|_{\mathcal{A}}^{2} -\sum\limits_{n=1}^{k}{~}^{\mathcal{F}}\widehat{g}_{k-n}^{(k)}\|v^{n}\|_{\mathcal{A}}^{2}-\widehat{B}_{k-1}\|v^{1}\|_{\mathcal{A}}^{2} -{~}^{\mathcal{F}}\widehat{g}_{k}^{(k+1)}\|v^{0}\|_{\mathcal{A}}^{2}\Big)\\ &&+\frac{4\sigma^{4}\tau^{2}}{(2\sigma+1)^{2}p}\frac{\sigma-\sqrt{2\sigma-1}}{2}\|\delta_{x}\delta_{y}v^{k+1}\|^{2} +\frac{1}{4\tau}(F^{k+1}-F^{k})\\ &\leq&\frac{4\sigma^{4}\tau^{2}}{(2\sigma+1)^{2}p}\frac{\sigma-\sqrt{2\sigma-1}}{2}\|\delta_{x}\delta_{y}v^{k}\|^{2} +{\delta}\|v^{k+\sigma}\|^{2}+\frac{1}{4{\delta}}\|p^{k}\|^{2}\\ &&+\frac{1}{2}\|{\Lambda}_{h}g^{k}\|^{2}+\frac{1}{2}\|u^{k+\sigma}\|^{2}, ~~1\leq k\leq N-1. \end{array} $$
(A.27)

Denote

$$ H^{k+1}=2\tau\sum\limits_{n=1}^{k+1}{~}^{\mathcal{F}}\widehat{g}_{k-n+1}^{(k+1)}\|v^{n}\|_{\mathcal{A}}^{2} +{4}\tau\frac{4\sigma^{4}\tau^{2}}{(2\sigma+1)^{2}p}(\sigma-\sqrt{2\sigma-1})\|\delta_{x}\delta_{y}v^{k+1}\|^{2}+F^{k+1}. $$

Then, (A.27) can be rewritten as

$$ \begin{array}{@{}rcl@{}} H^{k+1}&\leq& H^{k}+2\tau \widehat{B}_{k-1}\|v^{1}\|_{\mathcal{A}}^{2}+ 2\tau{~}^{\mathcal{F}}\widehat{g}_{k}^{(k+1)}\|v^{0}\|_{\mathcal{A}}^{2} +4\tau{\delta}\|v^{k+\sigma}\|^{2}+\frac{\tau}{{\delta}}\|p^{k}\|^{2}\\ &&+2\tau\|{\Lambda}_{h}g^{k}\|^{2}+2\tau\|u^{k+\sigma}\|^{2}\\ &\leq&H^{1}+2\tau \sum\limits_{n=1}^{k}\widehat{B}_{n-1}\|v^{1}\|_{\mathcal{A}}^{2}+2\tau\sum\limits_{n=1}^{k}{~}^{\mathcal{F}}\widehat{g}_{n}^{(n+1)}\|v^{0}\|_{\mathcal{A}}^{2} +8\tau{\delta}\sum\limits_{n=1}^{k+1}\|v^{n}\|^{2}\\ &&+\frac{\tau}{{\delta}}\sum\limits_{n=1}^{k}\|p^{n}\|^{2}+2\tau\sum\limits_{n=1}^{k}\|{\Lambda}_{h}g^{n}\|^{2}+4\tau\sum\limits_{n=1}^{k+1}\|u^{n}\|^{2},\\ &&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1\leq k\leq N-1. \end{array} $$
(A.28)

By Lemma 12, (A.23), and (A.24) and when ττ0, we have

$$ \begin{array}{@{}rcl@{}} H^{k+1}&\geq &2C \tau\sum\limits_{n=1}^{k+1}\|v^{n}\|_{\mathcal{A}}^{2}+\frac{1}{3\sigma}(\|\delta_{x}u^{k+1}\|^{2}+\|\delta_{y}u^{k+1}\|^{2})\\ &&+{4}\tau\frac{4\sigma^{4}\tau^{2}}{(2\sigma+1)^{2}p}(\sigma-\sqrt{2\sigma-1})\|\delta_{x}\delta_{y}v^{k+1}\|^{2}, ~~1\leq k\leq N-1 \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} H^{1}&=&2\tau {~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}\|v^{1}\|_{\mathcal{A}}^{2} +{4}\tau\frac{4\sigma^{4}\tau^{2}}{(2\sigma+1)^{2}p}(\sigma-\sqrt{2\sigma-1})\|\delta_{x}\delta_{y}v^{1}\|^{2} +F^{1}\\ &\leq&2\tau\Big[ {~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}\|v^{1}\|_{\mathcal{A}}^{2} +\frac{4\sigma^{4}\tau^{2}}{(2\sigma+1)^{2}p}(\sigma-\sqrt{2\sigma-1})\|\delta_{x}\delta_{y}v^{1}\|^{2}\Big]\\ &&+(4\sigma^{2}+4\sigma-1)(\|\delta_{x}u^{1}\|^{2}+\|\delta_{y}u^{1}\|^{2}) +(4\sigma^{2}-1)(\|\delta_{x}u^{0}\|^{2}+\|\delta_{y}u^{0}\|^{2}). \end{array} $$

Substituting the above inequalities into (A.28), it yields

$$ \begin{array}{@{}rcl@{}} && 2C\tau\sum\limits_{n=1}^{k+1}\|v^{n}\|_{\mathcal{A}}^{2}+\frac{1}{3\sigma}(\|\delta_{x}u^{k+1}\|^{2}+\|\delta_{y}u^{k+1}\|^{2})\\ &&+{4}\tau\frac{4\sigma^{4}\tau^{2}}{(2\sigma+1)^{2}p}(\sigma-\sqrt{2\sigma-1})\|\delta_{x}\delta_{y}v^{k+1}\|^{2}\\ &\leq&2\tau\Big[ {~}^{\mathcal{F}}\widehat{g}_{0}^{(1)}\|v^{1}\|_{\mathcal{A}}^{2} +\frac{{8}\sigma^{4}\tau^{2}}{(2\sigma+1)^{2}p}(\sigma-\sqrt{2\sigma-1})\|\delta_{x}\delta_{y}v^{1}\|^{2}\Big]\\ &&+(4\sigma^{2}+4\sigma-1)(\|\delta_{x}u^{1}\|^{2}+\|\delta_{y}u^{1}\|^{2})\\ &&+(4\sigma^{2}-1)(\|\delta_{x}u^{0}\|^{2}+\|\delta_{y}u^{0}\|^{2}) +2\tau \sum\limits_{n=1}^{k}\widehat{B}_{n-1}\|v^{1}\|_{\mathcal{A}}^{2} +2\tau\sum\limits_{n=1}^{k}{~}^{\mathcal{F}}\widehat{g}_{n}^{(n+1)}\|v^{0}\|_{\mathcal{A}}^{2} \\&&+8\tau{\delta}\sum\limits_{n=1}^{k+1}\|v^{n}\|^{2}+\frac{\tau}{{\delta}}\sum\limits_{n=1}^{k}\|p^{n}\|^{2} +2\tau\sum\limits_{n=1}^{k}\|{\Lambda}_{h}g^{n}\|^{2}+4\tau\sum\limits_{n=1}^{k+1}\|u^{n}\|^{2}. \end{array} $$
(A.29)

By Lemma 13, we obtain

$$ \tau\sum\limits_{n=1}^{k}{~}^{\mathcal{F}}\widehat{g}_{n}^{(n+1)}\leq \tau\Big(\sum\limits_{r=0}^{m}\frac {3\lambda_{r}\tau^{-\gamma_{r}}}{2{\Gamma} (2-\gamma_{r})}(k+\sigma)^{1-\gamma_{r}}+\kappa_{1}k\varepsilon\Big)\leq C_{1}, $$

and

$$ \tau\sum\limits_{n=1}^{k}\widehat{B}_{n-1}\leq \tau\Big(\sum\limits_{r=0}^{m}\frac{(4-\gamma_{r})\lambda_{r}\tau^{-\gamma_{r}}}{2{\Gamma}(3-\gamma_{r})}(k-1+\sigma)^{1-\gamma_{r}}+\kappa_{1}k\varepsilon\Big)\leq C_{1}, $$

where C1 is a constant.

Taking δ = C/8 and using Lemma 7, Lemma 13, (A.11) and (A.15), we have

$$ \begin{array}{@{}rcl@{}} &&\|\delta_{x}u^{k+1}\|^{2}+\|\delta_{y}u^{k+1}\|^{2}\leq 12\sigma\tau \sum\limits_{n=1}^{k+1}\|u^{n}\|^{2}+c_{3}G_{k+1}\\ &\leq&\frac{2\sigma\tau}{\frac{3}{{L_{1}^{2}}}+\frac{3}{{L_{2}^{2}}}}\sum\limits_{n=1}^{k+1}(\|\delta_{x}u^{n}\|^{2}+\|\delta_{y}u^{n}\|^{2})+c_{3}G_{k+1}, 1\leq k\leq N-1, \end{array} $$

where c3 is a constant.

By Lemma 8, it follows that

$$ \begin{array}{@{}rcl@{}} \|\delta_{x}u^{k+1}\|^{2}+\|\delta_{y}u^{k+1}\|^{2}\leq c_{3} \exp\Big(\frac{2\sigma}{\frac{3}{{L_{1}^{2}}}+\frac{3}{{L_{2}^{2}}}}T\Big)G_{k+1},~~1\leq k\leq N-1. \end{array} $$
(A.30)

Substituting (A.30) into (A.29), there exists a constant c4 such that

$$ \begin{array}{@{}rcl@{}} \tau\sum\limits_{n=1}^{k+1}\|v^{n}\|^{2}\leq c_{4}G_{k+1}, 1\leq k\leq N-1. \end{array} $$

This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Sun, Zz. A fast temporal second-order compact ADI difference scheme for the 2D multi-term fractional wave equation. Numer Algor 86, 761–797 (2021). https://doi.org/10.1007/s11075-020-00910-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00910-z

Keywords

Navigation